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Major depressive disorder emerges from the complex interactions
of biological systems that span genes and molecules through cells,
networks, and behavior. Establishing how neurobiological pro-
cesses coalesce to contribute to depression requires a multiscale
approach, encompassing measures of brain structure and function
as well as genetic and cell-specific transcriptional data. Here, we
examine anatomical (cortical thickness) and functional (functional
variability, global brain connectivity) correlates of depression and
negative affect across three population-imaging datasets: UK Bio-
bank, Brain Genomics Superstruct Project, and Enhancing Neuro-
Imaging through Meta Analysis (ENIGMA; combined n ≥ 23,723).
Integrative analyses incorporate measures of cortical gene ex-
pression, postmortem patient transcriptional data, depression
genome-wide association study (GWAS), and single-cell gene tran-
scription. Neuroimaging correlates of depression and negative af-
fect were consistent across three independent datasets. Linking
ex vivo gene down-regulation with in vivo neuroimaging, we find
that transcriptional correlates of depression imaging phenotypes
track gene down-regulation in postmortem cortical samples of pa-
tients with depression. Integrated analysis of single-cell and Allen
Human Brain Atlas expression data reveal somatostatin interneu-
rons and astrocytes to be consistent cell associates of depression,
through both in vivo imaging and ex vivo cortical gene dysregu-
lation. Providing converging evidence for these observations,
GWAS-derived polygenic risk for depression was enriched for
genes expressed in interneurons, but not glia. Underscoring the
translational potential of multiscale approaches, the transcrip-
tional correlates of depression-linked brain function and structure
were enriched for disorder-relevant molecular pathways. These
findings bridge levels to connect specific genes, cell classes, and
biological pathways to in vivo imaging correlates of depression.
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Major depressive disorder (MDD) is a common and debili-
tating illness with a moderately strong genetic basis (her-

itability, h2 ≈ 40%) (1). Clinical depression emerges through
complex interactions spanning multiple biological systems and
levels of analysis (2). The multiscale nature of depression is ev-
ident in the presence of disorder-relevant genetic loci (3), as well
as shifts in gene expression (4, 5), cellular composition (6, 7),
cortical anatomy (8), and large-scale network function (9).
However, most human research on the pathophysiology of de-
pressive illness focuses on select features of brain biology, often
in isolation. For instance, in vivo neuroimaging studies link
symptom profiles in patients to brain anatomy and network
function (10, 11), but are largely divorced from insights about
underlying molecular and cellular mechanisms. By contrast,
analyses of postmortem tissue samples characterize illness-
related cellular and biological processes (4, 5, 12, 13), but of-
ten focus on few regions and are limited by coarse diagnostic

detail. To date, there have been few opportunities to directly
explore the depressive phenotype across levels of analysis—from
genes and molecules through cells, circuits, networks, and
behavior—simultaneously (14).
In vivo neuroimaging has identified depression-related corre-

lates in brain anatomy, metabolism, and function. For example,
discoveries linking amygdala–medial prefrontal cortex (mPFC)
circuitry to emotional (15) and social processing (16) led to the
hypothesis that dysregulated interactions of cortical and sub-
cortical systems precipitate the onset of depression (2, 17).
Disrupted metabolism and altered gray matter volume in the
mPFC of patients is also a pronounced feature of the disorder (8,
18) that may track illness chronicity (19). As sample sizes have
increased into the thousands, however, it is apparent that many
early identified effects are likely more subtle than initially expected
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(8, 20). As a consequence, the stability of depression-relevant
profiles of brain anatomy and function across populations
remains unclear.
Complex clinical phenotypes like depression are tied to in-

teractions throughout the functional connectome (9, 10, 21).
Supporting this perspective, biological subtypes and heteroge-
neous presentations of depression may be revealed by consid-
ering the collective set of functional connections in the brain (10,
11). Spatially diffuse correlates of depression across cortical
anatomy and function could arise from a host of biological
changes in patient populations, such as altered neurotransmis-
sion (22), inflammation (23), and changes in cell abundance or
morphology (6). Approaches that consider cross-level neurobi-
ological relationships would illuminate the biological bases of
large-scale neuroimaging correlates of depressive illness. The
emergence of whole-brain gene expression atlases (24) now
permits more spatially comprehensive descriptions of the tran-
scriptional correlates of in vivo depression phenotypes, com-
plementing targeted ex vivo analyses of select cortical areas.
Analyses of postmortem MDD patient data have revealed

abnormalities across cell classes, neurotransmitter systems, and
molecular pathways (6, 7, 25). For instance, diagnosis of de-
pression is associated with reduced cell size and abundance of
neurons and glia within prefrontal cortex (18, 26) and subgenual
aspects of mPFC (6, 7). In particular, dysfunction of cortical
somatostatin (SST) interneurons and astrocytes are hypothesized
to play a preferential role in depression onset (12, 13, 27).
However, broad disruptions across molecular processes have
been documented, including depression-related dysregulation of
pathways related to apoptotic stress and neuroinflammation (28,
29), g-coupled protein receptors (GPCR) and cytokine activity
(4), and ERK signaling and excitatory neuron activity (5), as well
as extensive alterations that encompass many major neuro-
transmitter signaling systems (25). The breadth of observed
neurochemical disruptions in depression makes parsimonious
descriptions of the disorder difficult. Moreover, the degree of
diagnostic specificity linking depression-relevant patterns of
brain anatomy and function with any given cellular or molecular
abnormality remains unclear.
In this study, we identify shared neurobiological signatures of

depression that link anatomical, functional, cellular, transcrip-
tional, and genetic levels of analysis. Using three imaging data-
sets (combined n ≥ 23,723), we quantify cortical structural and

functional correlates of depression and negative affect that are
consistent across populations. Multiple biological hypotheses
about the neural substrates of depression have been proposed,
such as interneuron and glial cell dysfunction, as well as alter-
ations in glutamatergic signaling (12, 13, 30). However, most
neuroimaging modalities are not sensitive to underlying molec-
ular or transcriptional properties of brain tissue. To address this
gap, we link cortical correlates of depression to normative pat-
terns of gene expression in the adult human brain, identifying
cell classes and gene transcripts expressed most within
depression-implicated brain regions. Indicating that normative
patterns of gene expression may inform depression-related vul-
nerability of cortex, the transcriptional associates of depression
neuroimaging phenotypes correlated with gene dysregulation in
independent MDD ex vivo patient brain tissue. Postmortem
case−control data also identified cell types tied to both in vivo
signatures of depression and dysregulation in ex vivo brain tissue
of patients. Given the retrospective nature of both the neuro-
imaging and postmortem patient data, enrichment analyses of
genome-wide association study (GWAS) results were conducted
to identify cells with increased polygenic burden linked to de-
pression. Taken together, these data identify stable imaging
correlates of depression across populations, highlighting the role
of SST interneurons and astrocytes, and define a roadmap for
future multiscale neuroscience research on transcriptional bases
of brain structure, function, and risk for depression.

