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Abstract

Elevated levels of combustion-derived particulate matter (CDPM) are a risk factor for the 

development of lung diseases such as asthma. Studies have shown that CDPM exacerbates asthma, 

inducing acute lung dysfunction and inflammation; however, the impact of CDPM exposure on 

early immunological responses to allergens remains unclear. To determine the effects of early-life 

CDPM exposure on allergic asthma development in infants, we exposed infant mice to CDPM and 

then induced a mouse model of asthma using house dust mite (HDM) allergen. Mice exposed to 

CDPM+HDM failed to develop a typical asthma phenotype including airway 

hyperresponsiveness, Th2-inflammation, Muc5ac expression, eosinophilia, and HDM-specific Ig 

compared to HDM-exposed mice. Although HDM-specific IgE was attenuated, total IgE was two-

fold higher in CDPM+HDM mice compared to HDM-mice. We further demonstrate that CDPM 

exposure during early life induced an immunosuppressive environment in the lung, concurrent 

with increases in tolerogenic dendritic cells and Tregs, resulting in suppression of Th2 responses. 

Despite having early immunosuppression, these mice develop severe allergic inflammation when 

challenged with allergen as adults. These findings demonstrate a mechanism whereby CDPM 

exposure modulates adaptive immunity, inducing specific-antigen tolerance while amplifying total 

IgE, and leading to a predisposition to develop asthma upon rechallenge later in life.
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Introduction

Exposure to elevated levels of ambient particulate matter (PM) during early life has long 

been associated with development of acute/chronic pulmonary morbidities (e.g., asthma) 

later in life.1 Though epidemiology suggests young children are most affected,2, 3 relatively 

little data, mechanistic or otherwise, exist detailing the impacts of PM exposure on this 

immunologically immature population.4 Exacerbation of pulmonary dysfunction has been 

demonstrated in allergen-sensitized adult mice exposed to PM during allergen challenge.5, 6 

While clinically relevant, these studies focus heavily on the acute effects of PM exposure 

during the “challenge” phase of asthma which bypasses possible PM effects during earlier 

sensitization. In addition, adult mice with mature immune systems respond very differently 

than infants, therefore failing to inform us about the role of early-life exposure in the 

development of the airway disease itself.

Our previous work with combustion-derived particulate matter (CDPM) has shown that 

acute early-life exposure induces oxidative stress and inflammation in the lung.7 These 

effects are accompanied by significant pulmonary remodeling including airway smooth 

muscle thickening brought upon by CDPM exposure-induced epithelial-to-mesenchymal 

transitions (EMT).8 Bronchiolar epithelial disruption caused by CDPM exposure imparts a 

potentially important change in “programming” of subsequent adaptive immune responses 

primarily through actions of dendritic cells (DCs), the professional antigen-presenting cell. 

When E-cadherin-mediated cell:cell junctions are disrupted, DCs undergo a phenotypic shift 

toward the promotion of tolerance.9

In the present study, we sought to determine the role of early life exposure to PM on the 

development of allergic asthma (i.e., PM exposure prior-to and during allergen sensitization 

and challenge). The question arose due to the lack of data on the impacts of PM exposure in 

infants and the lack of studies examining the effects of allergen exposure during PM 

exposure in infants, an equally clinically relevant scenario. We found that exposure to 

CDPM during early life creates an immunosuppressive environment in the lung which 

impairs T effector cell production in vivo. Combining CDPM exposure with exposure to 

house dust mite allergen (HDM) in a mouse model of allergic asthma10, we showed that 

infant mice exposed to CDPM and HDM fail to develop certain hallmarks of asthma while 

maintaining others. Interestingly, this immunosuppression is lost over time; mice that 

exhibited dampened Th2 effector responses early in life developed an exacerbated asthma 

phenotype when rechallenged with allergen as adults. Taken together, our data suggest a 

mechanism whereby CDPM exposure during infancy alters pulmonary immune responses 

and modulates long-term pulmonary inflammatory disease development.
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Results

Exposure to CDPM modulates early-life allergic airway disease in mice

To investigate the impact of CDPM exposure in an early-life model of allergic airways 

disease, we exposed mouse pups beginning at 3d of age to CDPM (DCB) before and during 

the establishment of an HDM-model of asthma (Fig. 1a). Twenty four hours following the 

final exposure day, pulmonary function was analyzed by flexiVent (Fig. 1b). Interestingly, 

AHR, a physiological hallmark of asthma, was only observed in the Air/HDM mice and not 

DCB/HDM mice. Following functional tests, bronchoalveolar lavage (BAL) fluid was 

collected and analyzed for cellularity (Fig. 1c). A significant increase in total cell number 

occurred only in Air/HDM mice. Furthermore, a large increase in eosinophils, commonly 

seen in asthmatics, was observed only in the Air/HDM mice but was noticeably lower in the 

