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The prognosis of colon adenocarcinoma (COAD) remains poor. However, the specific and
sensitive biomarkers for diagnosis and prognosis of COAD are absent. Transcription
factors (TFs) are involved inmany biological processes in cells. As themolecule of the signal
pathway of the terminal effectors, TFs play important roles in tumorigenesis and
development. A growing body of research suggests that aberrant TFs contribute to
the development of COAD, as well as to its clinicopathological features and prognosis. In
consequence, a few studies have investigated the relationship between the TF-related risk
model and the prognosis of COAD. Therefore, in this article, we hope to develop a
prognostic risk model based on TFs to predict the prognosis of patients with COAD. The
mRNA transcription data and corresponding clinical data were downloaded from TCGA
and GEO. Then, 141 differentially expressed genes, validated by the GEPIA2 database,
were identified by differential expression analysis between normal and tumor samples.
Univariate, multivariate and Lasso Cox regression analysis were performed to identify
seven prognostic genes (E2F3, ETS2, HLF, HSF4, KLF4, MEIS2, and TCF7L1). The
Kaplan–Meier curve and the receiver operating characteristic curve (ROC, 1-year AUC:
0.723, 3-year AUC: 0.775, 5-year AUC: 0.786) showed that our model could be used to
predict the prognosis of patients with COAD. Multivariate Cox analysis also reported that
the risk model is an independent prognostic factor of COAD. The external cohort
(GSE17536 and GSE39582) was used to validate our risk model, which indicated that
our risk model may be a reliable predictive model for COAD patients. Finally, based on the
model and the clinicopathological factors, we constructed a nomogram with a C-index of
0.802. In conclusion, we emphasize the clinical significance of TFs in COAD and construct
a prognostic model of TFs, which could provide a novel and reliable model for the
prognosis of COAD.
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INTRODUCTION

Colon cancer is one of the most common malignant tumors and the fifth leading cause of cancer-
related death worldwide (Bray et al., 2018). Colon adenocarcinoma (COAD) is the most common
pathological type of colon cancer (Fleming et al., 2012). Currently, the AJCC (American Joint
Committee on Cancer) TNM staging system, together with age and gender, are the main
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prognostic indicators for COAD patients (Kim et al., 2015; Bruni
et al., 2020). However, the significant differences in survival
outcomes of COAD patients with the same clinicopathologic
characteristics still exist, which signifies that a prognostic model
based solely on clinicopathologic characteristics is of limited value
(Nagtegaal et al., 2011; Bruni et al., 2020; Wang T. et al., 2020).
Therefore, searching for highly specific and sensitive methods to
predict the prognosis of COADpatients precisely is the key point of
developing individualized treatment strategies for COAD patients.

Transcription factors (TFs) are vital cellular proteins for
transcription of genes in human cells, which bind to target genes
by recognizing promoters or enhancers of DNA sequences and affect
many cellular functions, such as cell cycle and cell metabolism
(Vaquerizas et al., 2009; Fitzgerald et al., 2014; Ehsani et al., 2016).
As the terminal effectors of signaling pathways in cells, normal TFs
play important roles in overall gene expression profiles (Xu H. et al.,
2021). Recent studies have revealed the significance of deregulation
TFs in COAD development and demonstrated that TFs associate
closely with clinicopathological features and prognosis of COAD
(Zhou et al., 2020; Xu H. et al., 2021). Meanwhile, several
significant TFs, such as nuclear factor κB (NF-κB) and cAMP-
response element-binding protein (CREB), have been found that
aberrantly express in COAD and promote the development of
COAD (Rayet & Gelinas, 1999; Hui et al., 2014). Hence, TFs may
be important biomarkers for predicting prognosis, as well as potential
targets for the treatment of COAD patients. However, recent studies
mainly focused on the predicting value of TF-related genes; the present
study constructed an original risk score model based on TF-related
genes with remarkable predicting efficiency in COAD patients.

