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Recent advances in connexin gap junction biology
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Abstract

Connexins are assembled into dodecamer intercellular channels, a collection of which is termed a gap junction, and their canonical 
function allowing direct exchange of ions and metabolites has been unequivocally established. When initially assembled into  
undocked cell surface connexin hemichannels, healthy cells may also engage in cell signaling via a regulated small-molecule 
release. Recent advances in the field have led to an expanded view of the functional roles of intercellular channels and  
hemichannels in both physiology and pathology. As more of the 21-member human connexin family is intensely interrogated, 
mounting evidence points to the biological uniqueness of each member, and no longer can we confidently refer to all connexins 
engaging in the same cellular processes. Innovations in high-resolution cryo-electron microscopy have revealed important insights 
into the structure of functionally important domains of both hemichannels and channels. These and other studies have established 
a foundation of knowledge that should allow inhibitory smart drug design for situations where enhanced intercellular or  
hemichannel activity is at the root of a connexin-linked disease. Assessment of the connexin interactome, which varies widely 
for each connexin subtype, continues to provide regulatory insights into the assembly and function of connexins that exhibit a 
short half-life. As the most intensely studied, Cx43 is found in about 50% of all human cell types and is extensively regulated by 
multiple inhibitory and enhancing phosphorylation events that have direct implications on tissue function and outcomes of disease, 
including cancer. Here, we briefly discuss these advances and give our thoughts on where the field is headed.
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Introduction
The most well-known canonical functions of gap junctions are 
to permit and regulate the intercellular exchange of hundreds of 
small cellular metabolome constituents1,2. Gap junctions play 
both structural and intercellular communication roles to help 
regulate many cell processes, including cell migration, cell 
proliferation, embryonic development, differentiation, wound 
repair, and the coordinated contraction of heart and smooth 
muscle2. There is unequivocal evidence that, in humans, the  
channel-lining proteins of gap junctions are composed of pro-
teins from the 21-member connexin gene family3 (Figure 1).  
Genetic linkage analyses have associated 11 of these connexins  
to at least 30 human diseases with broad phenotypes, including  
deafness, syndactyly, skin diseases, neuropathies, lymphedema,  
cataracts, and developmental defects, emphasizing the fact that 
connexins are expressed in a tissue-specific manner4. However,  
not only are connexins linked to disease through gene mutations, 
but their role in cancer continues to be a focal point of research 
as the community continues to assess the potential value of  
prioritizing at least some connexins as therapeutic targets for 
specific tumor types or in cancer stem cells5–8. Still, other stud-
ies have identified the value of transiently downregulating  
connexin expression or function in diseases of the eye and in 
diabetic wounds2,9,10. There remains no doubt that connexins 
play critical roles in healthy cells as well as in pathophysiology.  
New advances in the areas of gap junction structure and regu-
lation continue to expand the breadth of functions linked to  
connexins in cell biology.

Revisiting the canonical function of connexins
Interrogation by X-ray diffraction, freeze-fracture electron  
microscopy, nuclear magnetic resonance, and atomic force  
microscopy, together with sophisticated image analysis, revealed 
that the dodecameric arrangement of connexins was needed to 
form a complete intercellular channel11–14. Direct confirmation of 
the connexin arrangement and molecular details of the pore-lining  
domains were lacking until 2009 when Maeda and colleagues  

solved the structure of the Cx26 gap junction channel at a 
resolution of 3.5 Å15. New details, such as the identifica-
tion of positively charged residues at the cytoplasmic entrance 
to the channel, began to emerge from these high-resolution  
structures15. More recently, it was shown that, when calcium 
bound to Cx26, the electrostatic barrier changed to prevent the 
passage of channel permeants, a process previously proposed to 
be related to a wholesale movement of connexin subunits16. The 
emergence of single-particle image analysis and cryo-electron  
microscopy (cryo-EM) accelerated the structural revolution  
as high-resolution images of native lens gap junctions com-
posed of Cx46 and Cx50 were obtained17. Here, the authors 
definitively proved the transmembrane domain arrangements 
and found open conformational states that were distinct from  
Cx2617, possibly revealing differences between alpha and 
beta connexin family members. This same team further 
resolved the structure of Cx46/50 channels in a dynamic  
aqueous-lipid context at near atomic resolution (1.9 Å), where 
the connexin proteins were found to stabilize the local lipid  
microenvironment18. This level of molecular detail is now  
sufficiently informative to serve as a model for rational drug 
design for the possible treatment of any number of inherited  
connexin-linked diseases4,8 and the countless pathologies linked to  
connexin regulation in diseased tissue and cancer19.

