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ABSTRACT Human milk is a complex and dynamic biological system that has evolved
to optimally nourish and protect human infants. Yet, according to a recent priority-set-
ting review, “our current understanding of human milk composition and its individual
components and their functions fails to fully recognize the importance of the chronobi-
ology and systems biology of human milk in the context of milk synthesis, optimal tim-
ing and duration of feeding, and period of lactation” (P. Christian et al., Am J Clin Nutr
113:1063-1072, 2021, https://doi.org/10.1093/ajcn/ngab075). We attribute this critical
knowledge gap to three major reasons as follows. (i) Studies have typically examined
each subsystem of the mother-milk-infant “triad” in isolation and often focus on a sin-
gle element or component (e.g., maternal lactation physiology or milk microbiome or
milk oligosaccharides or infant microbiome or infant gut physiology). This undermines
our ability to develop comprehensive representations of the interactions between these
elements and study their response to external perturbations. (ii) Multiomics studies are
often cross-sectional, presenting a snapshot of milk composition, largely ignoring the
temporal variability during lactation. The lack of temporal resolution precludes the
characterization and inference of robust interactions between the dynamic subsystems
of the triad. (iii) We lack computational methods to represent and decipher the com-
plex ecosystem of the mother-milk-infant triad and its environment. In this review, we
advocate for longitudinal multiomics data collection and demonstrate how incorporat-
ing knowledge gleaned from microbial community ecology and computational meth-
ods developed for microbiome research can serve as an anchor to advance the study
of human milk and its many components as a “system within a system.”

KEYWORDS computational methods, human microbiome, human milk, chronobiology,
community ecology theory, system biology, lactation, breastfeeding

STUDYING HUMAN MILK AS A “SYSTEM WITHIN A SYSTEM”: RATIONALE,
CHALLENGES, AND A NOVEL STRATEGY

uman milk is a dynamic and responsive fluid that is uniquely suited to the infant’s

nutritional and immunological needs, providing the foundation for healthy growth
and development (1, 2). Lactation has evolved over millions of years to support the sur-
vival of mammalian offspring and their developing microbiomes (3). Besides essential
nutrients, human milk is rich in cytokines, immunoglobulins, growth factors, soluble
receptors, immune cells, enzymes, oligosaccharides, and microbiota (4-6). These com-
ponents are dynamic and change over time as the infant’s needs and maternal physiol-
ogy evolve across lactation, with some components also having diurnal rhythms and/
or fluctuations during a single feeding.
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FIG 1 The mother-milk-infant triad and its environment as the unit of study.

It is well established that breastfeeding is protective against infections and may
also help prevent immune-mediated diseases, both during and beyond the lactation
period (7, 8). For example, breastfed infants have a lower incidence of diarrhea, a lower
risk of mortality due to infectious disease, and a reduced risk of childhood asthma (8).
While these associations are complex and not solely attributable to the composition of
human milk (the act of breastfeeding likely contributes and confounding is also possible),
it is clear that human milk has unique immunomodulatory properties that are not repli-
cated in commercial infant formulas (9). Yet, despite its extraordinary importance, much
remains unknown about the ecology of human milk, its contribution to normal develop-
ment, and its influence on infant and maternal health. We attribute this knowledge gap,
at least in part, to the undercharacterized interplay among different milk components
and between milk, mother, and infant, referred to as a “triad” by Bode et al. (10).

This observation was recently reinforced by the U.S. National Institutes of Health
and the Bill and Melinda Gates Foundation, advocating for a much-needed shift in the
conceptual approach to studying human milk as a “system within a system” (11). The
common, yet overly simplistic approach to analyzing single, mostly nutritive compo-
nents of human milk was deemed inadequate in many cases, as it underestimates the
importance of the chronobiology and systems biology of human milk. Of note, the bio-
logical impact of human milk depends not only on its composition but also on how it
is fed and the physiology of the recipient infant. For example, the expression of specific
receptors on the nasal and gut epithelium will mediate the response to various human
milk components. Epithelial permeability will also determine the ability of human milk
macromolecules to be absorbed into circulation. These examples emphasize the need
to study human milk as a system in the context of the “mother-milk-infant triad” (10)
and environmental factors affecting it (Fig. 1).