Though the efficacy of colon cancer treatment has improved in
recent years with the advance in surgical methods and follow-up
treatments, the mortality in patients with tumor infiltration in situ
and distant metastasis remains high (Xu et al., 2020). In addition,
overtreatment in patients may lead to adverse reactions related to
chemotherapy and immunotherapy (Meyerhardt & Mayer, 2005).
Therefore, there is an urgent need to build superior or comprehensive
models to predict the overall survival (OS) of COADpatients to judge
who are high-risk or low-risk patients so that the toxic harm
associated with overtreatment is reduced and novel measures for
treatment will be provided. In the present study, a risk model based
on TF-related genes for COAD patients was constructed using data
downloaded from The Cancer Genome Atlas (TCGA) database and
validated in the Gene Expression Omnibus (GEO) database. By using
multivariable Cox regression and survival analysis, we demonstrated
that our risk model can be regarded as an independent prognostic
factor of COAD. In general, our findings indicated that the TF-related
riskmodel is of great predicting value in COADpatients and provides
novel potential targets for COAD treatment.

METHODS

Data Collection
The mRNA expression data (Workflow Type: HT Seq-
FPKM) and clinical information pertaining to survival
time for COAD patients downloaded from TCGA website
(https://portal.gdc.cancer.gov/repository) were used as the

training set. 437 samples (39 normal tissues, 398 COAD
tissues), and 384 cases of COAD patients were collected. As
well, data from the GEO (http://www.ncbi.nlm.nih.gov/geo/)
database were used as the validation set. There are 177 and 579
COAD patients in the GSE17536 and GSE39582, respectively.
The GEO samples were analyzed by Affymetrix Human
Genome U133 Plus 2.0 Array platform. All cases from TCGA
or GEO databases that miss the information were excluded from
the analysis. The clinical characteristics of the patients (age,
gender, stage, T stage, N stage, and M stage) were recorded.
Unknown clinical characteristics were deleted. As for cases from
TCGA, we removed one patient (TCGA-AZ-4323) whose risk
score was significantly abnormal in our follow-up risk
assessment.

Identification of Differentially Expressed
Genes and Prognostic Genes
Complete data of TF-related gene symbols were download from
the Human Transcription Factor database (http://bioinfo.life.
hust.edu.cn/HumanTFDB#!/). Differentially expressed genes
were identified by the linear models for microarray data
(limma) R package based on TCGA–COAD data. The Gene
Expression Profiling Interactive Analysis (GEPIA2, http://
gepia2.cancer-pku.cn/#general) database, which can analyze
the difference of gene expression between tumor and normal
tissue (Tang et al., 2017), was used to further screen for
differentially expressed transcription factor-related genes.
Cutoff values were set at a p value < 0.05 and |log2 fold
change| >1. Differentially expressed genes related to the OS of
patients were analyzed by univariable Cox analysis with
“Survival” R package. A value of p < 0.05 was considered to
have a statistically significant difference.

Construction of Risk Score Model by
Multivariate Cox and Lasso Regression
Multivariate Cox regression analysis with the “survival” R
package and Lasso analysis with the “glmnet” R package were
used to determine which genes can be used as predictive genes.
The TF-related risk model was constructed by the result of
multivariate Cox regression analysis, and each COAD patient
risk score was calculated by the risk model to be divided into two
groups (high- and low-risk subgroups) based on the median
value. The risk score formula was as follows: Risk Score �
∑7

i Xi pYi (X: coefficients, Y: gene expression level). Receiver
operating characteristic (ROC) curves and Kaplan–Meier curves
(K-M curves) were used to evaluate the ability of this risk model.
Meanwhile, univariate and multivariate Cox regression analyses
were also used to evaluate the prognostic efficiency of different
clinicopathological features and our risk model.

Alteration of Seven Genes in the Model and
Protein–Protein Interaction Network
The cBioPortal dataset (https://www.cbioportal.org/), which
contains genomic data from a variety of tumors, was used to
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study the genetic variability of transcription factor-related genes
in our model. The STRING database (https://string-db.org/) is set
for searching online for known protein interoperability
relationships. We used this database to analyze and predict the
functional relationship among TFs, and the cytoHubba plug-in in
the software of Cytoscape (version3.8.1) was used to show the
correlation between TFs in our risk model and other TFs.