DCB/HDM mice. Lymphocyte numbers were also increased in the Air/HDM group, while 

neutrophils were equally increased in both Air/HDM and DCB/HDM mice. Cell-free BAL 

fluid was analyzed for cytokine content using multiplex (Fig. 1d). As expected, Th2 

cytokines (IL-4, IL-5) were significantly elevated in Air/HDM and DCB/HDM mice 

compared to respective controls, however, IL-4 was approximately 3-fold lower in 

DCB/HDM mice compared to Air/HDM mice. Other proinflammatory cytokines (IL-6, 

TNF-α) were elevated in only Air/HDM mice. Serum from these animals was analyzed for 

immunoglobulin production (Fig. 1e). Surprisingly, total IgE was statistically increased in 

both Air/HDM and DCB/HDM mice compared to controls and levels were approximately 3-

fold higher in DCB/HDM mice compared to Air/HDM mice. Conversely, HDM-specific IgE 

levels were significantly lower in DCB/HDM mice compared to Air/HDM mice. Total IgG1 

was elevated only in Air/HDM mice and once again HDM-specific IgG1 levels were 

reduced in DCB/HDM mice compared to Air/HDM mice.

CDPM exposure decreases Th2 and Treg inflammation in early-life asthma model

IL-4 producing Th2 lymphocytes are regularly associated with allergic asthma, and relative 

level of Th2 inflammation is positively correlated with asthma symptoms.11 To study the 

effects of CDPM exposure on Th2 inflammation in an asthma model, levels of Th2 

lymphocytes (CD4+ IL-4+) were assessed in mice (Fig. 2). Total CD4+ lymphocytes were 

elevated in all mice given HDM relative to controls, but a statistical decrease was observed 

in DCB/HDM mice compared to Air/HDM (Fig. 2a). Expectedly, levels of Th2 lymphocytes 

were elevated in all HDM groups (Fig. 2b, c). However, Th2 levels were significantly lower 

in DCB/HDM mice compared to Air/HDM mice. Due to the previously observed 

inflammatory suppression in CDPM-exposed mice, we assessed Treg (CD25+ Foxp3+) 

levels. We observed an increase in Treg cell numbers in the lungs of Air/HDM mice 

compared to Air mice (Fig. 2d, e). Conversely, Treg levels were significantly decreased in 

mice exposed to DCB/HDM. Neither Th2 nor Treg cell numbers were different between Air 

and DCB groups.

CDPM exposure modulates mucus-associated gene expression but not airway mucus 
production in early-life asthma model

Increased airway mucus production via goblet cell-hyperplasia is commonly seen in allergic 

airway diseases (i.e., asthma). To determine the impact of CDPM exposure on HDM-
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induced mucus in the airways, we quantified mucus content in the airways using Periodic 

Acid-Schiff (PAS) staining on lung sections and mucus gene expression in the lungs (Fig. 

3). Percent mucus positive cells (Fig. 3a, inset) were found to be significantly elevated in all 

mice receiving HDM, with no statistical difference in DCB/HDM and Air/HDM mice (Fig. 

3b). Mucus-associated gene expression was investigated by RT-PCR on whole lung tissue 

(Fig. 3c–e). Expression of Muc5b and IL13 was elevated in both groups receiving HDM 

relative to controls. Interestingly, Muc5ac expression was only elevated in Air/HDM mice 

relative to controls.

Acute CDPM exposure causes an immunosuppressive environment in the lung

Immunosuppressive effects of CDPM were investigated by measuring levels/sources of 

IL-10 in the lung (Fig. 4a–h). After acute (5 consecutive days) exposure to DCB, expression 

of IL10 in whole lung tissue was elevated compared to air controls (Fig. 4a). Lung DCs 

(CD11c+ F4/80−), which are crucial determinants in adaptive immune responses, were less 

activated following exposure as evidenced by decreased co-stimulatory molecule (CD80) 

expression (Fig. 4b). Using IL-10-GFP reporter mice to discern major sources of IL-10, an 

increased number of IL-10-producing DCs were observed in the lungs of DCB-exposed 

mice (Fig. 4c, d). In addition to increased number, these DCs produced higher levels of 

IL-10 compared to IL-10+ DCs from control mice as evidenced by increased MFI (Fig. 4e). 

Further investigation of DC subsets (mDC, MHCIIhi CD11b+; interstitial DC, MHCIIhi 

CD11b−) showed interstitial DCs as the main source of DC-derived IL-10 (Supplementary 

Fig. S1). Increased numbers of IL-10+ CD4 lymphocytes were also observed in DCB-

exposed mice (Fig. 4f, g). These IL-10+ cells also expressed higher levels of IL-10 

compared to controls (Fig. 4h). No difference in IL-10 production was observed in other cell 

types investigated (data not shown). The ability of CDPM exposure to elicit Treg responses 

in the lung was investigated by flow cytometry (Fig. 4i, j). Following an acute exposure to 

DCB, pulmonary Treg (CD3+ CD4+ CD25+ Foxp3+) numbers were increased compared to 

control mice.