From a data science perspective, to comprehensively study complex biological proc-
esses such as human milk and lactation, it is essential to take an integrative and “multi-
layer” approach that accounts for the interactions among individual components and
their collective functions. For human milk, this includes multiple nutrients and nonnutri-
tive components that can be profiled with targeted assays or untargeted omics
approaches (e.g., proteome, microbiome, metabolome, etc.). However, it is computation-
ally challenging to integrate signals from multiple modalities—especially temporal ones
—in a unified model. In this review, we propose a novel strategy to mitigate these chal-
lenges by leveraging computational methods developed to study another complex sys-
tem, the human microbiome. Specifically, we suggest defining and studying human milk
as a community or an ecosystem, inspired by microbial communities, by using concepts
such as succussion, diversity, and keystone components. We further suggest leveraging
microbiome methods and community ecology theory to develop computational
approaches to study human milk as a system.
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We suggest that modeling the human microbiome shares many conceptual similar-
ities with the modeling of human milk, including its microbial and nonmicrobial com-
ponents. Conceptually, both the microbiome and human milk are dynamic ecosystems,
requiring ecological measurements (e.g., diversity) and computational methods that
can identify patterns from high-dimensional data and link these patterns to the host's
status or development. Moreover, in both cases, such computational methods must
contend with numerous challenges shared among the two systems, including mea-
surement noise, sparse and irregular temporal sampling, and intersubject variability.
Finally, we note that although the omics era has accelerated all aspects of biological
research, its effects have been particularly apparent in studies of microbial commun-
ities and the human microbiome (12-17). Thus, computational frameworks developed
to study the microbiome are particularly well suited for adaptation to fit the unique
characteristics of human milk research (18). In this review, we showcase the wide array
of parallels between human milk and the microbiome and demonstrate how incorpo-
rating knowledge gleaned from microbial community ecology and computational mi-
crobiology can serve as an anchor to advance the study of human milk as a system. We
advocate for the collection of dense longitudinal data and development of tailored
computational methods to represent this system and elucidate its emergent properties
(Fig. 2).

HUMAN MILK IS A COMPLEX ADAPTIVE SYSTEM. SO IS THE MICROBIOME

Ecosystems, such as microbial communities, are complex adaptive systems; they are
complex because they have many parts and many connections between the parts, and
they are adaptive because their feedback structure gives them the ability to change in
ways that promote survival of the ecosystem in a fluctuating environment. These are
dynamic systems able to adapt in and evolve with a changing environment. The key to
understanding these ecosystems lies in emergent properties: the distinctive features
and behaviors that “emerge” from the way that complex adaptive systems are organ-
ized. Emergent properties are usually defined as the output resulting from an interact-
ing set of variables within a system. For example, at the organismal level, vision and
color perception are emergent properties that result from the interaction of different
chemical signals between different cell types in the eye and brain. Just as vision cannot
be understood by studying a single cell type or a single signaling molecule, the emer-
gent properties of human milk cannot be understood by studying a single milk nutri-
ent or bioactive compound.

It was recently suggested that the infant gut microbiome is a complex adaptive sys-
tem, crucial to the maintenance of various emergent properties such as infant immune
system training (19). This emergent property is not attributable to a single component
of the ecosystem; instead, it relies on a temporally structured pattern of bacterial diver-
sity increase after birth and the succession of keystone groups of microbes. Similar to
the gut microbiome, human milk supports a set of emergent properties contributing
to the development of the nursing infant, including microbial dispersal and selection,
physical growth, neurodevelopment, and immune system maturation (20-27). We thus
suggest that human milk can also be considered a complex adaptive system in which
both low-level local interactions and selection mechanisms combine to create high-
level patterns. Notably, in the unique case of human milk, these properties originate in
the mother but emerge in the infant, emphasizing the importance of the mother-milk-
infant triad and its environment as the unit of study (10).