The Construction of a Nomogram to
Estimate the Clinical Outcome of Colon
Adenocarcinoma Patients
We used the “rms” R package to construct a nomogram.
Subsequently, calibration curves were used to test the
association between the predicted outcome and the actual
situation in 1, 3, and 5 years. The GSE39582 was used as the
validation dataset for the nomogram.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA), as a computational
method, can be used to detect significantly enriched and

depleted group of genes (Subramanian et al., 2005). In this
study, GSEA was regarded as an approach to explore potential
molecular mechanisms underlying the expressions of TFs in our
risk model. The group was divided into high-expression and low-
expression groups according to the median value of each
transcription factor expression level. Necessary files were
finished and uploaded into the GSEA 4.1 software. The gene
set database was “c2. cp.kegg.v7.2. symbols.gmt [Curated]” and
“c5. go.v7.4. symbols.gmt [Gene ontology].” The number of
permutations were conducted 1,000 times in the analysis. The
phenotype labels were high and low. Normal p-value <0.05 were
enriched.

Correlation of the Genes and Risk Score
With Clinicopathologic Features and
Immune Cells
Clinical association analysis was used to assess the relationship
between risk model and clinicopathologic features by using the
“beeswarm” R package. Tumor immune microenvironment is
crucial for the antitumor immunity in cancer, so we analyzed the
relationship between our risk model and immune cell infiltration
by getting the matrix of immune cells from the Tumor Immune
Estimation Resource (TIMER) (Bhattacharya et al., 2018), which
is a database that provides the systematic analysis of immune
infiltrates in cancer. In this database, users can predict the
abundance and proportion of six immune cell subsets (B cells,
CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and
neutrophils) in tumor samples. The relationship between the risk
model and immune cell infiltration was constructed by the
Pearson’s correlation test in the R software.

Statistical Analysis
R version 4.0.5 and Perl version 5.28 were used to perform
statistical analysis. Excel office 2019 was used to organize data
from TCGA and GEO database. A value of p < 0.05 was regarded
as significant.

FIGURE 1 | The workflow to construct the transcription factor (TF)-
related risk model in COAD patients. TCGA, The Cancer Genome Atlas;
COAD, colon adenocarcinoma; DEG, differentially expressed gene; GEPIA2,
Gene Expression Profiling Interactive Analysis 2.

TABLE 1 | The clinical information of colon adenocarcinoma (COAD) patients from
The Cancer Genome Atlas (TCGA).

Patient n = 384

Age ≤65 159
>65 225

Gender Female 180
Male 204

Stage Stages I–II 216
Stages III–IV 157
Unknown 11

T T1–2 77
T3–4 306
Tis 1

M M0 285
M1 54
Mx 39
Unknown 6

N N0 230
N1–2 154

Note. T, T stage; N, N stage; M, M stage; Stage, TNM stage.
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RESULTS

Overall Design of the Study
The flow chart for this study is shown in Figure 1. Gene
expression data and clinical data of COAD patients were
downloaded from TCGA database. Some of the clinical
information of 384 patients from TCGA are shown in

Table 1. According to the Human Transcription Factor
database and differential expression analysis, 344 differentially
expressed TF-related genes in patients with COAD were
screened. Then, the GEPIA2 database was used to validate 344
differentially expressed genes, and 141 differentially expressed
genes were screened finally. Lasso and multivariate Cox
regression analysis were used to construct a prognostic risk

FIGURE 2 | The results of differential gene analysis. (A) The volcano plot of differentially expressed TF-related genes based on TCGA. The sky blue points are the
downregulated genes, the orange points are the upregulated genes, representing p < 0.05, |log2FC| > 1. (B) The Venn plot to show the same differentially expressed TF-
related genes between TCGA and GEPIA2 database. (C) The heatmap of differentially expressed TF-related genes. The vertical axis refers to genes, the horizontal axis
refers to differences in gene expression between tissues, the orangemeans high expression, and the sky bluemeans low expression. (D)GeneOntology (GO) circle
graph of the top 10 GO terms with the most enriched genes. (E) Bar graph of the top 24 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway with the most
enriched genes; the vertical axis refers to names of pathways, and the horizontal axis refers to the number of genes.
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model for patients with COAD. Then the K-M and ROC curves
were used to assess the seven TF-related risk models. Two data
sets of the GEO database were used as external cohort to validate
the model. Finally, the nomogram of COAD was constructed by
using TCGA data. Calibration and C-index were used to assess
the nomogram.