CDPM exposure dampens Th2 inflammation in favor of a regulatory response in vitro and 
in an adoptive transfer model

The function of phenotypically immunosuppressive DCs resulting from CDPM exposure 

was investigated using an in vitro T cell activation assay. When co-cultured with antigen-

specific naïve CD4+ cells from age-matched OT-II mice, lung DCs isolated from DCB-

exposed mice promote significantly increased Treg and significantly decreased Th2 effector 

polarization compared to lung DCs isolated from control mice (Fig. 5a). Supernatant Th2 

cytokine (IL-4, IL-13) concentrations were also significantly decreased in co-cultures with 

DCB-exposed DCs compared to control DCs (Fig. 5b). In order to see if DCB-exposed DCs 

were capable of driving Treg-biased differentiation in vivo, we isolated pulmonary DCs 

from Air or DCB exposed mice, loaded them with OVA323-339 peptide in vitro, and then 

adoptively transferred those DCs into age-matched OT-II mice (Fig. 5c). Similarly to 

effector responses observed in vitro, the DCs from DCB-exposed mice generated a 

significantly higher Treg response in the lungs of recipient mice (Fig. 5d). Negligible Th2 

responses were observed in all groups (data not shown).
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Acute CDPM exposure dampens lung T effector response in antigen-challenged OT-II mice

In order to model CDPM-induced immunosuppression in response to antigen, OT-II mice 

were exposed to DCB for one week starting at three days of age and administered 

OVA323-339 (2 μg) i.n. on exposure days 5 and 7. Four days later, T effector responses were 

measured in the lung by flow cytometry (Fig. 6). Suppression of T effector cell numbers was 

noted in DCB exposed mice compared to controls. Specifically, decreased levels of total 

CD4+ cells were observed (Fig. 6a) and allergen failed to elicit an increase in Th2 cell 

numbers (Fig. 6b) in DCB exposed mice. Surprisingly, Treg levels were also decreased in 

lungs from allergen challenged, DCB-exposed mice compared to controls (Fig. 6c). No 

significant differences were observed in other T effector populations analyzed (Th1 and 

Th17; data not shown).

Mice exposed to CDPM and sensitized to OVA as neonates, then rechallenged with OVA as 
adults display an exacerbated asthma phenotype

To examine the effect of early-life CDPM exposure during antigen sensitization on 

responses to antigen later in life (i.e., as an adult), OT-II neonates (groups as in Fig. 6) were 

allowed to mature until 8 weeks of age and then rechallenged with OVA323-339. In contrast 

to previously-observed immunosuppression in the lungs of CDPM-exposed mice, allergic 

responses in mice exposed to CDPM during initial OVA sensitization as neonates were 

significantly elevated above all other groups (Fig. 7a). Specifically, increased levels of Th2 

and Th17 cells were observed in addition to increased levels of Tregs. This group also 

displayed AHR (b) and severe peribronchial inflammation with an apparent increase in 

peribronchial smooth muscle mass (c). Levels of mucus were comparable in exposed and 

unexposed groups that were rechallenged with OVA (d).

Discussion

Positive correlations are observed between elevated PM levels and adverse pulmonary 

effects including developmental/functional deficits that present during childhood and last 

into adulthood.12–15 The increasing rate of childhood asthma over recent decades, 

particularly in urban areas,16 indicates a larger influential role of environmental factors like 

PM. Indeed, elevated PM is a factor in childhood asthma onset,17 with the highest risk 

associated with traffic-related CDPM exposure during an early age.18 The fact that early 

insults on the lung associate with such dire, persistent consequences is not surprising, given 

the immaturity of the immune system during the first three years of life. During infancy, 

humans display a natural tendency toward tolerance, which is believed to be extended from 

antimaternal immunity in utero.19 This is also observed (and has been studied) in neonatal 

mice.20–22 Despite infants and young children representing a population highly affected by 

both PM and asthma, there is very little data concerning the relationship of the two in the 

early stages of asthma development.4

In this study, we demonstrated a temporary immunosuppressive environment in the lung in 

response to early-life CDPM exposure. The major determinants of adaptive immune 

responses, DCs, were less activated and produced more IL-10 after CDPM exposure. Within 

this same acute exposure time period, we observed increases in CD4+ T cells producing 
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IL-10, Tregs, and IL10 mRNA in the whole lung. In an isolated in vitro system, DCs from 

the lungs of CDPM-exposed mice promoted less Th2 differentiation and effector function 

including lower expression of IL-4 and IL-13 in favor of a higher Treg differentiation of 

naïve T cells. When DCs from CDPM exposed mice were adoptively transferred into naïve 

OT-II mice, an increase in Tregs was observed in the lungs of recipient mice. A measureable 

Th2 response was not observed in any group. This was not unexpected, given the weak 

antigen challenge with respect to the OT-II mice being challenged with OVA. When directly 

allergen challenged during early-life, CDPM-exposed mice were unable to elicit Th2 

responses while non-exposed mice had significantly increased Th2 cell numbers. The 

increased numbers of Tregs in the lungs of OT-II mice exposed to CDPM (Fig. 4) followed 

by subsequent decrease of Tregs after allergen challenge (Fig. 6) suggests a transient Treg 

response to CDPM that is suppressive to all effector T proliferation to allergen, including 