The emergent properties of a complex adaptive ecosystem are supported by com-
binations of diversity as well as keystone groups, both of which ensure community re-
silience and make it difficult to attribute a cause-effect relationship to individual fea-
tures or groups (28). Studies of microbial communities have used multiple properties
to characterize ecosystems, including species richness, diversity and functional profile,
the level of interactions between species in the ecosystem, and the strength of these
interactions (29). In ecology, these concepts are a way to thoughtfully summarize the
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FIG 2 Methodology for incorporating microbial community ecology and computational microbiome methods in the study of human milk. Longitudinal
data collection involves collecting dense (frequent) human milk samples from women in tandem with high-dimensional metadata that capture the context
(e.g., health, diet, environment) of the mother-milk-infant triad together with microbiome samples from both the mother and infant. Data representation
entails applying computational methods or ecological concepts that summarize high-dimensional data, extracting important underlying structures in the
data, and linking them to clinical outcomes. These concepts/methods include community state types, richness, diversity, co-occurrence networks,
interactions, and more. Temporal modeling is inferring dynamical systems from milk time series data, using 4 steps as follows: (i) input is a time series of
abundances of actors in the system or some lower-dimensional representation of the system over time (e.g., diversity over time); (ii) pairwise interaction
network reflecting nonzero interaction coefficients in underlying dynamical systems model; (iii) interaction network with interaction module structure; and
(iv) temporal model unrolled in time to explicitly show temporal dependencies. This schematic is inspired by methods developed for microbial dynamics
(57). In predict/classify/elucidate mechanisms, by using data summaries extracted from the data representation methods/concepts as well as the temporal
modeling, we can characterize the dynamics of human milk components, predict infant outcomes, and elucidate mechanisms underlying them. This can be
done using statistical/probabilistic models, machine learning algorithms, mechanistic models that rely on ecology theory, and causal inference. Relevant
microbiome methods include compositional tensor factorization (CTF) (63), generalized Lotka-Volterra (gLV) (57), Microbial Dynamical Systems INference
Engine (MDSINE) (77), microbial temporal variability linear mixed model (MTV-LMM) (59), Poisson ARIMA (58), Microbiome Interpretable Temporal Rule
Engine (MITRE) (64), and structural equation modeling (SEM) (78, 79).

ecosystem and describe it as a whole. In microbiome science, the use of community
ecology theory mirrors the improvement in our understanding of these complex mi-
crobial systems, shifting from a singular to a multilevel perspective. We thus suggest
applying community ecology theory to study human milk.

To achieve this, we can define milk as an ecosystem and borrow concepts from
community ecology theory to characterize it. This will require defining the “actors” of
this ecosystem (e.g., maternal cells, genes, nutrients, enzymes, immunoglobulins, mi-
crobial genomes), quantifying their levels, and describing community succession, rich-
ness, diversity, functional profile, keystone actors, and more. Studies in complexity
theory (30, 31) suggest that these measurements, along with productivity, resilience,
and biomass, are a comprehensive description of complex systems. These studies use
mathematical models to examine how a large collection of components, locally inter-
acting with each other at small scales, can spontaneously self-organize to exhibit non-
trivial global structures at larger scales. Thus, to model human milk as a complex
adaptive system, we suggest using the following concepts, which have been success-
fully applied in microbiome science and linked to clinical outcomes (see Table 1).
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TABLE 1 Concepts from microbiome science and microbial ecology that can be applied to understanding the compositional and functional
characteristics of human milk