Results
Neuroimaging Correlates of Depression and Negative Affect Are
Consistent across Populations. We first characterize the nature
and stability of cortical imaging markers of depression and trait
negative affect by analyzing structural and functional MRI data
from three independent large-scale collection efforts: UK Bio-
bank (UKB) (31), ENIGMA (8), and Brain Genomics Super-
struct Project (GSP) (32). Our analyses of multiple datasets are
meant to increase statistical power and reduce potential dataset-
specific biases in recruitment or the manner that depression and
trait negative affect were measured (33). Three imaging mea-
sures were examined: cortical thickness, resting-state func-
tional amplitude (RSFA), and global brain connectivity (GBC).
In the UKB (n = 15,150), lifetime history of depression was
determined from questionnaires collected at the MRI scan visit
(see Methods). Readers should note that RSFA is influenced by
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Fig. 1. Consistent imaging correlates of depression
and negative affect across datasets. (A) Differences
in cortical thickness between moderate/severe re-
current MDD and controls in the UKB and ENIGMA,
and their spatial correlation (rs = 0.29). Association of
(B) RSFA and (C) GBC to moderate/severe MDD in the
UKB, and negative affect in the GSP, and their spatial
correlation (RSFA: rs = 0.40; GBC: rs = 0.41). Each dot
represents one of 200 parcels from the functional
atlas from Schaefer et al. (34). Significance was
established using permuted spin tests to retain the
structure of spatial autocorrelation of effects. UKB
effects reflect comparison of n = 2,136 individuals
with lifetime history of recurrent MDD (controls, n =
12,223). ENIGMA data are metaanalytic estimates of
MDD (ns = 1,206 to 1,302) relative to controls (ns =
7,350 to 7,449) (8). GSP data reflect relationships to a
continuous measure of trait negative affect in n =
947 healthy young adults. Dashed line is the regres-
sion line of best fit.
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cerebrovascular factors and should not be interpreted as a direct
measure of neural activity (SI Appendix). Further, the depression
phenotype in the UKB is a retrospective measure of lifetime
depressive illness and does not indicate an active depressive
episode at the time of the scan. The validity of the UKB de-
pression phenotype was explored by comparison with related
self-report measures. Single (5.22%, n = 791), moderate recur-
rent (9.93%, n = 1,505), and severe recurrent (4.17%, n = 631)
depression were significantly positively associated with trait
neuroticism, depressive symptom severity, genetic risk for de-
pression estimated through prior GWAS (3), and rate of anti-
depressant prescription (SI Appendix, Fig. S1). Replication
ENIGMA (Enhancing NeuroImaging Genetics through Meta-
Analysis) data reflect metaanalytic results from Schmaal et al.
(8) showing shifts in cortical thickness in patients with depression
(n = 1,206 to 1,302) relative to healthy comparison participants
(n = 7,350 to 7,449). In the GSP sample (n = 947), trait negative
affect was measured in healthy young adults using five conver-
gent self-report questionnaires associated with the experience of
negative mood (see Methods). Overall, the use of multiple
datasets and phenotypic measures helps to identify generalizable
brain correlates of depression history and risk for possible onset
(trait negative affect) in healthy populations.
We identified structural and functional correlates of depres-

sion that were consistent across datasets, measures of depres-
sion, and imaging modalities. Fig. 1 displays whole-cortex results
from regression analyses, conducted separately across 200 sym-
metric regions from the parcellation of Schaefer et al. (34). In
the UKB, multiple regression revealed relationships between
history of recurrent depression (0/1) and cortical thickness,
RSFA, and GBC (Fig. 1), partialing out demographic and
technical covariates (see Methods and Dataset S1 A–F). Includ-
ing self-reported antidepressant use as a covariate had very little
effect on the imaging correlates of depression: Spatial correla-
tions (r) with and without antidepressant were >0.93. This sug-
gests that cortical correlates of depression history are not solely
driven by pharmacological effects (SI Appendix). Parallel analy-
ses in the GSP dataset revealed whole-cortex relationships be-
tween trait negative affect and RSFA and GBC. ENIGMA data
reflected published metaanalytic results from Schmaal et al. (8),
comparing cortical thickness in MDD patients relative to con-
trols. Effects are quantified with Cohen’s d to make results
comparable among datasets.
Across UKB, ENIGMA, and GSP imaging datasets, we ob-

served spatially consistent correlates of depression and negative
affect for thickness (rs = 0.29, P = 0.018, pspin = 0.016), RSFA
(rs = 0.40, P = 4.7e-9, pspin = 5e-5), and GBC (rs = 0.41, P = 2.3e-
9, pspin = 1e-4; rs = Spearman’s Rho; pspin = spin based permu-
tation p-value; Fig. 1). Spatial consistency was quantified as the
Spearman’s correlation of Cohen’s d effect sizes between two
imaging maps. Significance testing used spin-based permutations
to account for spatial autocorrelation among parcels (35, 36).
Consistent with the theorized core role for disrupted hetero-
modal association cortex functioning in psychiatric illness (37),
depression-relevant shifts in RSFA and GBC were preferential
to heteromodal relative to unimodal cortices. That is,
depression-linked Cohen’s d for RSFA was greater in hetero-
modal (M = 0.018 ± 0.025[SD]) compared to unimodal cortices
(−0.026 ± 0.023; pperm = 0.001; pperm=permutation based p-value). By
contrast, GBC effects were lower in heteromodal (−0.003 ±
0.021) relative to unimodal cortex (0.008 ± 0.03, pperm = 0.003; SI
Appendix, Fig. S2). This unimodal/heteromodal distinction rep-
licated in the GSP sample for both RSFA (pperm = 0.001) and
GBC (pperm = 0.001). Together, these data provide evidence for
subtle yet replicable shifts in cortical anatomy and function
linked to both depression and trait levels of negative affect.

In Vivo Depression Imaging Phenotypes Track Ex Vivo Expression of
SST Interneuron Markers. The above analyses identify structural
and functional cortical correlates of negative affect and lifetime
depression history. We use these results as a foundation to char-
acterize the cellular and transcriptional correlates of major de-
pression neuroimaging phenotypes, which could yield insight into
the biological bases of the disorder and point toward targets for
pharmacological intervention. For instance, brain areas that pref-
erentially express genes related to a psychiatric disorder may be
particularly vulnerable to illness progression (38, 39). We begin by
interrogating transcriptional markers of SST interneurons, which
are a pronounced pathophysiological feature of depression (12, 40).
Gene markers of SST interneurons are preferentially expressed in
corticostriatal reward circuitry and mPFC in donor tissue from
healthy populations (39, 41). Further, SST expression is reduced
within dorsolateral prefrontal cortex and subgenual mPFC in pa-
tients with depression (42, 43), and experimental manipulation of
SST neurotransmission in rodents modulates antidepressant be-
haviors (44) and socioaffective processing (45). Depression linked
alterations in the function of GABAergic cells, including SST, may
influence signal-to-noise properties of cortex and global measures
of connectivity (12, 40), which could be reflected across depression-
related shifts in RSFA and GBC.
Here, we test whether gene markers of SST interneurons are

preferentially expressed in cortical regions most correlated to a
history of major depression. Three canonical gene markers of SST
interneurons were analyzed (i.e., SST, CORT, NPY; see SI Appen-
dix, Fig. S3 for validation), using postmortem cortical Allen Human
Brain Atlas (AHBA) data from six healthy adult individuals (see
Methods). SST-expressing GABAergic interneurons are denoted as
“SST interneurons.” We note that the three SST markers are not
independent of one another. Rather, the analysis of multiple
markers reduces reliance on a single transcriptional probe and
provides convergent tests of the relationship between SST marker
expression and imaging correlates of depression. Normalized ex-
pression of SST, CORT, and NPY is displayed across 200 cortical
parcels (Fig. 2A; see SI Appendix, Fig. S4 for bihemispheric maps),
and were also summarized across 68 Desikan atlas parcels in order
to match ENIGMA structural neuroimaging data.
Across all datasets and modalities, ex vivo expression of SST

gene markers spatially correlated to in vivo cortical phenotypes of
depression (Fig. 2 B–E). That is, SST, CORT, and NPY were
expressed most in anterior cortical areas where depression-linked
cortical thinning was greatest, an effect that is consistent in both
UKB (rsst = −0.25, rcort = −0.22, rnpy = −0.31, psspin ≤ 0.001) and
ENIGMA data (rsst = −0.58, rcort = −0.58, rnpy = −0.35, psspin ≤
0.004). In Fig. 2 B–E, each point in the dot plot is a cortical parcel.
Significance was established using spin-based permutations to ac-
count for spatial autocorrelation. As an added test, the strength of
the association was benchmarked against permuted gene triplets
drawn from a pool of 17,448 brain-expressed AHBA genes
(two-sided P value). Results were robust to alternative permutation
strategies using sets of cell gene markers (SI Appendix, Fig. S4). In
terms of function, depression-linked increases in RSFA were
greatest in areas with higher relative SST marker expression, across
both the UKB (rsst = 0.38, rcort = 0.47, rnpy = 0.26, psspin = 1e-4) and
GSP (rsst = 0.18; rcort = 0.24; rnpy = 0.22, psspin ≤ 0.002) samples. For
functional connectivity, SST triplet gene markers were significantly
correlated with depression decreases in GBC across data from the
UKB (rsst = −0.40, rcort = −0.33, rnpy = −0.40, psspin ≤ 1e-4) and the
GSP (rsst = −0.30, rcort = −0.39, psspin < 1e-4; rnpy = −0.10, pspin =
0.09). Last, we contextualize SST marker expression within broad
gene expression gradients across cortex (Fig. 2F) (46). Principal
components analysis of the normalized AHBA expression matrix
revealed a primary gradient of gene expression that was strongly
coupled to both SST marker expression and in vivo correlates of
depression. We note that expression of SST markers is not a direct
measure of cell abundance and, instead, is likely influenced by a
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combination of cell density and regional variability in cell
transcription patterns (47). We also stress that AHBA tran-
scriptional observations are made in a nonclinical sample, and
these analyses do not establish SST interneuron abnormalities
in depression. Rather, these data reliably associate SST gene
markers to macroscale depression neuroimaging phenotypes,
and support investigation of SST interneurons as a possible

target for interventions aimed at cortical regions linked to
depression.