Tregs themselves. This immunosuppression could have beneficial effects with respect to 

early asthma symptoms, but could lead to exacerbated allergic responses upon allergen 

rechallenge when suppression wanes. Indeed, our data demonstrated an exacerbation of 

allergic responses in mice exposed to CDPM and sensitized to OVA as infants and then 

rechallenged with OVA as adults. This was evidenced by AHR and increased Th2 cell 

numbers in lungs of adult mice exposed to CDPM during OVA sensitization as neonates 

(Fig. 7). Interestingly, we also observed significant Th17 cell numbers in this same group of 

mice even in the absence of measurable Th17 responses to OVA as neonates. A Th17-

mediated response has been previously demonstrated in OVA-challenged adult OT-II 

mice,23 and our previous CDPM-exposure study in adult mice also shows a dominant Th17 

component.5 Therefore, it is of little surprise that combining CDPM exposure with adult 

OVA challenge yielded such large Th17 responses. Despite having significant pulmonary 

inflammation, minimal amounts of mucus were observed in these mice; we believe this to be 

a consequence of the use of OVA peptide as allergen and/or the use of OT-II mice. We 

believe that the exacerbated Th2 and Th17 responses and pathological changes induced by 

early-life exposure to CDPM may be responsible for the increases in asthma severity.

In an early-life HDM model of asthma, exposure to CDPM abolished AHR. This functional 

effect was accompanied by significant decreases in BAL total inflammation and eosinophils 

and Th2 cytokines (i.e., IL-6, TNFα/IL-4, respectively). A trending, but non-significant 

decrease in IL-5 was observed in BAL fluid of CDPM-exposed mice. Additionally, the 

chemokine CXCL10, which is linked to AHR in human asthma,24 was elevated in BAL 

fluid of Air/HDM mice but not CDPM-exposed HDM mice (Supplementary Fig. S1) and 

may partially explain the absence of AHR in the latter group. Furthermore, we observed 

decreased Th2 cell numbers in the lungs of CDPM-exposed HDM mice, which agrees with 

our other antigen challenge data (Fig. 6). Morphometric analysis of airway mucus revealed 

no quantifiable difference in the amount of mucus producing cells and RT-PCR revealed no 

quantifiable difference in the expression of mucus-associated genes Muc5b and IL13 in the 

lungs of CDPM exposed and non-exposed HDM mice. However, Muc5ac expression was 

decreased in the lungs of CDPM-exposed mice given HDM vs. non-exposed HDM mice.

Serum antibody responses were of note, particularly due to the contrast that the data have to 

the rest of the suppressive effects of CDPM on HDM asthma. Whereas CDPM-exposed 
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HDM mice appeared to be protected from functional/inflammatory effects of HDM, this 

group had approximately double the concentration of total IgE in serum. Interestingly, 

however, the serum concentrations of both HDM-specific IgE and IgG1 were approximately 

two-fold lower in CDPM-exposed HDM mice vs. non-exposed HDM mice. These data 

agree with CDPM-mediated immunosuppression to HDM, but also indicate a more complex 

adaptive immune response. The antigen specificity of the IgE that account for the increase in 

CDPM-exposed HDM mice is unclear, but it is possible that oxidative damage to airway 

cells that we have previously observed7, 8, 25, 26 is releasing oxidized self-antigen able to 

initiate adaptive responses. In any case, elevated total IgE is strongly associated with 

development of hypersensitivity,1 and, though our data suggest CDPM-mediated protection 

from the development of specific allergy (i.e., HDM asthma) during CDPM exposure, we 

clearly observed heightened asthma-like responses if mice were rechallenged with allergen 

as adults. It is possible that the elevated total IgE observed early plays a role in the 

heightened susceptibility to allergens later in life.

Our previous work focusing on the early-life effects of CDPM exposure has shown the 

significant disruption airway epithelium resulting in EMT and increased smooth muscle 

mass.8 There are some in vitro and intestinal in vivo data suggesting that loss of E-cadherin 

interactions between DCs results in a tolerogenic DC phenotype via β-catenin transcriptional 

signaling.9, 27 In this study, we show that the DC subset responsible for IL-10 production 

following CDPM exposure is interstitial DCs (intraepithelial resident cDCs) which rely on 

E-cadherin interactions to reside between airway epithelial cells. Therefore, it is possible 

that loss of E-cadherin interactions between epithelial cells and interstitial DCs as a result of 

CDPM exposure is involved in inducing tolerance here also. In agreement with this theory, 

we have observed β-catenin-responsive transcription events such as increases in Snai1 in 

CDPM-exposed mice.8 The impact of CDPM exposure on regulation of β-catenin itself is 

currently being investigated by our laboratory. The suppressive effects of IL-10-producing, 

tolerogenic DCs have been demonstrated to increase the presence/activity of Tregs and 

abrogate AHR, airway eosinophilia, Th2 cytokines, and circulating HDM-specific IgE/IgG1 

in an HDM asthma model.28 The actions of local Foxp3+ Tregs are vital in maintaining 

tolerance,29 and the significant increase that we observed in these cells in CDPM-exposed 

mice in vivo coupled with the lack of Th2 differentiation/elevated Treg numbers perpetuated 

from the CDPM-exposed mice DCs in vitro suggests that tolerance to HDM in this 

respective group may also be derived from CDPM-induced tolerogenic DCs/Tregs. 