Example applications in human

Suggested applications in human

Concept Definition microbiome science milk science
Richness The number of actors in a community. Richness of the human gut microbiome Can be used to represent the number
(the number of different bacterial of actors across all milk components or
species) was associated with metabolic the number of actors within each
markers (80). subsystem (nutrients, bioactives,
microbiome).
Diversity Taxonomic diversity refers to the Low diversity in the adult gut Can be used to quantify the variability/

Co-occurrence
networks

Community/system
state types

Keystone groups

Interactions

Guilds

Resilience

Succession

Emergent property

number and relative abundance of
actors in a community. Functional
diversity refers to the variety of
processes or functions in a
community that are important to its
structure and dynamic stability.

A graphic visualization of potential
relationships among actors in a
system.

A group of community states, where
each state is characterized by similar
composition and abundance.

Exceptionally important actors whose
presence is crucial in maintaining the
organization and diversity of the
ecological system.

The types and strengths of the
relationships between actors in the
system.

Members are defined as belonging to
the same guild if they exploit the
same class of resources in a similar
way or work together as a coherent
functional group.

A system or community’s capacity to
promptly return to its initial state after
a perturbation.

A pattern of temporal changes in
specific composition after a radical
disturbance or after the opening of a
new niche in the physical
environment for colonization.

microbiome has been associated with
acute diarrheal disease (81),
inflammatory bowel disease (82),
Clostridium difficile infection (83), liver
disease, and in cancer patients (84).

The patterns of species and strain co-
occurrence in the vaginal microbiome
were associated with adverse
pregnancy outcomes (85).

In the vaginal microbiome, five CSTs
were identified. These CSTs were
associated with health outcomes such
as preterm birth and bacterial vaginosis
(36, 37).

Bifidobacterium species and subspecies
were suggested as keystone species in
the infant gut, as they are well adapted
to its transmission routes and growth
conditions (19).

Microbial interactions in oral
communities mediate biofilm
properties and are associated with oral
health and disease (86, 87).

In microbiome science, a guild was
defined as a group of bacteria that
show consistent coabundant behavior
and are likely to work together to
contribute to the same ecological
function (e.g., fermentation of
indigestible dietary components) (76).
This is a key characteristic of a healthy
infant gut microbiome, protecting it
from reaching a dysbiotic state (e.g.,
after antibiotic exposure) (88).

Succession in the infant gut starts with
the arrival of pioneer species that
transform the gut habitat and enable
the settlement of first succession
species. This temporally structured
process contributes to the identity and
dynamics of the infant gut microbiome
and thus plays a key role in immune
development (53, 54).

Immune development is an emergent
property of the infant gut microbiome.

similarity across milk components. Can
be used as an aggregative
measurement or within a subsystem.

Can be expanded to represent
connections among a wide array of
components (e.g., HMOs, nutrients,
and microbes).

Can be used to characterize state types
using a single component like HMOs
or characterize “overall milk state type”
across all components (e.g., lactotypes
[39]).

May help identify key milk
components associated with
predisposition to (or protection from)
adverse infant or maternal outcomes
(e.g., necrotizing enterocolitis,
mastitis).

May help establish a reference or
baseline for milk interactions (rather
than specific components) that are
associated with optimal health
outcomes (e.g., certain nutrients may
be absorbed better in combination;
immunoglobulins may interact with
nonhuman antigens).

Could help identify groups of human
milk components that show consistent
coabundant behavior and are likely to
work together to contribute to the
same ecological function (e.g.,
immune training or gut barrier
integrity).

Defining human milk resilience will
enable the development of effective
interventions aimed at maintaining
the emerging properties of human
milk.

Can be applied to determine the
pioneer components in human milk
(microbial species, immune factors,
oligosaccharides, etc.) and understand:
What influences their identity? What is
the temporal structure of this
community succession? What are the
effects of different initial conditions
(i.e., different pioneer components) on
the composition and dynamics of
other milk components?