Transcriptional Correlates of In Vivo Depression Cortical Phenotypes
Capture Patterns of Ex Vivo Gene Down-Regulation in Patients. A
growing number of multiscale studies suggest that normative
patterns of gene expression (e.g., AHBA) can reveal information

G
en

e 
ep

re
ss

io
n 

(z
)

-2.50

-1.25

0.00

1.25

2.50

G
en

e 
ex

pr
es

si
on

 (z
)

Somatostatin interneuron
marker expression

SST

CORT

NPY

2.0

-2.0

Thinning in
SST-dense cortex

Higher RSFA in
SST-dense cortex

Lower GBC in 
SST-dense cortex

S
S

T 
ex

pr
es

si
on

 (z
)

Relationship between MDD imaging phenotypes and SST markers

2.0

-2.0C
O

R
T

ex
pr

es
si

on
 (z

)

2.0

-2.0N
P

Y
ex

pr
es

si
on

 (z
)

Null distributions of permuted gene triplets (rs)

Replication of link between MDD phenotypes and SST markers

rs=-0.25*
rs=-0.22*
rs=-0.31*

rs=0.38*
rs=0.47*
rs=0.26*

rs=-0.40*
rs=-0.33*
rs=-0.40*

rs=-0.58*
rs=-0.58*
rs=-0.35*

rs=-0.30*
rs=-0.39*
rs=-0.10

Null distributions of permuted gene triplets (rs)

-2.50

-1.25

0.00

1.25

2.50

-0.05 0.0 0.05
UKB Cohen’s d

-0.30 0.00 0.30

SSTtriplet

-0.07 0.0 0.07
UKB Cohen’s d

SSTtripletp=0.0015

-0.07 0.0 0.07
UKB Cohen’s d

SSTtriplet

-0.20 0.0 0.20
GSP Cohen’s d

-0.20 0.0 0.20
GSP Cohen’s d

rs=0.18*
rs=0.24*
rs=0.22*

-0.18 0.0 0.18
ENIGMA Cohen’s d

-0.50 0.00 0.50 -0.40 0.00 0.40

p=0.0027 p=0.0002

SSTtriplet p=0.0015 SSTtripletp=0.0075 SSTtriplet p=0.027

-0.40 0.00 0.40-0.30 0.00 0.30-0.60 0.00 0.60

SST markers are embedded within broad gradient of cortical gene expression
AHBA expression gradient (PC1)

-2 2
Component Loading UKB Cohen’s d

0 0.5-0.5

3

0

-3

P
C

 1

Thickness

UKB Cohen’s d
0 0.7-0.7

RSFA

UKB Cohen’s d
0 0.7-0.7

GBC

PC2

PC1

-0.5 0 0.5 1.0
Spatial Correlation

SST Markers

rs=-0.22* rs=0.47* rs=-0.39*

SST
CORT
SST
CORT
NPY

A B

D

C

F

E

Fig. 2. SST marker genes are spatially associated to
in vivo imaging correlates of depression. (A) Nor-
malized AHBA cortical expression of three gene
markers for SST interneurons: SST (SST), cortistatin
(CORT), and neuropeptide Y (NPY). Each dot on the
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Fig. 3. Association between in vivo depression-
linked imaging phenotypes and ex vivo gene dysre-
gulation in depression. (A) AHBA spatial gene ex-
pression was correlated to each the six depression-
linked anatomical and functional neuroimaging
maps, then averaged. (B) Standardized case−control
expression differences were calculated using post-
mortem metaanalytic data from Gandal et al. (4). (C)
Average AHBA spatial correlation to depression
maps were selectively correlated to postmortem de-
pression down-regulation (r = 0.047, P = 3.4e-8), but
not that of other disorders. (D) Binned analysis
revealed a parallel relationship between gene down-
regulation in depression and AHBA correlates of
in vivo depression effects (rs = 0.72, P = 5.3e-7), which
was also present for BD (rs = 0.49, P = 1.7e-3). *P <
0.05. Error bars = 95% CI.
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about macroscale brain alterations in psychiatric and neuro-
developmental disorders (38, 39, 48–50). For a given disorder,
disease-related changes in cortical function or structure may
occur in regions where risk-associated gene sets and molecular
processes are most expressed. We test this hypothesis in the
context of depression.
Depression-implicated genes were identified using meta-

analytic data from Gandal et al. (4), which quantify transcrip-
tional up- or down-regulation in postmortem cortex of patients
with depression, bipolar disorder (BD), autism spectrum disor-
der (ASD), alcohol abuse disorder (AAD), and schizophrenia
(SCZ). This results in a gene-wise array for each disorder, where
the ith entry gives the degree to which the ith gene is up- or
down-regulated in the diagnostic group (Fig. 3B). Postmortem
patient tissue is primarily sampled from prefrontal cortex; how-
ever, the MDD sample was the only group with samples from
ACC (n = 40/83 patient samples; Dataset S1O). Reported results
are stable if these ACC samples are censored from case−control
differential expression analyses.
We tested whether postmortem down-regulated MDD genes

are expressed most in cortical regions that are structurally and
functionally correlated to depression and negative affect. The
cortical AHBA spatial expression of each gene was correlated to
each of the six depression-linked structural and functional effect
maps detailed above (Fig. 3A and Dataset S1 G–I). The six
spatial correlations for each gene were then averaged to obtain a
1 × 17,448 array reflecting gene-wise spatial association to
depression-linked imaging maps. Negative r values indicate
stronger association (e.g., increased normative expression in
areas of depression-linked cortical thinning).
Ex vivo cortical gene dysregulation in depressed patients was

significantly correlated to AHBA transcriptional associates of
in vivo depression cortical phenotypes (Fig. 3A; r = 0.047, P =
3.4e-8). Suggesting a degree of specificity across diagnostic
groups, this positive relationship was selective to ex vivo data
from patients with depression and was not present in four
comparison psychiatric disorders: SCZ (r = −0.044, P = 1.2e-5),
BD (r = −0.017, P = 0.082), ABD (r = −0.028, P = 0.0007), and
ASD (r = 0.0015, P = 0.86; Fig. 3C). Correlations for each dis-
order were calculated using all genes that were common across
postmortem and AHBA datasets. Of note, SCZ postmortem
data showed an effect in the opposite direction, such that SCZ
down-regulated genes had lower baseline AHBA expression in
depression-implicated cortical areas (e.g., anterior cingulate
cortex). This result coincides with reports showing that down-
regulated SCZ genes are expressed most in visual, somato/

motor, and posterior parietal cortex, which have been implicated
in neuroimaging analyses of patients with SCZ (39, 49, 51).
To explore the stability of the observed effects, we conducted a

binned analysis relating ex vivo dysregulation to AHBA imaging-
expression correlates of depression (Fig. 3D). For depression
data, the 14,095 analyzable genes that were common across
AHBA and Gandal et al. (4) datasets were ranked by ex vivo
gene down-regulation and divided into 40 gene bins. Average
ex vivo differential expression and average spatial association to
in vivo depression phenotypes were calculated for each bin, and
then correlated. This approach revealed a significant correlation
for depression data (rs = 0.72, P = 5.3e-7) that was highly stable
across choices of bin numbers, ranging from 10 to 40 in incre-
ments of 5 (range = 0.69 to 0.92, M = 0.78). The increased
magnitude of this correlation (Fig. 3C) is likely due to reductions
in noise from binned estimates relative to single-gene values. We
also observed a significant effect for BD (rs = 0.49, P = 1.7e-3),
but not other disorders. Together, these data indicate that areas
marked by expression of genes that are down-regulated in
postmortem patient tissue samples are more likely to be ana-
tomically and functionally correlated to depression in vivo
(i.e., decreased thickness, decreased GBC, increased RSFA).