Although beyond the scope of this manuscript, it is possible that following epithelial repair, 

E-cadherin interactions between DCs and epithelial cells release the DC from its tolerogenic 

state allowing “normal” responses to allergens/pathogens. Since adaptive T effector 

responses were developed to allergen during the initial CDPM exposure and allergen 

challenge (evidenced by HDM-specific IgE), this suggests that upon re-exposure, persisting 

T and B cells are able to mount a memory response to allergen. This response is unhampered 

by tolerogenic DCs and Tregs, allowing for an exacerbated asthma phenotype as our data 

show.

The inflammation-attenuating effect of PM on allergic asthma models has been previously 

demonstrated. When OVA-sensitized mice are co-exposed to nanoparticles or mild cigarette 
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smoke (which contains high amounts of CDPM) along with OVA, significant decreases in 

pulmonary inflammation (e.g., total cells, eosinophilia, BAL IL-4/IL-5) are observed along 

with abolishment of AHR.30, 31 Additionally, Muc5ac expression is also decreased which 

agree with our data. To our knowledge, no data concerning PM and Muc5b expression exist, 

making it difficult to explain why we observed a difference in expression of Muc5b vs. 

Muc5ac or why mucus cell frequency remained unchanged by CDPM. There is evidence 

that Muc5b is prominent in developing lungs while Muc5ac is not.32 Furthermore, Muc5ac 

is stabilized by TNFα, which was decreased in CDPM mice, while Mub5b is unaffected.33 

Differential regulation of these mucus genes is further evidence of age-dependent responses 

and enforces the necessity of age-appropriate studies.

In contrast to our data, IgE levels are not affected by co-exposure in aforementioned 

studies.30, 31 It is likely that the differences in OVA vs. HDM co-exposure asthma protocols 

are responsible; OVA co-exposure protocols require prior sensitization to OVA (i.e., 

intraperitoneal injections of OVA complexed to adjuvant) followed by challenge with OVA 

during the PM exposure whereas in our HDM model mice were exposed first to CDPM and 

exposure to CDPM continued throughout the HDM exposure. Finally, HDM is a more 

physiologically relevant allergen and elicits asthma in the absence of a Th2-driving adjuvant 

in mice. The implications of PM exposure-induced immunosuppression in the lung reach 

beyond allergic sensitization, and we are currently exploring this effect in the context of 

other disease. For example, an early immunosuppressive environment could be detrimental 

during contact with actual pathogen (e.g., influenza virus, K. pneumonia, etc.) due to the 

inability to mount an appropriate immune response (manuscript in preparation). In 

conclusion, we were able to demonstrate the immunosuppressive effects of CDPM exposure, 

due in part to promotion of tolerogenic DCs and Treg differentiation. In the presence of this 

suppressive environment, antigen-specific responses were attenuated in the lung leading to 

lessened overall inflammation and AHR. Despite the reduced antigen-specific effects 

observed, total IgE was more highly elevated in CDPM-exposed HDM mice indicating a 

susceptibility to other hypersensitivity diseases. These findings illustrate a mechanism for 

the development of asthma and other allergic disease in the context of high PM exposure 

during early-life. Knowledge gained from these types of age-appropriate studies is crucial to 

our understanding of origins of complex diseases such as asthma, and highlights the 

importance of preventing exposure to CDPM during early-life.

Methods

Combustion-generated particulate matter and exposures

Combustion-generated particulate matter, DCB, was generated and characterized as 

previously described.7 Immediately before use, vacuum-sealed vials were opened and 5 mg 

DCB were suspended in 25 ml sterile saline containing 0.02% Tween-80 using sonication to 

monodisperse particles, giving a mean aerodynamic diameter of 0.2 Qm (Supplemental 

Methods). For in vivo inhalation exposures, pups were placed in a small chamber with 

nebulized particles for 30 min/day (beginning at three days of age and continuing for 

experiment-specific amount of time), at an average airborne PM concentration of 200 μg/m3 

which is equivalent to that of an above average polluted urban area. Exposure conditions are 
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based on modeling calculations (MPPD v2.0; Supplemental Methods) to produce equivalent 

particle deposition per alveolus to that of a human infant exposed over 24 h.

Animals

C57BL/6J, OT-II (C57BL/6-Tg(TcraTcrb)425Cbn/J), and IL-10-GFP (B6.129S6-

Il10tm1Flv/J) reporter mice were purchased from Jackson Labs (Bar Harbor, ME), kept in 

ventilated cages in a specific pathogen-free environment, and time-mated to obtain 

experimental age-appropriate pups. IL-10-GFP mice pups were genotyped by PCR, and 

heterozygotes (+/−) were used for studies. All animal protocols were prepared in accordance 

with the Guide for the Care and Use of Laboratory Animals and approved by the LSUHSC/

UTHSC Institutional Animal Care and Use Committee.