Human milk supports a set of
emergent properties contributing to
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Example applications in human

Suggested applications in human

Concept Definition microbiome science milk science
A property which a complex system This emergent property is not the development of the nursing infant,
has but which its individual attributable to a single component of including microbial dispersal and
components do not have. the ecosystem; instead, it seems to rely selection, physical growth,

on a temporally structured pattern of
bacterial diversity increase after birth
and the succession of keystone groups

of microbes (19).

neurodevelopment, and immune

system maturation.

Richness. Richness (32) is the number of actors in a community. In human milk,
richness can be used to represent the number of actors, across all components, or the
number of actors within each subsystem (e.g., HMOs, microbiota, immune factors).

Diversity. We define two types of diversity (33). First, there is taxonomic diversity,
which refers to the number and the relative abundance of actors in a community.
Second, there is functional diversity, defined as the variety of processes or functions in
a community that are important to its structure and dynamic stability (e.g., pre- and
probiotic properties, ability to support epithelial development, capacity to neutralize
pathogens). Similar to richness, diversity in human milk can be an aggregative mea-
surement across all components or within each component. We also suggest adapting
the alpha- and beta-diversity measurements, representing compositional or functional
diversity of a community and the similarity or dissimilarity across two communities,
respectively (34).

Co-occurrence networks. Microbial co-occurrence networks (35) are widely applied
to explore connections in microbial communities. Nodes and edges in microbial co-
occurrence networks usually represent microbes and statistically significant associa-
tions between nodes, respectively. In human milk, co-occurrence networks can be
expanded to represent connections among a wide array of components (e.g., human
milk oligosaccharides [HMOs], nutrients, and microbes).

Community state types. The term “community state type” (CST) is used in microbial
ecology to describe a group of microbial communities with similar composition and abun-
dance (36, 37). In human milk, we can characterize state types using a single component
like HMOs or characterize “overall milk state type” across all components. For example,
Masi et al. showed that community state types of HMOs differentiate preterm infants that
develop necrotizing enterocolitis from healthy ones (38). Another example is the concept
of “lactotypes” (39). Munblit et al. suggested that women can be characterized according
to their milk composition profile and that variation in combinations of milk components
rather than single factors may be linked with infant health.

Keystone groups. Keystone groups (40) are exceptionally important actors whose
presence is crucial in maintaining the organization and diversity of the ecological commu-
nity. This concept can be applied to investigate whether there are equivalent “keystone”
components or groups in human milk on which other actors in the ecosystem depend,
such that if they were removed, the ecosystem would change drastically. For example,
this view may help in identifying key milk components associated with adverse infant or
maternal outcomes such as necrotizing enterocolitis or mastitis, respectively.

Interactions. Microbial interactions are crucial for a successful establishment and
maintenance of a microbial population. In microbial communities, we know that spe-
cies interact with one another in multiple ways. Positive microbial interactions include
mutualism (cooperation), protocooperation (both benefit; however, both populations
can survive on their own), and commensalism (one benefits, and the other is unaf-
fected). Negative microbial interactions include predation, parasitism (one benefits;
one is harmed), amensalism (one is harmed; the other is unaffected), and competition.
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We suggest that the type and strength of interactions between milk components may
also play an important role and should therefore be characterized. This type of analysis
may help us determine how human milk components relate to one another. We can
use this approach to establish a reference or a baseline for milk interactions that are
associated with optimal health outcomes (similar to establishing reference values of
nutrients). We can also establish whether there is a conserved set of interactions
between milk components or whether these interactions are context specific. For
example, a recent study (41) showed that particular interactions between HMOs, milk
microbiota, and the infant gut microbiome prevented or ameliorated neonatal rotavi-
rus infections—a clinically important discovery that would not be possible by focusing
on any component in isolation. Of note, different types of interactions must be consid-
ered and modeled to account for the different ways that living (e.g., maternal and mi-
crobial cells) and nonliving (e.g., nutrients, enzymes, HMOs) human milk components
interact.