While connexins form intercellular channels that permit the 
direct passage of metabolomes, the 1991 discovery that macro-
phages could release ATP, via what the authors termed “half-gap  
junctions” or what today we would call hemichannels, 
expanded our view of connexin function20. In the years that fol-
lowed, the community had to consider that connexins may, in 
fact, have a second canonical function in forming cell surface  
channels capable of releasing (or, on occasion, internalizing) 
metabolites or a variety of signaling molecules or both. While 
this core cellular function has molecular rivals, most nota-
bly pannexin channels21,22, there was no doubt that connexin  
hemichannel functions needed to be considered in both  

Figure 1. Assembly of Cx43 during its life cycle. Cx43 is produced in the endoplasmic reticulum (ER) and is exported to the Golgi 
apparatus as a monomer. In the Golgi, Cx43 oligomerizes into hexamers and is exported to the plasma membrane, where it can exist as 
a closed (red channel) or open (green) hemichannel that can allow the regulated passage of specific small molecules (denoted by stars 
and ovals). Hemichannels from adjoining cells dock and form a head-to-head dodecameric structure (gap junction channel) to permit the 
regulated intercellular passage of small molecules and metabolites.
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physiological and pathological contexts. The question contin-
ues to arise as to where and when connexin hemichannels play 
a role in normal healthy physiology and where and when aber-
rant hemichannel activity would lead to cell death or disease.  
No fewer than 1500 peer-reviewed papers have featured the  
existence and functional role of connexin hemichannels in vir-
tually every organ of the human body. These studies range 
from Cx43 hemichannels engaging in a ventricular arrhyth-
mogenic mechanism within microdomains of cardiac intercalated  
discs23 to Cx43 hemichannels in astrocytes serving as a thera-
peutic target in spinal cord injury24 and to Cx43 hemichannels 
in osteocytes playing a critical role in mechanical load-induced  
bone formation25. Intuitively, connexin intercellular channels 
tend to favor an open state, as supported by recent structural 
experimental evidence, but our view is that hemichannels must 
have a resting closed state under homeostatic conditions in order  
to protect the integrity of the cytosol17,18,26–30.

However, evidence continues to mount that hemichannels play 
a more universal and canonical functional role in non-diseased  
tissues. As an example, considerable evidence suggests that  
Cx31.3 may not even have the capacity to form traditional gap 
junction intercellular channels, raising the notion that their 
main role in cells may be to act as functional hemichannels31.  
Likewise, the evidence for functional Cx46 and Cx50 
hemichannels in highly specialized lens tissue in the pres-
ence and absence of disease is compelling32,33. Still, other less  
well-studied connexins like Cx62 may have dual roles in 
platelets, functioning as both hemichannels and intercellular  
channels34. One must also consider that connexin hemichan-
nels may only partially open, permitting the smallest of channel 
permeants to pass. Insight into this notion was provided when  
cryo-EM was used to solve the hemichannel structure of a  
connexin that appears unable to form functional gap junction 
channels, Cx31.327,31. Resolution analysis that exceeded 2.6 Å  
revealed that Cx31.3 hemichannels adapt to a partially closed 
state that would allow the passage of chloride ions through the  
8 Å pore while preventing the passage of other cell metabolites27.  
Cryo-EM was also used to examine the open conformation  
of Cx26-N176Y mutant hemichannels within dynamic lipid  
bilayer nanodiscs28. Here, the alpha-helical structures found 
within the mutant Cx26 hemichannels were found to be the 
same as reported for Cx26 intercellular channels while the  
flexibility identified within the extracellular loops would prob-
ably serve to facilitate hemichannel docking in cases where  
complete gap junction channels are formed28. However, likely 
owing to their intrinsic disorder, we still know little about 
the structure of intracellular loop and C-terminal tail regions. 
Thus, there is no doubt that further high-resolution analysis of  
different connexin hemichannels and intercellular channels will  
continue to inform on their open and closed states.