Neonatal allergic asthma model

A neonatal mouse model of HDM-induced airway allergy was adapted from published 

methods.10 Starting at three days of age, mice were exposed to DCB230 every day for two 

weeks (graphic in Fig. 1). HDM extract (Greer Labs, Lenoir, NC) was administered to 

isofluorane-anesthetized mice intranasally starting on the last three days of the two week 

exposure, then for three consecutive days/week for three consecutive weeks (10 μg/day 

during administration blocks 1 & 2; 15 μg/day during administration blocks 3 & 4). In 

DCB230-exposed groups, mice were only exposed on the same day and 2 h before HDM 

administration. All analyses/tissues were taken 24 h following the final protocol day.

Pulmonary mechanics

For invasive measurement of pulmonary function, mice were anesthetized and evaluated for 

AHR using flexiVent forced oscillation maneuvers (Scireq, Montreal, Canada). Lung 

resistance to airflow was measured in response to increasing doses of (0, 12.5, 25, 50 

mg/ml) methacholine.

BAL cellularity and cytokines

BAL was collected in 1 ml PBS containing 2% BSA. Total cell counts were obtained, and 

cells were spun onto glass slides (one slide/animal sample) and stained with Hema-3 kit 

(Fisher Scientific, Hampton, NH). Cells were differentiated based on morphology/stain and 

a total of 200 cells/slide were counted. Cytokine levels were measured in cell-free BAL 

using a multiplex assay (Millipore, Billerica, MA). The following cytokines were assayed: 

GM-CSF, IFN-γ, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, KC, TNF-α, VEGF, and IP-10. Raw 

data were plotted against a standard curve using a 5-parameter logistic regression to 

interpolate unknowns. Data presented exclude numbers beyond the sensitivity of the assay.

Circulating immunoglobulin

Serum was isolated from whole blood after 30 min of clotting followed by centrifugation. 

Samples were flash frozen in liquid nitrogen and stored at −80°C until further analysis. 

Levels of total IgE and IgG1 were measured by ELISAs according to manufacturer’s 

protocol (eBioscience, San Diego, CA). To assess HDM-specific IgE and IgG1 levels in 

serum, ELISA plates were coated with 50 μg/ml HDM overnight at 4°C, incubated with 
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diluted serum (1:10 IgE; 1:10,000 IgG1) and isotype-specific HRP-linked detection antibody 

(Southern Biotech, Birmingham, AL).

Lung histopathology

Lungs were excised, inflated at a constant fluid pressure of 25 cm with Zinc-formalin, and 

fixed overnight. Fixed lungs were dehydrated, paraffin-embedded, and sectioned at 4 μm 

onto slides. Mucus positive cells were quantified from sections stained with periodic acid-

Schiff (PAS) and recorded as a percentage of PAS+ cells per total number of epithelial cells 

in randomly selected bronchi (ImageJ) by an unbiased observer. All images were taken on a 

Zeiss microscope using AxioVision software.

Quantitative Real-Time PCR

Total RNA was isolated from 40 mg lung tissue using RNAspin Mini Isolation Kit (GE, 

Pittsburgh, PA) and converted to cDNA using iScript cDNA Synthesis Kit (Bio-Rad, 

Hercules, CA). qPCR was performed on a Roche LightCycler 480 using SYBR Green I 

Master (Roche, Indianapolis, IN) and gene-specific, intron-spanning primers for Muc5b 

(Forward primer, 5′-CATGGATGGCTGCTTCTGT-3′; Reverse primer, 5′-TAA 

ATTCGGCCACCGTGT-3′), Muc5ac (Forward primer, 5′-

TCCCATTCTGGGTCCTAGC-3′; Reverse primer, 5′-

GATTTCAGAGAGTCCTGTTGAGC-3′), IL13 (Forward primer, 5′-

CCTCTGACCCTTAAGGAGCTTAT-3′; Reverse primer, 5′-

CGTTGCACAGGGGAGTCT-3′), IL10 (Forward primer, 5′-

CAGAGCCACATGCTCCTAGA-3′; Reverse primer, 5′-

GTCCAGCTGGTCCTTTGTTT-3′), and HPRT (Forward primer, 5′-

TCCTCCTCAGACCGCTTTT-3′; Reverse primer, 5′-

CCTGGTTCATCATCGCTAATC-3′). Single-amplicon quality was verified by melting 

curve. Relative expression was calculated using ΔΔCt method normalized to reference gene 
HPRT.

