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Tumorigenic de-differentiation: the alternative splicing way
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ABSTRACT
The mechanism of acquisition of tumorigenic properties by somatic cells at the onset of cancer and later 
during relapse is a question of paramount importance in cancer biology. We have recently discovered 
a Muscleblind like-1 (MBNL1)-driven alternative-splicing mediated mechanism of tumorigenic de- 
differentiation that is associated with poor prognosis, relapse and metastasis in common cancer types.
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Muscleblind-like-1 (MBNL1) is an RNA binding protein that 
functions as a master-regulator of RNA-processing. It regulates 
alternative splicing,1,2 alternative polyadenylation,3 transcript 
localization4 and transcript stability.5,6 MBNL1 stabilizes or 
destabilizes key transcripts involved in metastasis to suppress 
metastasis in breast and colorectal cancers.5,6 In other solid 
tumors, MBNL1 regulates tumor-associated alternative- 
splicing networks and behaves as a tumor suppressor.1 

Recently MBNL1 was shown to be an oncogene in Mixed- 
lineage leukemia (MLL)-rearranged leukemia where its over
expression regulates the alternative splicing of key transcripts 
such as DOTL1 and SETD1A that drives leukemia.7 

Furthermore, an exon7 included isoform of MBNL1 was 
found to occur recurrently in prostate cancers and function 
as a dominant negative.8 It is evident, therefore, that MBNL1 is 
emerging as an important tumor-driver that is perturbed at 
both the transcriptional and post-transcriptional (splicing) 
level in multiple cancer types. A comprehensive understanding 
of MBNL1 function and its mechanism of action is of prime 
importance to the field.

In our recent work, we discovered that MBNL1 expression is 
significantly reduced across several common cancers. Low 
MNBL1 expression is associated with poor prognosis, relapse 
and metastasis in many common cancer types. Low MBNL1 
expression causes transcriptomic alterations akin to what is 
reported for stem-like cellular state, both in gene-level expres
sion as well as in alternative-splicing of transcripts. We showed 
that tumor cells expressing low levels of MBNL1 behave simi
larly to stem-like cells. In RNA-seq data from breast and 
stomach cancer patients from the cancer genome atlas 
(TCGA), low MBNL1 expression levels correlated to increased 
expression of stemness gene signatures (Figure 1).2 It is 
hypothesized that a cancer stem-like cell may arise either by 
malignant transformation of normal tissue-specific stem/pro
genitor cells or via re-programming of mature somatic cells. 

Our data highlights a role of MBNL1 in tumorigenic de- 
differentiation of cells by re-wiring alternative splicing.2 It is 
important to note that stem-like features of cancer cells are 
central to tumor heterogeneity, cancer initiation, metastasis 
and relapse.

Transcriptomic studies have established cancer-associated 
splicing as a common feature of cancer.1,9 However, how 
individual splicing alterations impact protein function in 
order to contribute to tumorigenesis is largely understudied. 
In our work, we discovered that a discrete set of 12 
‘Embryonic stem cell (ESC)-differential’ splice isoforms 
(described in10) are upregulated in MBNL1-low cancers. 
Each of these 12 ‘cancer stemness associated’ splice isoforms 
has interesting biology that ought to be investigated for the 
complete understanding of the role of splice isoforms in 
driving tumor cell de-differentiation. In our recent work, 
we focused on the exon2 skipped isoform of MAP2K7 
(referred hereafter as MAP2K7∆exon2), which is shared 
between many MBNL1-low cancer types. MAP2K7 (also 
known as MKK7) is a mitogen-activated kinase protein 
that activates c-JUN N-terminal Kinase (JNK) signaling by 
directly phosphorylating JNK 1, 2 and 3. The skipping of 
exon2 of MAP2K7 is known to form a high-affinity JNK 
docking site leading to activation of JNK signaling.11 We 
discovered that the MAP2K7∆exon2 splice isoform is upre
gulated in many MBNL1-low cancers and that this isoform 
largely drives the MBNL1-downregulation mediated tumor 
de-differentiation via activation of a JNK signaling mediated 
feedback loop. We further discovered that this MBNL1- 
MAP2K7∆exon2 mediated tumor de-differentiation is rever
sible by JNK inhibition (Figure 1).2

JNK is a well-known therapeutic target in oncology, parti
cularly as a means to specifically target cancer-stem-like 
cells.12-14 However, so far small molecule inhibitors of JNK 
have not succeeded in clinical trials due to toxic side effects. 
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JNK has a multitude of essential cellular functions and the role 
of JNK signaling in cancer is highly context-dependent, mak
ing clinical targeting challenging.15 We reveal a molecular con
text for JNK activation in cancer, i.e. presence of 
MAP2K7∆exon2 isoform in MBNL1-low cancers with high 
stem/progenitor-like properties (Figure 1).2 Our findings 
have important clinical implications. Biopsies from cancer 
patients can be assayed for MBNL1 and MAP2K7∆exon2 iso
form expression as patients with low MBNL1 and high 
MAP2K7∆exon2 would be likely to benefit from JNK inhibi
tion. These biomarkers predict not only increased stem/pro
genitor-like properties but also enhanced susceptibility to JNK 
inhibition. Currently, promising JNK inhibitors like D-JNKI-1 
are in clinical development for hearing loss and ocular 
inflammation.

Our work highlights the role of MBNL1, a regulator of 
RNA processing, in regulating tumorigenic de- 
differentiation via upregulation of cancer stemness-specific 
splice isoform. This data places aberrant alternative-splicing 
alongside dysregulation of gene-expression as an important 
regulator of cancer cell plasticity. It highlights how change 
in protein function arising as a result of alternative-splicing 
may affect cellular signaling that contributes to tumorigenic 
properties. Most importantly our data provide a molecular 
context of JNK activation in cancer cells with stem/pro
genitor-like properties that may be useful for patient prog
nostication for any future anti-JNK therapy. Our work may 
also lead to novel and alternative ways of targeting the JNK 
pathway that may circumvent toxic effects caused by 

conventional small-molecule mediated JNK inhibition. It 
also throws open interesting questions regarding the 
mechanism of MBNL1 transcriptional dysregulation in can
cer. Analysis of publicly available cancer genomics data 
makes it clear that MBNL1 locus does not get affected by 
recurrent mutations or copy number variations. We also 
did not observe promoter methylations of MBNL1 in sto
mach cancer cell lines indicating that MBNL1 down- 
regulation might be triggered by other epigenetic mechan
isms. Also, interestingly we observed a renal cancer-specific 
upregulation of MBNL1. This indicates a renal-specific 
function for MBNL1 which may be similar to the MLL- 
rearranged leukemia. In conclusion, MBNL1 and MBNL1 
processed transcripts (spliced, stabilized or spatially loca
lized) are emerging as novel and key players in cancer and 
we are yet to unravel the full impact of MBNL1 perturba
tion in cancer.
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Figure 1. Mechanisms whereby alternative splicing causes the de-differentiation of somatic cells to cancer stem-like cells.  
Schematic diagram showing de-differentiation of somatic cells to cancer stem-like cell by downregulation of MBNL1 (Muscleblind-like-1) leading to the upregulation of 

cancer stemness associated splice isoform MAP2K7∆exon2 (exon2 skipped MAP2K7 isoform) and consequent JNK (c-JUN N-terminal Kinase) activation. This mechanism 
of tumorigenic de-differentiation is reversible by inhibition of JNK signaling.
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