Cell Associates of In Vivo Imaging Phenotypes. Given that the
pathophysiology of depression is complex and involves interac-
tions among diverse cell classes (25), it is important to charac-
terize the cell transcriptional correlates of depression imaging
phenotypes. Using single-cell expression data and gene enrich-
ment techniques, the following analyses accomplish two goals: 1)
identify cell types expressing genes correlated to depression
cortical imaging phenotypes and 2) identify cell types enriched
for gene down-regulation in postmortem cortex of depressed
individuals. A polygenic approach was adopted, since not all cell
types express highly specific markers of their identity (e.g., SST
in SST interneurons). Cortical single-nucleus droplet-based se-
quencing (snDrop-seq) data from Lake et al. (52) were analyzed
to identify positively differentially expressed genes across 16
transcriptionally defined cell classes, including five interneuron
subtypes (i.e., SST, In1, In3, In4, and In6), five excitatory neuron
subtypes (i.e., Ex1, Ex3, Ex4, Ex5, and Ex8), and six nonneuronal
subtypes (astrocytes, oligodendrocytes, pericytes, endothelial,
microglia, and oligodendrocyte precursor cells [OPC]; see
Methods). This approach resulted in 16 sets of significant cell
gene markers (corrected q < 0.05; Dataset S1J). We note that
single-cell data from Lake et al. (52) reflect preferential capture
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UKB thickness, GSP RSFA). FGSEA identified astro-
cytes, OPC, and Ex8 (CBLN2+POSTN+) neurons as
enriched across all modalities. RSFA gene correlates
were multiplied by −1 to match the direction of
thickness and GBC effects. Warm colors indicate
positive enrichment, and numbers in each cell are
corrected P values. (B) FGSEA enrichment plot
showing that astrocyte marker genes tend to be
spatially correlated to in vivo depression maps. Each
black line on the x axis is the position of an astrocyte
specific gene. (C) Average AHBA expression of as-
trocyte marker genes, which was significantly spa-
tially correlated to each depression imaging map
(ravg = −0.20). (D) FGSEA analysis of genes down-
regulated in ex vivo tissue samples from the cortex
of patients revealed broad enrichment across cell

classes, that was most pronounced in astrocytes and SST interneurons.
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of neuronal over nonneuronal cell types, which may bias the
definition of cell specific transcriptional signatures.
Fast-preranked Gene Set Enrichment Analyses (FGSEA)

tested whether normative AHBA expression of cell gene markers
was significantly more spatially correlated than chance to ana-
tomical and functional imaging markers of depression. Enrich-
ment scores were adjusted for the number of genes in a given
cell-type set (i.e., normalized enrichment score [NES]; Dataset
S1K) (53). Across all six imaging modalities and datasets, as-
trocytes, OPC, and Ex8 (CBLN2+POSTN+) excitatory neurons
were significantly enriched for genes correlated to the
depression-linked neuroimaging (Fig. 4A). In line with a priori
hypothesis-driven analyses in Fig. 2, SST interneurons were also
positively enriched across four of the six imaging modalities (q <
0.05). Astrocyte-specific genes showed the strongest spatial as-
sociation to depression neuroimaging effects (Fig. 4A) and were
expressed most within mPFC, anterior temporal lobes, and in-
sular cortex (Fig. 4C). The pattern of cell enrichment revealed by
FGSEA was stable when compared to an alternative method,
where the cortical expression of cell-specific genes was averaged
using AHBA data (Fig. 4C). For instance, Fig. 4C shows the
average AHBA expression of the 346 significant astrocyte gene
markers. Averaged AHBA cell expression maps for all 16 cell
types were then correlated to each of the six depression imaging
maps. There was strong cell-wise correspondence between this
method and FGSEA (rs = 0.92, P < 2.2e-16). We also conducted
a further technical replication of results using polygenic cell
deconvolution (SI Appendix, Fig. S8) (54). Deconvolution-
derived imputed distributions of SST interneurons and astro-
cytes were the two most spatially correlated cell types across all
six modalities (rsst = −0.26, rast = −0.18).
The above results identify spatial cell correlates of depression-

relevant neuroimaging phenotypes. However, any given cell class
might be unchanged in depression or exhibit patterns of gene
dysregulation. To address this, we conducted parallel FGSEA
analyses using the postmortem data from Gandal et al. (4) to
identify cells enriched for gene down-regulation in ex vivo cor-
tical tissue samples from patients with depression (Fig. 4D). The
NES values were above zero for most cells, indicating a broad
pattern of depression-linked down-regulation among nearly all
cell markers (Dataset S1L). The degree of observed cell en-
richment was greatest for SST interneurons (NES = 1.97, P =
2.5e-09) and astrocytes (NES = 1.97, P = 8.2e-11). However,
reduced astrocyte transcription was not a global feature of psy-
chiatric illness, such that astrocyte markers showed significantly
increased expression in SCZ (NES = −3.34), BP (NES = −3.10),
and ASD (NES = −2.09) ex vivo data. Taken together, these
findings reveal patterns of reduced cell-specific gene expression
in cortex of MDD patients that are greatest for SST interneurons
and astrocytes.
Cell-related abnormalities in MDD may reflect inherited ge-

netic risk among cell-preferential pathways, or arise through
environmental or second-order effects. Using GWAS data from
Wray et al. (3), we examined whether polygenic risk for de-
pression is enriched among cell-preferential genes (Dataset
S1M). Enrichment was measured with two methods, MAGMA
(multi-marker analysis of GenoMic annotation) gene set prop-
erty analysis (55) and LDSC (linkage disequilibrium score re-
gression) partitioned heritability (56). Single-cell expression data
provided transcriptional signatures of eight cell classes, mea-
sured from visual cortex (V1C) and dorsal frontal cortex (DFC)
(52), as well as replication data from temporal gyrus (MTG)
(57). Using LDSC, we observed significant enrichment of poly-
genic depression risk among interneuron specific genes in DFC
(q = 0.037) and MTG (q = 0.046; Fig. 5, Left). MAGMA
revealed a similar pattern of enrichment for interneurons that
was consistent across all three brain areas (V1C, q = 1.4e-4;
DFC, q = 1.08e-3; MTG, q = 3.4e-6). Excitatory neuron

enrichment for depression GWAS signal was present with
MAGMA, but not LDSC. We did not observe polygenic en-
richment among any nonneuronal support cells, despite consis-
tent associations of astrocytes to both in vivo and ex vivo
depression phenotypes (Fig. 4).