Guilds. Guilds (adapted from macroecology) (42) are an alternative to thinking
about species and traditional taxonomy. Members are defined as belonging to the
same guild if they exploit the same class of resources in a similar way or work together
as a coherent functional group. In human milk, a guild can be a group of components
that show consistent coabundant behavior and are likely to work together to contrib-
ute to the same function/emergent property, such as immune training or gut barrier
function.

Resilience. Resilience (43) is a system’s or community’s capacity to promptly return
to its initial state after a perturbation. Resilience is a crucial property of complex adapt-
ive systems (44). In human milk, a perturbation can manifest as a change in maternal
(antibiotics, illness, diet) or infant (e.g., antibiotics, infection, vaccine) factors. This
would require a prospective longitudinal characterization of human milk before and af-
ter a disturbance (e.g., maternal/infant illness, antibiotics) to establish a return to initial
state. We note that the identification of the critical events and factors that influence
human milk resilience and function will enable the development of effective interven-
tions aimed at maintaining the emerging properties of human milk (e.g., immune sys-
tem development and disease prevention).

One example of an initiative that will enable such representation of human milk as
an ecosystem is the International Milk Composition (IMiC) Consortium (https://www
.milcresearch.com/imic.html). Using a comprehensive multiomics approach, the inter-
disciplinary IMiC team is studying 1,000 mother-milk-infant triads across diverse set-
tings with the overarching objective to identify, comprehensively, human milk compo-
nents linked to infant growth and resilience to inform maternal and infant nutrition
recommendations and interventions. Another rare example of a multilayer human milk
research effort that could apply our suggested approach is the INSPIRE project, where
a vast array of milk components was analyzed from 400 women in 8 countries (45).

It is important to note that the ecological concepts described above, and both the
IMiC and INSPIRE projects, capture only a “snapshot” of this dynamic system. New lon-
gitudinal studies are required to model the chronobiology and temporal changes in
human milk composition occurring during lactation.

HUMAN MILK IS A DYNAMIC SYSTEM. SO IS THE MICROBIOME

Just as microbial communities are dynamic ecosystems that change in response to in-
ternal interactions and external perturbations, human milk composition changes over the
time course of lactation due to a combination of intrinsic and extrinsic factors (46, 47). By
the end of pregnancy, the mammary gland starts to produce colostrum, which is espe-
cially rich in bioactive factors that provide passive immunity to the infant (2, 48).
Transitional milk is secreted for about 2 weeks, followed by mature milk, which comprises
a thinner “fore-milk” that becomes fattier toward the end of the feed, referred to as
“hind-milk” (2). This temporally structured process suggests there is a relatively small set
of conserved trajectories through which human milk changes during lactation, with some
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variation depending on individual circumstances. However, the granular temporal dy-
namics, or “chronobiology,” of human milk remain poorly characterized.

One temporally structured process that might share similarities with the chronobi-
ology of human milk is microbial succession. In ecology, succession is defined as the
pattern of changes in a community after a disturbance or after the opening of a new
niche to colonization (49). Succession in the infant gut microbiome starts with the ar-
rival of pioneer species that transform the gut habitat and enable the settlement of
first succession species. This process is influenced by maternal factors (e.g., body
weight and stress) (46, 50, 51), delivery mode (52-54), and infant diet (55, 56). The tem-
poral structure of these environmental factors contributes to the identity and dynamics
of the infant gut microbiome and thus plays a key role in infant development. We can
use this knowledge as an inspiration to study the succession of all kinds of milk compo-
nents: What are the pioneer components (microbial species, immune factors, oligosac-
charides, etc.) in human milk? What influences their identity? What is the temporal
structure of this community succession? What are the effects of different initial condi-
tions (i.e., different pioneer components) on the composition and dynamics of other
milk components?