To our minds, there remains little doubt that aberrant con-
nexin hemichannel function is at the root of several inherited  
connexin-linked diseases and cases of tissue injury as well as 
in chronic and acute diseases. Many missense and truncating  
connexin-gene mutations lead to hyperactive or leaky hemichan-
nels that appear especially prevalent in connexin-linked skin  

diseases4,35,36. Mutations in this class often lead to the loss of 
cell integrity and cell death, but other mechanisms of action 
need to be considered4,35,36. Blocking connexin hemichannels  
as a means of regulating the inflammatory response has given 
credence to the notion that this may be an effective strategy 
to treat chronic inflammatory eye diseases and eye injuries9.  
In fact, hyperactive or leaky hemichannels in disease or injury 
are somewhat ideal targets when considering commercializa-
tion and deployment of connexin hemichannel blockers2,8,37.  
Preferably, such hemichannel blockers should be specific to the 
aberrant hemichannel in question, a consideration that aligns 
with smart small-molecule design modeled from high-resolution  
connexin hemichannel structures, peptide mimetics that take 
into account both structure and domain flexibilities, and  
high-avidity antibodies. As an example, an antagonist antibody  
was shown to have efficacy in blocking leaky mutant Cx30 
hemichannels in the treatment of Clouston syndrome38. Similarly, 
the hemichannel blocker flufenamic acid was found to inhibit  
aberrant Cx26-G45E hemichannel function, reducing the symp-
toms of keratitis ichthyosis deafness found in mutant mice39. As 
noted by others, several connexin-based therapeutics that have 
entered clinical trials need to consider the specificity of the con-
nexin blocking agent and whether the pathological features  
of hemichannels can be selectively and effectively targeted40.

Finally, while connexins are foundational molecules needed to 
assemble both hemichannels and gap junction channels, we would 
be remiss if we did not draw attention to the connexin inter-
actome. The connexin interactome is highly dependent on the 
connexin family member as some interactomes are small (e.g., 
Cx26), while others are in excess of 50 proteins (e.g., Cx43)41.  
In the case of Cx43, the interactome includes proteins involved 
in protein trafficking, connexin turnover, connexin assembly, 
connexin post-translational modification, scaffolding, and other 
functions that have been extensively reviewed elsewhere41,42.  
The gap junction scaffold is also functionally important for 
other connexins, as has been shown for Cx30 in the cochlea, 
where ephrin-B2 interacts at the periphery of the gap junction  
regulating gap junction turnover43 in a manner perhaps analo-
gous to ZO-1 interaction with Cx4344. We believe the scaf-
fold function of gap junctions will be found to play critical  
regulatory roles as more research is performed on other  
connexins, and we look forward to new revelations.

Regulation of gap junction channels by 
phosphorylation
Our current understanding of the regulation of gap junctions 
is heavily biased toward Cx43. Cx43 is expressed in most cell 
lines even if they originated from cells that do not typically  
express Cx43 (e.g., hepatocytes express Cx32 and Cx26,  
but cell lines derived from them typically express only Cx43).  
Furthermore, our analysis of the literature suggests that Cx43  
is natively expressed in nearly half of the more than 200 cell  
types found in the human body. Many Cx43 post-translational 
modifications, including ubiquitination, acylation, hydroxylation,  
carboxylation, methylation, sumoylation, and nitrosylation,  
have been reported, but we know the most about the func-
tional consequences of Cx43 phosphorylation45. It is now clear 
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that more than eight protein kinases phosphorylate Cx43 at  
most of the 21 serine residues and at least three of the six tyro-
sine residues found within the cytoplasmic exposed carboxy  
terminus (Figure 2). We also know that phosphorylation regu-
lates the transport of Cx43 to the plasma membrane and its 
assembly into gap junctions and channel gating46, but more 
recent studies have also linked Cx43 phosphorylation events to 
gap junction stability and turnover46–50. At the level of tissue and  
organ physiology, recent evidence indicates that the Cx43 phos-
phorylation status is intimately linked to cardiac disorders,  
cardioprotection, ameloblast differentiation, oocyte maturation, 
angiotensin II-induced renal damage, B-lymphocyte spreading,  
epidermal wound repair, and autophagy51–57. Evidence for the  
essential role of some of these Cx43 phosphorylation events has 
been obtained via the use of genetically modified mice where 
known phosphorylation sites were modified to unphosphor-
ylatable residues (e.g., serine to alanine) or to mimic a consti-
tutively phosphorylated residue (e.g., serine to aspartate). Via  
this approach, casein kinase 1 phosphorylation of Cx43 was 
found to regulate several critical physiological events, including  
(a) proper cardiac beat rhythm58 and response to ischemia55,56,  
(b) efficient epidermal wound healing57, and (c) the effects of  
stromal fibroblasts on promoting pancreas cancer progression59,  
while (d) MAPK phosphorylation was shown to regulate  
neuroprotection during stroke60.