Differential Gene Analysis
Three hundred forty-four differentially expressed TF-related
genes, which were analyzed from TCGA database, are shown
in Figure 2A. Then, 141 differentially expressed TF-related genes
were screened from 344 differentially expressed TF-related genes

by using the GEPIA2 database, including 70 downregulated genes
and 71 upregulated genes (Figure 2B). The expression
information of 141 genes in COAD were also shown by a
heatmap (Figure 2C) between normal and tumor tissues,
which was more obvious. Gene Ontology (GO) analysis
showed 141 genes were mainly concentrated on pattern
specification process and embryonic organ development, and
other significantly differentially expressed gene GO terms were
exhibited in a circle graph (Figure 2D). In the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis, the result is shown by a bar plot in
Figure 2E. These results suggested that the genes screened in

FIGURE 3 | Construction of prognostic model for COAD. (A) Hazard ratio of univariate Cox analysis for DEGs. (B) Survival analysis to verify the prognostic model.
(C) ROC curve to evaluate the predictive efficacy of the risk model. (D)Distribution of risk scores of each COAD patient. (E)Correlation between survival time and survival
status of each patient. (F) The expression pattern of seven TF-related genes. DEGs, differentially expressed genes. ROC, receiver operating characteristic.
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this study are related to tumorigenesis and the development
pathway.

Construction of Risk Score Model by
Univariate, Multivariate, and Lasso Cox
Regression Analysis
In TCGA set, 141 TF-related genes were considered in the
univariable Cox regression analysis with a p-value <0.05 as the
threshold to distinguish which genes were related to the prognosis
of COAD patients (Figure 3A). There were 11 genes associated
with the prognosis of COAD. Then, the Lasso regression
(Supplementary Figures S1A,B) and multivariable Cox
analysis (Table 2) were used to do further identification of
TF-related genes associated with the prognosis of COAD
patients, and the coefficient of each TF-related gene was
calculated in order to obtain the risk score. After analyzing,
seven genes were selected from 11 genes to construct a risk
score model. The minimum Akaike information criterion (AIC)
of the risk model was 683.96. Furthermore, the median value of
the risk score from training and validation set was used as the
cutoff value to divide patients into low-risk and high-risk groups.

Risk Score Model
Seven genes (E2F3, ETS2, HLF, HSF4, KLF4, MEIS2, and
TCF7L1) were taken into our risk model. Based on the
coefficient of each gene from multivariable Cox regression
analysis, the risk score can be calculated by the formula shown
in the method with the coefficients in Table 2.

The K-M curves show that the high-risk group performed with
significantly poorer prognostic outcomes (Figure 3B) than the
low-risk group. Multi-indicator ROC curves were plotted, and the
AUCs of the risk model were as follows: 1-year AUC: 0.723, 3-
year AUC: 0.775, 5-year AUC: 0.797 (Figure 3C). The risk score,
survival time, and gene expression of the seven genes in every
COAD patient are vividly shown in Figures 3D–F.

Univariable and multivariable Cox analyses were used to
identify whether risk score and clinicopathologic features (age,
gender, AJCC stage, T stage, N stage, and M stage) could be the
independent prognostic indicator. The results of univariable Cox
analysis show that age, AJCC stage, T stage, N stage, M stage, and
risk score were significantly correlated with OS (p < 0.05;
Figure 4A). Meanwhile, the results of multivariable Cox
analysis show that age and risk score were still significantly
associated with OS (p < 0.05; Figure 4B). These results

suggested that the risk score model could be the independent
prognostic indicator for COAD.