Investigating the temporal dynamics of microbial communities has required devel-
opment of specialized computational time series analysis tools. These methods,
designed to extract rich information from longitudinal data, can be adapted to model
the dynamics of human milk. For example, a common task in the analysis of longitudi-
nal microbiome data is to infer the trajectories of the community as well as predict
future compositions. This task is equally relevant to human milk. Both microbiome and
milk longitudinal data may include many different temporal patterns such as cyclical
effects (e.g., seasonal or circadian effects), long-term trends, or even delayed effects of
shifts in composition. However, models may differ substantially in the types of tempo-
ral patterns they can infer and predict. For example, the generalized Lotka-Volterra
model (57) is limited to capturing single time-step interactions (changes between two
consecutive time points). Other models, such as the Poisson ARIMA, allow for temporal
interactions to be carried over multiple time points (58). Even greater flexibility is
achieved by models such as those of Shenhav et al. (59) and Silverman et al. (60), which
allow for more complex time series modeling such as the inclusion of seasonal or poly-
nomial trends. Other methods can achieve even greater flexibility by using nonpara-
metric kernel methods (61) or finding low-dimensional representations of trajectories
(62). In summary, multiple methods were developed in microbiome science to infer
the trajectories of microbial communities (Fig. 2). These methods can be adapted to
model human milk trajectories, with the added value of highlighting different temporal
patterns and assumptions.

Another common goal is to simultaneously identify patterns from high-dimensional
temporal data and link these patterns to the host’s (mother/infant) health status or de-
velopment. For example, Martino and Shenhav et al. developed a dimensionality
reduction method called compositional tensor factorization (CTF) (63) that decom-
poses a tensor (i.e., three-dimensional matrix) and relates microbial sequences, hosts,
and time. Applying CTF to longitudinal infant gut data revealed a consistent microbial
signature that differentiated infants by birth mode across the first years of life. Notably,
this temporal separation between birth modes was significantly stronger than the sep-
aration observed using traditional, nontemporal methods. This model can be easily
adapted to identify temporal milk trajectories by changing its input (from microbial
abundance to milk composition). Properly adapted to human milk, CTF can potentially
highlight temporal patterns leading to different infant or maternal phenotypes.
Further, Bogart et al. (64) developed a supervised machine learning method for micro-
biome time series analysis that infers interpretable rules linking changes in abundance
of clades of microbes over time windows to host phenotypes, such as the presence/ab-
sence of disease. This algorithm enables the discovery of biologically interpretable rela-
tionships between the temporal dynamics of the microbiome and the host. This
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method can also be adjusted to link human milk dynamics and infant or maternal
health outcomes. Other relevant computational time series analysis tools in the micro-
biome include prediction of future behaviors of the ecosystem (65-67), inference of
stability and response times to perturbations (67, 68), and discovery of causal interac-
tions (69).

A straightforward approach common in microbiome studies that can be easily
adapted in human milk is to identify important interactions between taxonomic/func-
tional groups as well as using statistical covariation over time. Applying this approach
to longitudinal gut microbiome data from healthy infants in a Bangladeshi birth cohort
identified a network composed of 15 covarying bacterial taxa (70, 71). These “normal”
microbial profiles enabled identification of (i) impaired microbiome development in
other children with malnutrition, and (ii) complementary foods contributing to healthy
microbiome restoration (70, 71). In the context of human milk, this approach can be
used to define normal milk profiles across multiple milk components.

To enable such analysis of human milk, dense, comprehensive, longitudinal data
should be collected. A seminal example of such a study in the microbiome space is the
Environmental Determinants of Diabetes in the Young (TEDDY) cohort (72). This study
densely sampled and modeled the temporal development of the gut microbiome
among 900 infants, which enabled the discovery and characterization of the structural
and functional assembly of the microbiome in early life. In human milk, the Mothers,
Infants and Lactation Quality (MILQ) study is a relevant longitudinal study of 1,000
mothers aimed to establish reference values for human milk nutrients and bioactives
analyzed at 4 time points in the first 9 months of lactation (73). Of note, most of the
statistical methods described above would require a denser sampling scheme (i.e.,
daily, weekly) to enable accurate inference and prediction.