Our knowledge of phosphorylation of connexins other than  
Cx43 and the resulting physiological effects is in general less 
well-defined. There are reports that Cx31, Cx32, Cx36, Cx37,  

Cx40, Cx43, Cx46, Cx47, and Cx50 are phosphorylated45, 
but in some cases the specific residue or direct linkage of the  
phosphorylation event to an effect on connexin-linked physiol-
ogy is lacking. We conclude that many of the alpha subfamily 
of connexins that have been studied have shown at least some 
evidence of regulation by phosphorylation. However, some 
connexins, particularly those of the beta subfamily that have  
short C-terminal regions, have not been shown to be specifi-
cally regulated by phosphorylation (e.g., Cx26, likely Cx23),  
although caution should be exercised as the effects of phosphor-
ylation might be apparent only under very specific conditions.  
In any case, we believe new interest in the less common  
connexins that are expressed in diverse tissues will more clearly 
delineate the roles connexin phosphorylation plays in gap  
junction and hemichannel regulation.

Looking toward the future of connexin and gap 
junction research
After an exhaustive review of over 180 peer-reviewed papers 
related to endogenous connexin expression, we conclude 
that the 21-member connexin family can be mapped to over  
110 distinct cell types found within all 12 human body sys-
tems. On one end of this spectrum, it is unclear what human 
cells express Cx23, while at the other end, Cx43 has been con-
vincingly shown to be expressed in 92 cell types, reflecting its 
dominance as the most widely distributed human connexin.  
After decades of intense investigation, the gap junction com-
munity not surprisingly is best equipped to describe where 
and when Cx43 functions regulate cell and tissue physiol-
ogy. That said, the functional roles of lesser studied connexins  
(e.g., Cx25, Cx59, and Cx62) remain poorly understood, a situ-
ation made more difficult by the lack of reliable antibodies 
to specifically detect their expression in situ. While connexin  
family members share considerable sequence homology, it is 
now clear that connexin members are remarkably diverse with 
unique structures, regulatory motifs, post-translational modifi-
cations, interactomes, cell expression profiles, and subcellular 
distributions that all contribute to diverse intercellular channel  
and hemichannel functions in cells and tissues.

New advances in understanding hemichannel functions, inter-
cellular channel and hemichannel structures, genetic linkages 
to disease, and the connexin interactome all point to critical and 
canonical roles for connexin hemichannel and channel func-
tions in both disease and normal physiology. Some new areas 
of intensive study include the role of hemichannels in cardiac  
conduction23,61, connexin expression at non-canonical sites such 
as exosomes62 and mitochondrial outer membranes63, as well 
as the role that connexins play in cancer invasion, metastasis, 
and resistance to treatment64. There remains no doubt that con-
nexins regulate a variety of cellular functions in almost every 
human organ. However, the challenge remains to sort out the  
tissue-context roles played by hemichannels/channels, a task 
made more complicated by our relatively rudimentary knowl-
edge of what metabolites pass through each channel subtype 
in situ and the fact that connexin subtypes can intermix to form 
heteromeric and heterotypic channels. As more and more con-
nexins get linked to diseases, a broad spectrum of organ-specific  

Figure 2. Map of the C-terminal tail of Cx43 with phosphorylation 
sites having known regulatory functions indicated. The specified 
protein kinases and the Cx43 residues they are known to be 
phosphorylated by are denoted by distinct colors. The site at S365 
(purple) is phosphorylated by an unknown kinase that is influenced 
by protein kinase A activity (i.e., the effect is likely indirect). CAMKII 
has also been reported to phosphorylate several additional residues 
in vitro.
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investigators from around the world are being attracted to the 
gap junction field in search of new therapeutic targets. We 
wholeheartedly welcome these new investigators to the field 
and believe they will pave the way to a better understand-
ing of the functional importance of connexin-based cellular  
communication in all tissues.
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