To better understand COAD patients who can get more
benefit from our risk score model, we divided these patients
into several subgroups: age ≤65 and age >65, female and male,
Stages I–II and Stages III–IV, T1–T2 and T3–T4, N0 and N1–2,
and M0 andM1. In our K-M curves, age ≤65, male, Stages III–IV,
T3–T4, N1–2, and M0 seem more suitable for our risk score
model (Supplementary Figure S2A–L). These results suggest
that our risk score model was strongly related to tumor
progression.

Validation of Transcription Factor-Related
Risk Score Model in Gene Expression
Omnibus Datasets
In GSE17536, survival data from 177 patients were used for
external validation of our risk model. The risk score of each
patient was calculated using the coefficients from TCGA data,
and the patients were divided into high-risk group and low-risk
group according to the median of the risk score. K-M curve
analysis demonstrated better survival outcome in the low-risk
group (Figure 5A). Similarly, in GSE39582, 579 patients were
used as external validation of our risk model. The results also
showed significant differences in OS among patients at different
risk groups in this dataset (Figure 5B).

Genetic Alternation of Seven Transcription
Factor-Related Genes and Protein–Protein
Interaction Network
The cBioPortal databasewas used to analyze themutations of seven
genes, which showed that E2F3, ETS2, HLF, HSF4, KLF4, MEIS2,
and TCF7L1 were altered in 8, 8, 6, 6, 5, 9, and 6% of 524 colorectal
adenocarcinoma patients separately (Supplementary Figure S3A).
As shown in Supplementary Figure S3B, genes were altered in
34.94% of 332 COAD patients and 36.03% of 136 rectal
adenocarcinoma patients. The change in the expression of
mRNA in cancer was the main change type for these genes. The
PPI network based on the STRINGdatabase andCytoscape software
showed that KLF4, MEIS2, and TCF7L1 interacted more with other
transcription factors (Supplementary Figure S3C). In total, our
results suggest that the establishment of a transcriptional-related
gene model makes up for the fact that a single transcriptional gene is
not a good indicator of the condition of a patient.

Construction and Validation of Nomogram
Model
Age, TNM stage, and risk score of TCGA dataset were taken into
consideration to establish the nomogram to forecast the survival
probabilities of 1, 3, and 5-year overall survival time (Figure 5C). In
our nomogram, each factor had its score according to their
contribution in the risk of survival. The calibration curves were
plotted to judge whether the actual survival time was in line with the
predicted survival rate in 1, 3, and 5 years (Figures 5D–F). The
C-index of this nomogram in predicting overall survival time was

TABLE 2 | The results of multivariate Cox analysis in COAD.

ID Coefficients HR HR.95L HR.95H p-Value

E2F3 0.735185 2.085867 1.1849 3.671907 0.010836
ETS2 −0.29493 0.744583 0.504,494 1.098931 0.137551
HLF −2.29211 0.101,053 0.02909 0.351037 0.000309
HSF4 0.341165 1.406,585 0.970863 2.03786 0.071289
KLF4 −0.21757 0.804475 0.608,272 1.063964 0.127,187
MEIS2 0.91836 2.505179 1.296842 4.839387 0.006262
TCF7L1 0.551359 1.735609 0.954879 3.154683 0.070526

Note. HR, hazard ratio.
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0.802. The result of GSE39582, which was the validation dataset of the
nomogram is shown in Figures 5G–I. These results show that the
nomogram in our study can predict the actual survival outcome well.

Gene Set Enrichment Analysis Revealed
Seven Transcription Factor-Related Gene
Signaling Pathways
GSEA was used to detect the potential signaling pathways and
gene function of seven TF-related genes in COAD between low-
and high-expression datasets. The signaling pathways and gene
function, of which the nominal p-value <0.05 in the enrichment
of “c2. cp.kegg.v7.2. symbols.gmt [Curated]” and “c5. go.v7.4.
symbols.gmt [Gene ontology],” were taken into consideration.
The results are shown in Supplementary Figures S4A–G, which
suggested that most of genes were associated with tumors, and
their abnormal expression may influence the development of
related tumors. These genes were also involved in some tumor-
related signaling pathways, such as TGF beta, P53, and MAPK. In
addition, the genes in the model also can affect the signal

pathways of apoptosis, immunity, and metabolism. As for GO
analysis, the results analyzed by GSEA show that the seven genes
may participate in cell metabolism and cell adhesion. In total, the
GSEA results suggested that our risk model may participate in
tumor-related, immune and metabolic signaling pathway, and
related genes can affect cell growth and adhesion.