Gene Ontology of the Transcriptional Associates of Depression
Neuroimaging. We next characterize whether transcriptional as-
sociates of depression imaging phenotypes capture clinically
relevant information, such as sensitivity to a particular class of
neurotransmitters, or increased importance of specific signaling
pathways. Matching prior approaches (24, 46), gene enrichment
analyses were conducted using the top decile of genes correlated
to neuroimaging markers of depression (n = 1,745; Fig. 6 and
Dataset S1N). The top depression-linked gene decile possessed
the greatest number of enrichment terms across molecular
function, cellular component, and biological process ontological
categories (Fig. 6A). Further, genes related to “Depressive Dis-
order” and “Mental Depression” showed the strongest overlap
with the top 10% of neuroimaging MDD gene correlates
(Fig. 6B). These effects indicate that coherent molecular pro-
cesses are associated with macroscale brain correlates of MDD.
Consistent with evidence of decreased glutamate and gluta-

mine in the mPFC of patients with depression (22), genes tied to
glutamatergic receptors (GO:0008066, q = 0.004) and secretion
(GO:0014047, q = 0.013) were significantly overrepresented in
the top decile. We also observed enrichment terms for GABA
receptor complex (GO:1902710, q = 0.029) and GABAergic
synaptic transmission (GO:0051932, q = 0.041), in line with prior
reports of reduced cortical GABA in patients with depression
(58). Major monoamine neurotransmitter systems were also enriched,
driven by genes tied to dopamine (GO:0014046; q = 0.0098),
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histamine secretion (GO:0001821, q = 0.036), and serotonergic
synapses (Pathway 525336, q = 0.017). Finally, our analyses
identified terms related to g protein-coupled second messenger
systems (GPCR; Pathway 1269544, q = 0.00059) and down-
stream intracellular signaling pathways, including to cAMP-
mediated signaling (GO:0019933, q = 0.00033), ERK1 and
ERK2 cascade (GO:0070371, q = 0.043), MAPK cascade
(GO:0000165, q = 0.017), and noncanonical Wnt signaling
pathways (GO:0035567, q = 0.0044). These GPCR-activated
intracellular cascades are important mediators of the neuro-
modulatory effects of neuropeptides (59), which were also
enriched in our data (GO:0007218, q = 0.00021). Beyond SST,
the neuropeptides substance P (TAC1), cholecystokinin (CCK),
cocaine-and-amphetamine related transcript (CARTPT), galanin
(GAL), and receptors for mu and kappa opioids (OPRM1,
OPRK1) were in the top decile of MDD correlated genes. The
above results provide high-level context about which genes are
preferentially expressed within depression-implicated cortex, but
should be interpreted with caution since they do not demonstrate
that these systems are necessarily altered in patient populations.
These data are also consistent with gene networks implicated

in depression from prior independent analyses of postmortem
cortical tissue. Specifically, there was strong spatial correlation
between all depression imaging maps and the cortical expression
of DUSP6 (ravg = −0.365, 240th/17,448 = 0.003), which inhibits
the ERK pathway and is a key hub gene that is down-regulated
within the mPFC of patients with depression (5). Depression-
linked neuroimaging effects were similarly correlated to EMX1
expression, which is up-regulated in the mPFC of patient pop-
ulations. However, these spatial effects were in the opposite di-
rection (ravg = 0.337, 17,034th/17,448 = 0.976), such that
normative EMX1 expression was lower in depression-implicated
areas of cortex (e.g., thinning of mPFC; SI Appendix, Fig. S7).
These findings suggest that expression differences in the cortical
territories tied to depression may reflect divergence from nor-
mative patterns of area-specific expression, but more data are
required to test this hypothesis.

Discussion
The present analyses reveal converging biological signatures of
depression that link neuroimaging, cellular, and molecular as-
sociates of the illness. Analyses of three population-imaging
datasets identified replicable anatomical and functional cortical
correlates of depression and negative affect. The observed neu-
roimaging markers of depression were spatially coupled to pat-
terns of whole-cortex gene expression that were stable across
imaging modalities and datasets. Gene associates of in vivo de-
pression cortical phenotypes were correlated with ex vivo pat-
terns of gene down-regulation in cortex of patients with
depression, but not samples from other comparison psychiatric
disorders. In particular, gene markers of SST interneurons and
astrocytes were consistently spatially correlated to in vivo de-
pression neuroimaging effects, and were down-regulated within
ex vivo cortical samples from patients with depression. Indicating
that some cell classes may be preferentially sensitive to inherited
disease risk, cell enrichment analysis of depression GWAS data
revealed increased polygenic burden among interneuron-specific
genes, but not those of glia. Overall, we identify regionally var-
iable imaging correlates of depression and present cross-modal
data highlighting the particular role of SST interneurons and
astrocytes. These results suggest potential biological targets for
intervention and identify molecular pathways with exaggerated
expression in depression-implicated aspects of the cortex.
Our findings have important implications for understanding

the cell associates of structural and functional neuroimaging
correlates of depression. Prior neuroimaging research reveals
subtle patterns of cortical thinning in mPFC, sgACC, and ventral
temporal lobes that track illness severity (8, 18, 19). In terms of
function, depression is associated with reductions in GBC in
mPFC and sgACC (60), that extend to distributed aspects of
multimodal association cortex (61). The cellular bases of these
alterations remain ambiguous, but may relate to GABAergic
alterations (62) or reduced size and density of neurons and glia
(7, 26, 63), particularly astrocytes (13). Here, polygenic signa-
tures of astrocytes were consistently associated with depression
relevant shifts in both in vivo imaging phenotypes and ex vivo
profiles of gene down-regulation (Fig. 4). Astrocytes influence
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Fig. 6. Transcriptional correlates of in vivo depression-
linked imaging phenotypes are enriched for depression-
relevant pathways. (A) Genes were rank-ordered by
average spatial correlation to depression imaging
maps, then split into deciles. The top gene deciles
had the greatest number of enrichment terms across
ontological categories. (B) The top gene decile was
enriched for depression and other psychiatric disor-
ders. (C) Subset of significant enrichment terms for
the top decile of MDD imaging correlated genes.
Hierarchical clustering is based on overlap of genes
in each category. Blue indicates that the gene is in-
cluded in a given enrichment term. Full enrichment
terms are available in Dataset S1.
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synapse formation and elimination, and modulate neuronal
communication, in part, through glutamate release and
NMDAR receptor activation (64, 65). Accordingly, depression-
related abnormalities in astrocytes may be involved in reduced
glutamate levels in PFC and ACC of patients (13). We did not
find evidence for enriched depression polygenic risk among
astrocyte-specific genes (Fig. 5); although speculative, this may
suggest that observed cell alterations arise through environ-
mental factors not directly tied to genetic risk. For instance,
astrocytes are involved in neuroinflammatory signaling and are
sensitive to cytokines, which are also implicated in depression
etiology (13, 23).
Converging evidence indicates a preferential vulnerability of

SST interneurons in depression and affective illness (12, 42).
Multiscale studies in humans link SST-related transcription to
reward-related corticostriatal circuitry as well as regional varia-
tion in cortical function (39, 41). Here, polygenic SST marker
genes were significantly spatially correlated to all six depression
neuroimaging phenotypes (Fig. 2). That is, SST gene markers
were expressed most in sgACC, mPFC, anterior insula, and
temporal lobes (Fig. 2) corresponding to areas of depression-
linked cortical thinning, increased amplitude, and decreased
global connectivity (Fig. 1). Highlighting the association of SST
and astrocytes reported here, recent evidence indicates that as-
trocytes are particularly sensitive to SST interneuron activity,
mediated, in part, by binding of SST to astrocytic GABABR
receptors (66, 67).
In depression, SST-related expression is consistently down-

regulated within the sgACC (subgenual anterior cingulate cor-
tex) and amygdala of patients (27, 68). Modulation of SST in-
terneuron activity experimentally reduces depressive-like
behavior in animal models of depression (44), and is selectively
tied to affective state discrimination in rodents (45). Given evi-
dence that SST expression is sensitive to brain derived neuro-
trophic factor (BDNF) and is cAMP dependent, depression-
related decreases in SST may reflect differences in neuronal
activity rather than altered cell morphology or number (69, 70).
Spatial maps of SSTmarker expression shown here should not be
conflated with a direct measure of SST cell density. However,
rhesus macaque data indicate that the density of CALB1
expressing interneurons (a subset of SST cells) and ratio of glia/
neurons are highest within agranular limbic cortex relative to
lateral PFC (71), consistent with data in rodents (72). None-
theless, differences in relative expression of the neuropeptides
like SST and NPY are likely functionally important, given their
ability to influence neuronal and glial function (59, 66). In-
creased relative expression of SST has further been documented
among distributed whole-brain affective circuitry, including the
nucleus accumbens, ventral tegmental area, mediodorsal thala-
mus, and anterior hippocampus (39, 72, 73). We also found that
cortical SST marker expression was embedded within a broader
rostrocaudal gradient of gene transcription (Fig. 2F), which may
be a biologically meaningful feature related to hierarchical or-
ganization of cortex (39, 46, 72, 74). Future work should inves-
tigate whether alterations in SST cells in depression are
consistent across distributed corticolimbic circuitry.
Our results suggest that normative patterns of brain gene ex-