LOOKING FORWARD: DECIPHERING HUMAN MILK ECOLOGY

To address the methodological gaps of modeling milk as a system, we advocated,
in this review, to use the microbiome as an inspiration and anchor. Specifically, we pro-
posed to use the knowledge gleaned from microbial community ecology and compu-
tational microbiome methods as a starting point in modeling this complex system. To
fully unlock the potential of this approach, it is essential to record, represent, and deci-
pher the mother-milk-infant triad during lactation.

Record: longitudinal data collection. We need to collect dense, ideally daily, human
milk samples from women across the globe in tandem with high-dimensional metadata
that capture the context of the mother-milk-infant triad and its environment (e.g., demo-
graphics, genetics, lifestyle) and microbiome samples from the mother and infant (gut,
vaginal, oral, nasal, skin). Similar to the IMiC project, the analysis of these samples should
include macronutrients, micronutrients, oligosaccharides, growth factors, immunoglobu-
lins, cytokines, metabolites, and microbes using assays validated and standardized for
human milk. This will allow us to answer fundamental questions, such as: What is the vari-
ation in milk composition over time? Why does it change? How does it change (jumping
between discrete states? continued change? Does one component change more than
others)?

Represent: multilayer data representation. Given that these multilayer data are
high dimensional, we need to represent them in a meaningful way. One strategy is to
assume that milk profiles that lead to optimal health outcomes harbor an underlying
and low-dimensional structure that informs their dynamics and the interactions
between their components. This low-rank representation of the data can be done ei-
ther by (i) using machine learning dimensionality reduction or feature selection meth-
ods, and (ii) using complex adaptive systems and community ecology. Dimensionality
reduction methods (e.g., principal-component analysis [PCA], t-stochastic neighbor
embedding [t-SNE]) transform the data from a high-dimensional space into a low-
dimensional space such that the latter retains some meaningful properties of the origi-
nal data. Feature selection methods (e.g., LASSO) reduce the number of data features
that are relevant to a specific prediction task. We thus postulate that both machine
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learning methods and ecology theory can be adapted and extended to study human
milk as a system.

Decipher: prediction, mechanistic modeling, and causal inference. Finally, we
wish to use this representation of the data to characterize the chronobiology of human
milk, predict infant outcomes, and elucidate mechanisms underlying them. This can be
done using statistical/probabilistic models, machine learning algorithms, mechanistic
models that rely on ecology theory, and causal inference. We note that in order to
build an integrated predictive model across different data modalities, multimodal anal-
ysis and ensemble techniques (e.g., stacked generalization) should be used (74, 75). As
for mechanistic models that rely on community ecology theory, if we model human
milk as a complex adaptive system, we can infer and predict its productivity, resilience,
and the interactions between its functional groups. If we use the concept of guilds
(76), we can identify candidate functional groups/components that may causatively
contribute to infant health outcomes. With respect to chronobiology, we can extend
mechanistic models such as the generalized Lotka-Volterra to infer dynamics and inter-
actions between the functional groups/components of the ecosystem (57).

In summary, we suggest that similar to the human microbiome, human milk can be
defined and modeled as a complex adaptive system. The dynamic nature and emer-
gent properties of this ecosystem highlight the necessity of longitudinal multilayer
human milk studies, along with tailored computational methods, which will eventually
allow us to identify and characterize milk interactions and dynamics that are associated
with optimal health outcomes. In this review, we advocate that knowledge gleaned
from microbial community ecology and computational microbiology can serve as an
anchor to advance the study of human milk and its many components as a complex
adaptive “system within a system” that is vital to maternal and infant health.
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