Correlation of the Risk Score With
Clinicopathologic Features and Immune
Cells
The risk score was significantly correlated with the
clinicopathological features of TCGA-COAD (p < 0.05;
Figures 6A–D). High risk score is associated with Stages
III–IV, T3–4, N1–2, and M1, which meant that the TF-related
risk model can reflect the progression of the COAD. Meanwhile,
because the immune microenvironment is important for the
tumors, we also analyzed the correlation between risk score
and immune cells, which is shown in Figures 6E,F. The
results showed that the risk score was related to the CD4

FIGURE 4 | Analysis of clinical independence for riskScore. (A) Univariable Cox regression analysis for clinical characters and risk score. (B) Multivariable Cox
regression analysis for clinical characters and risk score. T, T stage; N, N stage; M, M stage; stage, TNM stage; riskScore, risk score model.
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T cell and macrophage. These results suggested that the risk score
based on TFs may reflect the tumor progression and the
infiltration of immune cells in tumor microenvironment.

DISCUSSION

The present study indicated that the prognostic model based on
TFs can predict the prognosis of COAD well. Meanwhile, the
correlation between risk score and clinicopathologic factors as

well as immune cells showed that the model was associated with
poor clinicopathologic factors and immune cells. In GSEA
analysis, seven TFs were found to be involved in signaling
pathways associated with tumor development.

TFs are important components of cells that participate in the
transcription of genes and many other biological processes
(Dynlacht, 1997; Accili & Arden, 2004). About one-third of
human developmental disorders are associated with abnormal
TFs (Boyadjiev & Jabs, 2000). Many studies have investigated the
role of TFs in tumors and the corresponding mechanisms. Dong

FIGURE 5 | Validation of the risk model in the GEO dataset and nomogram for predicting survival rate in COAD patients. (A)GSE17536 and (B)GSE39582 dataset.
(C) The nomogram for predicting the 1, 3, and 5-year survival rate by age, stage, riskScore. (D–F) The 1, 3, and 5-year calibration curves of TCGA dataset. (G–I) The 1, 3,
and 5-year calibration curves of Gene Expression Omnibus (GEO) dataset.
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et al. found that the transcription factor can support the
development of breast cancer (Dong et al., 2020). Zhan et al.
reported that transcription factors play a key role in the
development of hepatoblastoma (Zhan & Zhao, 2020).
Meanwhile, studies have also reported the role of TFs in the
development of COAD (Rayet & Gelinas, 1999; Hui et al., 2014).
However, the study of prognostic transcription factors is still
lacking. As the terminal effector molecule of the cell signal
pathway, TFs play important roles in the development of
tumor, which makes it very important to study their function
in predicting the prognosis of patients. The bioinformatics was
used as a research tool to analyze data from a database to build
and validate a prognostic model and to analyze its association
with clinical features and immunity. In our study, data from
TCGA were used as training set, and data from GEO were used as

validation set to construct a seven-TF-related risk model by using
multivariable Cox and Lasso regression. The prognostic model
can predict the prognosis of patients well, which will be helpful in
clinical evaluation and provide new therapeutic targets.

Seven TF-related genes were identified in this study, which
have been reported separately regarding their roles in tumor. E2F
transcription factors (E2F3), which can interact with histone
acetyltransferase and induce cells to enter the cell cycle,
participated in the development and progression of many
tumors, such as pancreatic cancer and ovarian cancer
(Kurtyka et al., 2014; Rotgers et al., 2014; Park et al., 2015;
Pengcheng et al., 2021; Xu D. et al., 2021). In COAD, E2F3
played a key role in carcinogenesis by promoting the expression
of cyclin D1 and CDK2 (B. Yang et al., 2020). V-ets
erythroblastosis virus E26 oncogene homolog 2 (ETS2) can act