pression capture biologically meaningful information about
in vivo depression-related differences in cortex. These data
converge with reports that spatial gene expression may reflect
regional sensitivity to psychiatric illnesses (39, 75), neuro-
developmental disorders (38), and normative brain function and
organization (41, 76, 77). Here, we demonstrate that spatial
transcriptional correlates of depression imaging phenotypes
correlated with gene down-regulation in postmortem patient
tissue samples (Fig. 3). Interestingly, the transcriptional signa-
tures of depression neuroimaging effects showed a negative
correlation to gene down-regulation in AAD. Despite evidence

for positive genetic correlation between the two disorders (78),
this result is consistent with data showing preferential disruption
of glial cells in depression, relative to noncomorbid alcohol
abuse (79). Given that postmortem transcriptional data neces-
sarily reflect illness end points, differences in brain gene ex-
pression among genetically related disorders could be due to
varying behavioral, environmental, and medication-related fac-
tors. Overall, our findings support the emerging hypothesis of
“transcriptional vulnerability” (38, 49–51), where brain regions
with high baseline expression of disorder-linked genes are more
likely to be affected over the course of an illness. The current
results point toward specific receptors and signaling pathways
with increased expression in depression-implicated brain
areas, which may guide targets for biological interventions.
Although a subset of our data include healthy young adults
with varying levels of negative affect (32), the current analyses
largely reflect neuroimaging and transcriptional correlates at
the depressive illness end points, and neurodevelopmental
approaches are required to prospectively identify vulnerable
brain regions and networks.
Our in vivo analyses identified consistent, yet subtle, ana-

tomical and functional correlates of MDD and trait negative
affect (Fig. 1). The small effect sizes observed in UKB data could
be due to the relatively older mean age of our sample or the use
of self-report MDD symptoms (see SI Appendix, Fig. S1 for
validation of MDD phenotype). However, null hypothesis sig-
nificance testing becomes problematic when analyzing very large
samples, particularly in the UKB, which has a target recruitment
of 100,000 individuals (80). For instance, the magnitude of linear
effects linking brain features and behavior tend to be muted and
generally require multivariate techniques to account for an ap-
preciable amount of variance (31), possibly reflecting the dis-
tributed nature of information processing in the brain (81). Such
a scenario echoes issues faced within the field of population
genetics, where single genetic polymorphisms may have fleetingly
small effects, but global or whole-genome analyses explain a
considerable portion of trait variance (82). Future work should
investigate whether the pattern and magnitude of disease-
relevant neuroimaging effects vary by patient subpopulation or
are differentially expressed across divergent symptom presenta-
tions (5) or diagnosis constructs (83), particularly given marked
symptom heterogeneity seen in patients with depression.
The current study should be interpreted in light of several

limitations, including our focus on cortical relative to subcortical
brain correlates of MDD. In addition to cortical abnormalities,
history of depressive illness has been linked to structural ab-
normalities in hippocampus and amygdala (84, 85), as well as
functional alterations in striatal circuitry (86). Additional re-
search is needed to bridge these subcortical features of depres-
sion with underlying transcriptional abnormalities. Further, our
cell enrichment analyses of MDD polygenic liability were also
conservative, such that we only examined broad cell classes (e.g.,
inhibitory interneurons, oligodendrocytes). More fine-grained
analyses of cell subtypes (e.g., SST interneurons, PVALB inter-
neurons) should be prioritized, as statistical power increases for
both GWAS and single-cell transcriptomics. Finally, the de-
pressive phenotype in the UKB sample reflected lifetime history
of depression rather than symptom presentations concurrent
with the MRI scan. Although we show consistency across mul-
tiple phenotypes and datasets (Fig. 1), more detailed assessment
of individual symptoms may identify anatomical and functional
neural correlates of depressive subphenotypes (10).
A strength of the current analyses is our focus on global pat-

terns of brain anatomy and function. For instance, our whole-
cortex analyses revealed a surprising pattern of slightly increased
visual cortex thickness in patients relative to controls (Fig. 1), an
effect that may be missed by small samples or hypothesis-driven
examinations of select brain areas. Of interest, this anatomical
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effect may, at least in part, explain patterns of increased func-
tional connectivity in occipital cortex, reported both here and
through other collection efforts (83). We also find that MDD
and trait negative affect were associated with distributed func-
tional changes that dissociate unimodal versus heteromodal
cortex (SI Appendix, Fig. S2). GBC was reduced in MDD across
orbitofrontal cortex (OFC), mPFC, and anterior temporal lobes,
which contrasts increased GBC within visual cortex. These data
support previous reports on smaller samples of reduced GBC in
mPFC (60, 87), but highlight the presence of broad spatially
cohesive patterns of connectivity change. In this study, resting-
state functional amplitude (RSFA) was increased in depression
within heteromodal cortex, but was reduced in unimodal regions
(Fig. 1). It is important to note that RSFA reflects vascular as
well as neural factors (88), although growing evidence suggests
that the blood oxygen level-dependent (BOLD) signal variability
is robust to cerebrovascular nuisance correction (89), related to
between-subjects behavioral variation (90), and is characterized
by heritable interindividual variance that is enriched for
interneuron-associated genes (39). Depression changes in RSFA
and GBC were spatially anticorrelated to one another, sup-
porting prior evidence that BOLD signal amplitude is predictive
of within-subject change in functional connectivity (90). In sum,
these data identify spatially variable functional patterns across
cortex in depression and negative affect, providing a neuro-
imaging foothold from which to interrogate underlying molecu-
lar and cellular associates.

Conclusion
In this study, we identify replicable anatomical and functional
neuroimaging correlates of depression and trait negative affect,
which serve as a foundation for integrative genetic analyses.
Normative expression of polygenic SST interneuron markers in
cortex were significantly spatially associated with depression
correlates across all imaging modalities and datasets, in line with
the hypothesized importance of this cell type in the disorder. Our
data also suggest that the transcriptional associates of depression
neuroimaging phenotypes capture global patterns of differential
gene expression in depression, measured in ex vivo patient cor-
tical tissue. Incorporation of single-cell gene expression data
showed that gene markers of SST interneurons and astrocytes
were particularly strong spatial associates of depression imaging
phenotypes, and were preferentially down-regulated in post-
mortem tissue samples from patient populations. Enrichment
analyses of depression transcriptional associates identified mul-
tiple biological pathways, including neuropeptides, GPCR
binding, and related intracellular MAPK, ERK, and cAMP sig-
naling. Together, these data provide an integrative profile of the
biology of depression that spans neuroscientific levels of analysis,
connecting specific genes, cell classes, and molecular pathways to
in vivo imaging correlates of illness.