Flow cytometry

Mice were euthanized and exsanguinated to prevent the flow of blood into the lungs and 

blood was removed by retrograde perfusion with PBS. The lungs were excised, gently 

mechanically dissociated (Octodissociator; Miltenyi, Germany), and digested for 30 min at 

37°C in HBSS supplemented with 1 mg/ml collagenase I (Invitrogen, Grand Island, NY) 

and 150 ng/ml DNase I (Sigma-Aldrich, St. Louis, MO). After incubation, lung pieces were 

vigorously mechanically dissociated (Octodissociator) and mashed through a 40 μm cell 

strainer (BD Biosciences, San Jose, CA) followed by treatment with RBC lysis buffer 

(eBioscience) to get RBC-depleted, single-cell lung suspensions. For intracellular cytokine 

staining, cells were stimulated for 5 h at 37°C in RPMI 1640 media (5% heat-inactivated 

FBS) with 5 ng/ml PMA and 500 ng/ml ionomycin (Sigma-Aldrich) in the presence of 

protein transport inhibitor brefeldin A (GolgiPlug; BD Biosciences). The following 

antibodies were used for T cells: eFluor450-CD3 (17A2), PerCP-CD4 (RM4-5), PE-IFNγ 

(XMG1.2), PE-Cy7-IL-4 (BVD6-24G2), FITC-IL-17 (eBio17B7), PE-CD25 (PC61.5), and 

FITC-Foxp3 (FJK-16s) and for DCs/Macs: FITC-CD11c (N418), PE-CD11b (M1/70), 
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eFluor450-F4/80 (BM8), APC-Cy7-MHCII (M5/114.15.2), APC-IL-10 (JES5-16E3), and 

PerCP-Cy5.5-CD80 (16-10A1). A fixable live/dead marker was used to exclude dead cells 

(eFluor506/780). Cells were analyzed using flow cytometry (FACSCanto II; BD 

Biosciences), and all flow data were analyzed using FlowJo software v7.6.5 (Tree Star, Inc., 

Ashland, OR).

In vitro T cell activation

C57BL/6 neonatal mice were exposed to DCB230 or control air starting at three days of age 

as described above for five consecutive days. After exposure on the fifth day, lungs were 

harvested, pooled according to exposure group, digested into single-cell suspensions, and 

DCs were positively selected using CD11c+ selection kit (StemCell; Vancouver, Canada) 

followed by brief plating to select for non-adherence (to exclude macrophages). 

Concurrently, naïve OVA323-339-specific CD4+ T cells were positively selected using CD4+ 

selection kit (StemCell) from single-cell spleen suspensions of age-matched OT-II neonates. 

DCs (5 × 103) from air/DCB230-exposed neonate lungs were cultured with naïve 

OVA323-339-specific CD4+ T cells (5 × 104) in the presence of 100 ng/ml OVA323-339 in 

200 μl total of RPMI 1640 (10% heat-inactivated FBS) for 72 h at 37°C in a round-bottom 

96-well plate. After 72 h, cytokine expression was measured from cell-free media 

supernatant using method described above. Cells were washed with PBS and either stained 

for Treg markers or stimulated in order to stain intracellularly for T cells subsets. Stained 

cells were analyzed by flow cytometry.

Adoptive transfer

C57BL/6 neonatal mice were exposed to DCB230 or control air starting at three days of age 

as described above for five consecutive days. After exposure on the fifth day, lungs were 

harvested, pooled according to exposure group, digested into single-cell suspensions, and 

DCs were positively selected using CD11c+ selection kit (StemCell). After selection, DCs 

from both exposure groups were separately incubated at 37°C for 2 h in RPMI 1640 with 10 

μg/ml OVA323-339. Following incubation, cells were washed with PBS and adoptively 

transferred intranasally to age-matched OT-II neonates (1.5 × 105 OVA323-339-loaded DCs/

pup). After seven days, pups were challenged intranasally with 2 μg OVA323-339 to boost T 

cell response, and then lungs were harvested 72 h later to analyze Treg levels using flow 

cytometry.

In vivo T effector response

OT-II neonates were exposed to DCB230 or control air starting at three days of age as 

described above for seven consecutive days. On exposure days 5 and 7, mice were 

challenged intranasally with 2 μg OVA323-339 and lung T effector populations were assessed 

using flow cytometry six days after the final exposure/challenge. To measure responses in 

adult mice, a similar challenge/response time frame was used; mice were challenged 

intranasally with OVA323-339 twice (48 hr apart) and had lung T effector populations 

assessed using flow cytometry.
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Statistical Analysis

All data were analyzed using GraphPad software. Two-way ANOVA with Bonferroni post-

tests or Student’s t-test was used to determine differences between all groups. All results are 

expressed as mean ± SEM, representative of at least 3 independent experiments. Values of 

p≤0.05 were considered statistically significant. Statistical comparisons in Bonferroni post-

tests were made within exposure groups (*p; Air vs. Air/HDM; DCB vs. DCB/HDM; Air vs. 

Air/OVA; DCB vs. DCB/OVA) or within allergen groups (#p; Air vs. DCB; Air/HDM vs. 

DCB/HDM; Air/OVA vs. DCB/OVA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Exposure to combustion-derived particulate matter (CDPM) modulates early-life allergic 

airway disease in mice. (a) Schematic of early-life HDM ± CDPM asthma model in mice. 

All analyses were done 24 hr following final protocol day. (b) Airway hyperresponsiveness, 

determined by airway resistance in response to increasing doses of inhaled methacholine. 