FIGURE 6 | Analysis of clinical and immunological relevance for riskScore. (A–D) Analysis of relationship between clinicopathological factors and riskScore. (E,F)
Analysis of relationship between immune cells and riskScore.
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as both a tumor suppressor and an oncogene (X. Ma et al., 2019).
In COAD, ETS2 can induce oxaliplatin resistance and promote
the malignant behavior of tumor cells (Wang H. et al., 2020).
Hepatic leukemia factor (HLF), a kind of leukemia zipper
transcription factor, can regulate circadian rhythms (Inaba
et al., 1994). A study of hepatocellular carcinoma suggested
that the role of HLF in inducing sorafenib resistance and in
promoting tumor progression by activating c-Jun may help to
discover new targets for cancer therapy (Xiang et al., 2019). Heat
shock factor 4 (HSF4) can regulate cellular proliferation and
differentiation (Jin et al., 2012). In cancer research, HSF4 can
promote EMT in liver cancer cells to stimulate cell proliferation
and invasion and was associated with poor prognosis in COAD
patients (P. Ma et al., 2020; Y. Yang et al., 2017). Krüppel-like
factor 4 (KLF4) can inhibit the development of tumor by
associating with the non-Warburg metabolic behaviors (Blum
et al., 2021). Low expression of KLF4 may lead to poor prognosis
and link to the progression of COAD (Taracha-Wisniewska et al.,
2020). T-cell factor 7-like 1 (TCF7L1) has been found to have a
high expression in many cancers, such as breast cancer and skin
squamous cell carcinoma (Slyper et al., 2012; Ku et al., 2017). It is
the suppressor of the Wnt target gene expression and cell circle is
the method for it to promote the development of COAD (Murphy
et al., 2016; Eshelman et al., 2017). These studies indicate that
seven transcription factors are associated with tumor. Our risk
model can be well applied to evaluate the prognosis of patients
with COAD.

Survival analysis based on clinical feature groups showed that
our risk model was better able to predict the prognosis of young
men with COAD at the advanced TNM stage. In addition, our
risk model associated with advanced TNM stage and immune
cells (CD4 T cell and macrophage). These results indicated that
our risk model is related to the tumor microenvironment and
affects the prognosis of patients with COAD (Diederichsen et al.,
2003; Ye et al., 2019).

The present study, similar to another study using TF-related
genes to construct a model of COAD, reveals the role of TFs in
predicting the prognosis of COAD (Liu et al., 2020). However,
when validated with the GEPIA2 database, the expression of TF-
related genes in another article does not show the difference
between normal and tumor samples. In contrast, the TF-related
genes used in our article showed significant differences between
normal and tumor samples in the validation of the GEPIA2
database. At the same time, our study goes further to combine
clinical factors to construct a nomogram in order to improve the
prognostic ability in COAD. A study that constructed a
prognostic model based on immune-related genes reveal that
TFs may regulate the expression of immune-related genes (Sun
et al., 2020). By combining the results in our study, it was shown
that TFs may participate in the tumor immune
microenvironment. However, the model based on immune-
related genes show that ROC was only 0.719, which was lower
than that of our model. Therefore, our study showed that the
genes in our model have significant difference between normal

and tumor tissues, and our risk score model shows better ability in
predicting the prognosis of COAD patients.

Though our model has shown remarkable ability in predicting
prognosis of COAD patients, there are still a few limitations. This
prognostic model still requires data of patients from other large
cohorts to validate and not just take advantage of the data on the
network database. Some of the TF-related genes in our model,
which are not studied for mechanisms in COAD, still need to be
revealed in our future studies.

CONCLUSION

We identified seven TF-related genes, including E2F3, ETS2,
HLF, HSF4, KLF4, MEIS2, and TCF7L1, and constructed a
risk score model, which can predict the prognosis of COAD
well. Moreover, these genes were associated with the prognosis of
COAD patients and related to the development of cancer.
Therefore, we thought our finding could help distinguish the
COAD patients in the clinic, and the seven TF-related genes can
become biological targets to treat COAD patients.
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