Methods
Major Depressive Phenotypes.
UKB. Lifetime history of depression was measured from self-report questions
collected during the imaging scan visit. MDD definitions followed methods
of Smith et al. (91). Individuals meeting criteria for single-episode, moderate
recurrent, or severe recurrent depression reported having had a period of
depressed mood or anhedonia for a week or more (UKB Fields: 4598/4631),
with the longest period of anhedonia/depressed mood lasting two or more
weeks (UKB Fields: 4609/5375). Single-episode depression was characterized
by endorsement of only one lifetime symptomatic period (UKB Fields: 4620/
5386) and treatment seeking with a general practitioner (GP) or psychiatrist
(UKB Fields: 2090/2100). Both moderate recurrent and severe recurrent de-
pressive diagnoses required two or more lifetime symptomatic episodes of
anhedonia or depressed mood. Assignment of moderate recurrent depres-
sion required treatment seeking through a GP, but not a psychiatrist,
whereas assignment of severe recurrent depression required the opposite.
Classifications of single-episode, moderate recurrent, and severe recurrent

depression were mutually exclusive. However, moderate and severe de-
pression were reclassified into a binary indicator, and data from individuals
with a single lifetime episode of depression were not analyzed. Due to the
retrospective self-report nature of symptom inventories, participants en-
dorsing a single episode of MDD were excluded in an effort to reduce the
rate of false positives.
ENIGMA. The results from the ENIGMAmetaanalytic study by Schmaal et al. (8)
were used for comparison against UKB anatomical effects. Cortical thickness
changes in recurrent adult depression versus controls were analyzed, and
quantified as Cohen’s d across 68 Desikan atlas regions of interest (ROIs).
Sample size varied by ROI: MDD patients (n = 1,206 to 1,302; female =
61.69%) and control participants (n = 7,350 to 7,450; female = 52.64%).
Metaanalytic estimates controlled for sex, age, and scan center. The
weighted mean age of ENIGMA controls was 54.57 y (SD = 12.88), compared
to the mean age of 44.75 y (SD = 12.02) for MDD patients. Additional in-
formation about patient and study demographics are published (8).
GSP. Trait negative affect was assessed in the samemanner as used by Holmes
et al. (20). A single self-report measure comprised five scales related to
history of negative emotion, including the NEO (neuroticism, extraversion,
openness) neuroticism scale (92), the behavioral inhibition scale from the
BIS/BAS (Behavioral Inhibition System/Behavioral Approach System) (93),
reported mood disturbance assessed with the Profile of Mood State (94), the
Spielberger State/Trait Anxiety Inventory (95), and measures of harm
avoidance assessed with the Temperament and Character Inventory (96).
Scores on each scale were z-transformed across individuals prior to averag-
ing to generate a trait negative affect composite score.

Neuroimaging Processing.
UKB. Structural and functionalMRI data from the UKBwere analyzed using an
extended version of the standard UKB preprocessing pipeline (https://git.
fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1). Anatomical and func-
tional data from 16,350 individuals were available for analysis after pre-
processing (Project ID: 25163). Data were collected on Siemens 3T Skyra and
32-channel receive head coil. T1-weighted structural scans were recon-
structed from raw DICOMS (Digital Imaging and Communications in Medi-
cine) (TR = 2,000 ms, TE = 2.01 ms, TI = 880 ms, flip angle = 8°, resolution =
1 mm3). Minimally preprocessed resting-state functional MRI scans were
acquired using a multiband gradient echo echo planar imaging (EPI) se-
quence (length = 6 min, field of view [FOV] = 210 mm, slices = 64, TR = 735
ms, TE = 39 ms, resolution = 2.4 mm3), collected on multiple scanners across
imaging centers in Cheadle and Newcastle, United Kingdom. Detailed im-
aging protocols are published (31). Scans were not analyzed if they were
marked as corrupted or “unusable” by UKB automated quality control tools.
See SI Appendix for details of our surface-based resting-state preprocessing.

Parcellated surface-based estimates of RSFA (SD of BOLD time series) and
functional connectivity were estimated using HCP (Human Connectome
Project) workbench. RSFA values were z-transformed within individuals. A
subject’s 200 × 200 functional connectivity estimates were Fisher
Z-transformed. GBC was calculated as the average correlation of a given
cortical parcel to all 199 other parcels. Quantitative quality control included
row-wise deletion for missing thickness and resting-state estimates across
the 200 cortical parcels. Individuals with average cortical thickness, RSFA, or
GBC more than ±3 SD from the mean were removed. Similarly, we identified
outliers at the level of individual parcels, and individuals with thickness,
RSFA, or GBC outliers in more than 5% of all cortical parcels were removed.
Finally, individuals with outlier (±3 SD) total brain size or white matter lesion
volume were censored from further analyses. MDD case status was binarized
to identify controls and individuals with moderate/severe recurrent lifetime
history of depression. Individuals reporting only a single lifetime history of
MDD were not analyzed. The final sample included (n = 2,136) cases and (n =
12,084) controls (age: 62.78 ± 7.40 y; percent female = 53.07).
GSP. Neuroimaging and phenotypic data from the open-access GSP were
obtained (https://dataverse.harvard.edu/dataverse/GSP) (32). All individuals
were healthy young adults of White/non-Hispanic ancestry with no history
of psychiatric illness. Imaging data were acquired across multiple Seimens
Tim Trio scanners at Massachusetts General Hospital and Harvard University.
Only data from individuals scanned using 12-channel phased array head coils
were analyzed. Anatomical data were collected using a multiecho T1w
magnetization-prepared gradient-echo image (multiecho MPRAGE; TR =
2,200 ms; TI = 1,100 ms; TE = 1.54 ms; FA = 7°; 1.2 mm3; FOV = 230). T2w
anatomical data were acquired in the same session using a turbo spin echo
with high sampling efficiency [multiecho MPRAGE (97): TR = 2,800 ms; TE =
327 ms; 1.2 mm3; FOV = 192], with a bandwidth matched to the T1w ac-
quisition (652 Hz per pixel). Resting-state functional MRI data were acquired
using a single 6-min gradient EPI sequence (TR = 3,000 ms; TE = 30 ms;
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FA = 85°; 3 mm3, FOV = 216; slices = 47; interleaved foot-head acquisition =
1, 3, . . .45, 47, 2, 4, . . ., 44, 46).

Behavioral and neuroimaging quality control resulted in 947 individuals
for subsequent analyses (age: 18 y to 74 y, M = 21.8 ± 5.05; percent female:
54.38; Shipley IQ: 113.40 ± 8.49). Individuals with missing GBC or RSFA data
in any cortical parcel were not analyzed. We then identified individuals
possessing GBC or RSFA outliers (±3 SD) in greater than 5% of cortical par-
cels, or extreme outliers in global GBC or RSFA (±4 SD). RSFA values were
then z transformed within individuals. See SI Appendix for full details of
resting-state preprocessing.

Regression Linking Depressive Phenotypes to Neuroimaging. Regression
analyses were conducted independently across the 200 bihemispheric cortical
parcels. Quantitative variables were z-transformed. In the UKB, the effect of
moderate/severe MDD history (0/1) on cortical thickness, RSFA, and GBC
were estimated, covarying for sex, age, age^2, age*sex, age^2*sex, total
brain size, volume of white matter hyperintensities, self-reported ancestry,
genetically estimated ancestry (White/non-Hispanic or not), T1 inverse SNR
(signal to noise ratio), MRI run-wise average motion and inverse SNR, dia-
stolic and systolic blood pressure, X/Y/Z position of brain in the scanner
(center mass of brain mask), and UKB imaging acquisition center. Regression
analyses in the GSP sample were conducted in a parallel fashion to predict
RSFA and GBC from trait negative affect, controlling for age, sex, age,
age^2, age*sex, age^2*sex, intracranial volume, height, weight, Shipley
fluid intelligence, years of education, scanner bay, and scanner console
version. Cohen’s d effect size estimates of depression status were calculated
using the t statistic and df (degrees of freedom) from the regression

d = 2 * t

√df
.

AHBA. Publicly available human gene expression data from six postmortem
donors (one female), aged 24 y to 57 y (42.5 ± 13.38 y) were obtained from
the Allen Institute. Probes without Entrez IDs were removed, and probe-wise
noise for each donor was quantified as the number of above-threshold
samples in cortex, divided by total cortical sample count. A probe-wise av-
erage was computed across all six donors, which was used to remove probes
expressed in fewer than 20% of cortical samples. If more than one probe
existed for a given gene, the one with the highest mean expression was
selected for further analysis, resulting in 17,448 brain-expressed genes. All
analyses were conducted according to the guidelines of the Yale University
Human Subjects Committee

Individual cortical tissue samples were mapped to each AHBA donor’s
Freesurfer-derived cortical surfaces (98). Native space midthickness surfaces
were transformed into a common fsLR32k group space while maintaining
the native cortical geometry of each individual donor. The native voxel co-
ordinate of each tissue sample was mapped to the closest surface vertex (99).
A cortical tissue sample was not analyzed if it was greater than 4 mm from
the nearest surface vertex, resulting in 1,683 analyzable cortical samples.
Expression was then averaged across 200 roughly symmetric surface ROIs
from the 17-network functional parcellation of Schaefer et al. (34). After
removal of parcels that did not overlap with an AHBA cortical sample, 173
ROIs remained for analysis. To allow for comparison to ENIGMA thickness
data, gene expression was also summarized according to the 68-parcel
Desikan atlas (100). Even after normalization procedures employed by the
Allen Institute to correct for batch effects, we observed residual differ-
ences in global expression intensity across cortical samples, possibly
reflecting technical artifacts. Thus we perform within-sample z-transform
normalization, similar to Burt et al. (46), to reduce global expression
differences across cortex. Microarray expression of each gene was then
mean- and variance-normalized, revealing relative expression differences
across cortex. Cortical data visualization was carried out using “wb_view”

from the HCP workbench.