Airway resistance values were determined by forced oscillation technique using snapshot 

perturbation. (c) Total number of cells and differential cell counts for macrophages (Mac), 

lymphocytes (Lymph), neutrophils (Neutro), and eosinophils (Eos) recovered in BAL. (d) 

Cytokine protein levels in recovered BAL determined by multiplex assay. (e) Serum 

antibody concentrations determined by ELISA. Data plotted as means ± SEM. *p<0.05 vs. 

−HDM within exposure group, #p<0.05 vs. +HDM in opposite exposure group; Two-way 

ANOVA with Bonferroni post-tests.
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Figure 2. 
CDPM exposure decreases Th2 and Treg inflammation in early-life asthma model. (a) Total 

numbers of CD4+ lymphocytes in the lungs measured by flow cytometry. (b, c) Th2 

lymphocyte (CD4+ IL-4+) levels in the lungs, shown as (b) total numbers and (c) 

representative flow dot plots. (d, e) Treg (CD25+ Foxp3+) numbers in the lungs, shown as 

(d) total and (e) representative dot plots. Data plotted as means ± SEM. *p<0.05 vs. −HDM 

within exposure group, #p<0.05 vs. +HDM in opposite exposure group; Two-way ANOVA 

with Bonferroni post-tests.
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Figure 3. 
CDPM exposure modulates mucus-associated gene expression but not airway mucus 

production in early-life asthma model. (a) Representative micrographs of histological 

sections of mouse lungs stained for mucus (PAS, bright pink exemplified in inset). (b) 

Percent mucus-positive cells per total epithelial cells in airways. (c–e) Gene expression 

(Muc5ac, Muc5b, IL13) in whole lung tissue. Data plotted as means ± SEM. *p<0.05 vs. 

−HDM within exposure group, Two-way ANOVA with Bonferroni post-tests.
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Figure 4. 
Acute CDPM exposure causes an immunosuppressive environment in the lung. (a) IL10 

expression in whole lung tissue measured by RT-PCR. (b) Mean fluorescence intensity 

(MFI) of stimulation marker CD80 on lung DCs (CD11c+ F4/80−). (c–e) IL-10 expression in 

DCs from IL-10-GFP reporter mice expressed as (d) a percentage (IL-10+) of total lung DCs 

and (e) MFI as determined by flow cytometry. (f–h) IL-10 expression in lung CD4+ T cells 

(CD3+ CD4+) of IL-10-GFP reporter mice expressed as (g) a percentage (IL-10+) of total 

lung CD4+ T cells and (h) MFI. (i, j) Increase in regulatory T cell (Treg; CD3+ CD4+ 

CD25+ Foxp3+) numbers in the lungs of OT-II mice during acute exposure expressed as (i) 
total number of cells and as (j) a percentage of all CD4+ T cells. Data plotted as means ± 

SEM. *p<0.05, t-test.
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Figure 5. 
CDPM exposure dampens Th2 inflammation in favor of a T regulatory response in vitro and 

in an adoptive transfer model. In an in vitro T cell activation assay using DCs isolated from 

Air/DCB mice lungs to present OVA323-339 antigen to OT-II naïve splenic CD4+ cells 

(cultured 10:1, respectively), (a) T cell polarization and (b) cytokine concentration in culture 

supernatant were determined by flow cytometry and multiplex, respectively. (c) Schematic 

of adoptive transfer experiment: DCs were isolated from lungs of CDPM-exposed and 

unexposed mice and cultured 2 hr with OVA323-339. Age-matched OT-II mice were then 

given OVA323-339-loaded DCs (1.5 × 105 DCs/pup) and analyzed for Treg numbers in 

lungs. (d) Total number of Tregs/lung of adoptive transfer recipient mice. Data plotted as 

means ± SEM. *p<0.05, t-test.
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Figure 6. 
Acute CDPM exposure dampens lung T effector response in antigen-challenged OT-II mice. 

(a–c) T effector profiles of mice exposed to air/DCB and challenged intranasally with 

OVA323-339. Levels of (a) total CD4+, (b) Th2 (IL-4+), and (c) Treg cells in the lungs 

determined by flow cytometry. Data plotted as means ± SEM. *p<0.05 vs. −OVA within 

exposure group; #p<0.05 vs. +OVA in opposite exposure group, Two-way ANOVA with 

Bonferroni post-tests.
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Figure 7. 
Mice exposed to CDPM and sensitized to OVA as neonates, then rechallenged with OVA as 

adults display an exacerbated asthma phenotype. (a) CD4+ T cell levels (Th2, Treg, Th17; 

respectively) in the lungs as determined by flow cytometry. (b) Airway 

hyperresponsiveness, determined by airway resistance in response to increasing doses of 

inhaled methacholine. (c–d) Representative micrographs of histological sections of mouse 

lungs stained with hematoxylin and eosin (c) or PAS (d); black arrows denote areas of 

significant peribronchiolar inflammation (c) or mucus (d); black line denotes smooth muscle 

mass surrounding bronchiole. Data plotted as means ± SEM. *p<0.05 vs. all other groups; 

#p<0.05 vs. indicated group. One-way ANOVA (a) or Two-way ANOVA (b) with 

Bonferroni post-tests.
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