Single-Cell Transcriptional Enrichment Analyses. We identified transcriptional
markers of individual cell types using snDrop-seq UMI (Unique Molecular
Identifier) counts for cells from visual (BA17) and dorsal frontal cortex (BA 6/
9/10), obtained from Gene Expression Omnibus (GSE97942) (52). UMI pro-
cessing with Seurat was done separately for visual and frontal samples (101).
Initial filtering was conducted to ensure removal of genes expressed in
fewer than three cells, as well as cells with fewer than 200 expressed genes.
Expression values were normalized for each cell according to total expres-
sion values (i.e., “LogNormalize”), as well as covariates for sequencing
platform and processing batch. Predefined superordinate cell categories

from Lake et al. (52) were used, which identified 16 cell classes that were
present in both frontal and visual cortex. Differential expression in each cell
type, relative to all others, was calculated using the Wilcoxon rank sum test
in Seurat (i.e., “FindMarkers”). Seurat was used to conduct the same pre-
processing steps on single-cell RNA sequencing (RNAseq) data from the
middle temporal gyrus (MTG) obtained from the Allen Institute (https://
portal.brain-map.org/atlases-and-data/rnaseq) (57).

Cell enrichment analyses were conducted using FGSEA (53). Cell-specific
genes were identified based on significant positive differential expression in
both frontal and visual cortex Lake data (false discovery rate ≤ 0.05). Cell-
wise FGSEA was then conducted for each neuroimaging modality
(i.e., thickness, RSFA, GBC) and dataset (i.e., UKB, ENIGMA, GSP). Gene
transcriptional associates of each imaging phenotype were identified using
normalized AHBA expression data. That is, the cortical expression of each
gene was spatially correlated to parcel-level depression neuroimaging ef-
fects (Cohen’s d). RSFA values were multiplied by −1 to align the direction of
thickness and GBC effects. Ranked gene lists for FGSEA were in descending
order based on spatial correlation to depression imaging effects. Enrichment
scores are the same as that of GSEA (102). We report NESs that account for
the number of genes present in each cell marker group. Single-cell RNAseq
MTG data were used as replication data (57). See SI Appendix for details on
single-cell replication analyses, including imputation of spatial cell density
across cortex.

AHBA Spatial Correlation to Depression-Linked Neuroimaging. Normalized
AHBA expression data, summarized by surface atlas parcels, was spatially
correlated (Spearman’s) to each of the six depression-linked neuroimaging
phenotypes. We specifically investigate whether gene markers of SST in-
terneurons (CORT, NPY, SST) are spatially associated with anatomical and
functional correlates of depression. Given spatial autocorrelation among
AHBA expression data, the significance of each expression-to-imaging cor-
relation was assessed using spin-based permutation tests, which preserve the
proximity-based correlation structure of expression maps (35). We also
perform multiple gene-based permutations to benchmark the strength of
the association between SST gene markers and each depression-linked im-
aging phenotype. The first permutation randomly selects gene triplets (n =
10,000 perms) from the pool of 17,445 brain-expressed genes (this excludes
CORT, NPY, SST). The second selects gene triplets (n = 10,000 perms) from a
select pool of 1,609 genes that were identified as significant cell type
markers according to single-cell data from Lake et al. (52) (excluding markers
of SST interneurons). The third permutation strategy selects genes from the
same pool of 1,609 marker genes; however, each triplet is composed of
genes that are significant markers for the same cell type (n = 10,000 perms
per cell type, excluding markers of SST interneurons). The results of each
permutation strategy are presented in SI Appendix, Fig. S5.

Ex Vivo Psychiatric Patient Differential Expression. Metaanalytic estimates of
differential expression from Gandal et al. (4) were analyzed (https://github.
com/mgandal/Shared-molecular-neuropathology-across-major-psychiatric-disorders-
parallels-polygenic-overlap). Gene expression values were normalized prior to
differential expression calculation with linear mixed effects modeling in order
to provide standardized beta coefficients, indicating the degree that a gene is
up- or down-regulated for a given psychiatric population. Analyses included
cortical expression data from patients with MDD, ASD, BD, AAD, and SCZ. In-
formation about data preprocessing is published (4), and sample information is
available in Dataset S1. Gene-wise patient differential expression (i.e., nor-
malized beta) was then correlated to the gene-wise spatial correlation to
in vivo neuroimaging phenotypes.

Single-Cell MDD GWAS Enrichment. We tested whether polygenic risk for
depression, using the GWAS from Wray et al. (3), was enriched among cell-
specific genes. Enrichment was measured using MAGMA gene-set property
analysis (55) and LDSC partitioned heritability (103). Cell specificity of gene
expression was measured with single-cell data from V1C, DFC, and MTG.
Cell-specific expression was quantified using the EWCE (Expression
Weighted Celltype Enrichment) R package (104). Genes were split into
deciles for each cell, ordered from most specifically expressed to least. LDSC
annotation files were created using the 1000 Genomes European Phase 3
release. Cell enrichment estimates were conditional on a baseline model
(“1000G_EUR_Phase3_baseline”) of 53 genomic regions (enhancer, genic,
etc.). Enrichment statistics were reported for the top gene decile for each
dataset and cell type. MAGMA gene property analyses followed those of
Watanabe et al. (105). We calculated averaged gene expression for each cell
type and included overall gene-wise expression, collapsed across all cells, as a
covariate. This approach also does not depend upon the creation of gene
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bins. For both methods, P values were corrected for multiple comparisons
(Benjamini−Hochberg) separately for each single-cell dataset (e.g., eight
tests for DFC snDrop-seq data).

Gene Ontology Enrichment Analysis. ToppGene (106) was used to identify
biological enrichment terms across the MDD gene deciles. Genes were rank-
ordered based on their average AHBA spatial correlation, collapsed across
the six depression-linked neuroimaging maps, and then split into evenly
sized gene deciles. The numbers of enrichment terms for each gene decile
were then compared (Fig. 6A), split across major ontological categories (Bi-
ological Process, Cell Component, etc.). We illustrate specific genes enriched
among a circumscribed set of enrichment categories (Fig. 6C). Similarity of
each enrichment term was defined as the number of overlapping genes
between two categories, relative to the number of total genes linked to
both enrichment categories. This similarity matrix was then hierarchically
clustered to identify clusters of similar enrichment terms. Genes were se-
lected for plotting if they were present among multiple enrichment
categories.

Data and Code Availability. Study data are available in the Supplementary
Material or through open-access third party sources. Data and code used in
this analysis are publicly available upon publication, unless restricted by data
use agreement. UKB data are publicly available upon third-party authorization:
https://www.ukbiobank.ac.uk/register-apply/. Associated code is publicly avail-
able: https://github.com/kevmanderson/2020_PNAS_Depression. Allen Human
Brain Atlas is available here: https://human.brain-map.org/. Brainspan data is

available here: http://www.psychencode.org/. Post-mortem patient expression data
is available here: https://github.com/mgandal/Shared-molecular-neuropathology-
across-major-psychiatric-disorders-parallels-polygenic-overlap. Single cell expres-
sion data is available at the National Center for Biotechnology Informa-
tion under the accession code GSE97942. Genomics Superstruct Project
data is available by application here: https://dataverse.harvard.edu/data-
verse/GSP. Depression GWAS data is available here: https://www.med.unc.
edu/pgc/download-results/.
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