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Abstract: The essential oil (EO) of plants of the Myrtaceae family has diverse chemical composition
and several applications. However, data on the oil yield, its composition, and its complete chemistry
are still unavailable for some species belonging to this family, such as Myrcia eximia DC. In this study,
the chemical compositions of the EOs of Myrcia eximia were evaluated by using gas chromatography
(GC) alone and gas chromatography coupled with mass spectrometry (GC–MS). Samples for both
evaluations were collected from the city of Magalhães Barata, State of Pará, Brazil, in 2017 and 2018.
For the plant material collected in 2017, EO was obtained by hydrodistillation (HD) only, while,
for the material collected in 2018, EO was obtained by hydrodistillation and steam distillation (SD),
in order to evaluate the differences in chemical composition and mass yield of the EO. The yields
of (E)-caryophyllene were 15.71% and 20.0% for the samples collected by HD in 2017 and 2018,
respectively, while the yield was 15.0% for the sample collected by SD in 2018. Hexanal was found to
be the major constituent in the EO obtained by HD, with yield of up to 26.09%. The oil yields reached
0.08% by using SD, and 0.01% and 0.36% for the samples collected in 2017 and 2018, respectively,
using HD. The results of this study provide new information about the mass yield and chemical
composition of Myrcia eximia DC, and they can add value and income to traditional populations,
as well as facilitate the preservation of this species.
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1. Introduction

Myrtaceae is one of the most important families of the Brazilian flora, and it has representatives
of significant medicinal interest [1]. This family is composed of approximately 150 genera and
4630 species, especially distributed in the tropical and subtropical regions. It is widely dispersed in the
Americas and in Australia, although it is found all over the world [2]. In Brazil, there are 23 genera
and approximately 1034 species present throughout the country [3].

Recent studies on essential oils (EOs) isolated from plants of the Myrtaceae family showed that they
have important properties, such as insecticidal, parasiticidal, antifungal, antibacterial, antimicrobial,
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and antioxidant activities [4]. This demonstrates the great importance of this family with respect to
the discovery of new techniques, which can solve problems in various sectors, such as health, food,
and even agricultural production.

The genus Myrcia DC is the most representative of the Myrtaceae family. In Brazil, it is represented
by 23 genera and 974 species [5]. Many species of Myrcia, such as M. Silvatica, M. punicifolia,
and M. speciosa are used in folk medicine, usually as infusions, for treating diabetes [6,7]. Others,
such as M. salicifolia and M. ovata are used in the treatment of gastric diseases, diarrhea, cold sores,
and mouth ulcers [6,8]. In addition, plants of the Myrcia species are sources of EOs with antibacterial,
antinociceptive, and anti-inflammatory activities [9,10]. Sesquiterpenes and monoterpenes are the
most frequently found components of their EOs [6].

Some studies conducted on the EOs of Myrcia species revealed their chemical diversity;
they contained a wide range of chemicals, such as β-caryophyllene, germacrene B, δ-cadinene [11],
α-pinene, α-terpineol [12], caryophyllene oxide, globulol, (E)-nerolidyl acetate, ar-curcumene,
δ-cadinene, and spathulenol [13]. Studies on the species Myrcia eximia DC only focused on its
anatomy and taxonomy. This species, popularly known in Brazil as “goiabinha”, is geographically
distributed in the northeast, midwest, and southeast regions of Brazil [14,15]. Apart from a small report
on the existence of β-caryophyllene [16], there is no literature available on the yield and chemical
composition of its EO. In this context, herein, we aim to analyze the mass yield of EOs of Myrcia
eximia DC collected in 2017 and 2018 from the city of Magalhães Barata, northeast Pará-Brazil, Eastern
Amazon. We aim to garner new information for the dissemination of knowledge related to the chemical
profile of the EOs of this species.

2. Results and Discussion

2.1. Yields

Moisture contents of 9.43% and 11.95% were obtained for leaf samples of Myrcia eximia DC
collected in 2017 and 2018, respectively. This variation may be related to the collection period, because
the sample with the highest moisture content was that collected in the rainy season. For samples
obtained by hydrodistillation (HD), yields ranged from 0.01% to 0.36% (w/w), and the sample collected
in the dry period of 2017 presented the highest mass yield of EO. This yield was 0.08% (w/w) for the
same sample, when collected using steam distillation (SD). Figure 1 shows the chromatograms of the
EO fractions collected in 2017 and 2018. Differences in the yields of EO fractions may be associated
with the extraction technique employed. Other authors studying other plants compared the extraction
methods of HD and steam distillation (SD) and reported that they can influence and induce differences
in mass yields and chemical compositions at the end of the extraction process [17–21].

2.2. Chemical Composition of the EO

The samples were quantified and identified by using gas chromatography (GC) alone and gas
chromatography combined with mass spectrometry (GC–MS). In total, 93 chemical compounds were
identified, and they are listed in Table 1. To obtain the EO, two different techniques were used, HD
and SD. For the plant material collected in 2017, EO was obtained only by HD, while, for the material
collected in 2018, EO was obtained by HD and SD.

The main classes of compounds found in the sample collected in 2017 (dry season) were
aldehydes (2.38%), hydrocarbon sesquiterpenes (36.21%), oxygenated sesquiterpenes (53.41%), and
other compounds (0.27%), whereas, in the sample collected in 2018 (rainy season), there was large
quantitative variation with respect to the classes of compounds obtained in the 2017 sample, i.e., 40.5%
aldehydes, 23% hydrocarbon sesquiterpenes, and 30.5% oxygenated sesquiterpenes, as well as other
compounds (0.2%), were identified. The different collection periods influenced the composition of
this specimen of M. eximia because the aldehyde content increased, while the contents of hydrocarbon
sesquiterpenes and oxygenated sesquiterpenes decreased.
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Figure 1. Ion chromatograms of Myrcia eximia DC essential oils (Eos) injected in GC/MS: (A) sample
collected in 2017 by hydrodistillation (HD), (B) sample collected in 2018 by HD, and (C) sample collected
in 2018 by steam distillation (SD). The x-axis represents the retention time, while the y-axis represents
the relative concentration.

Table 1. Chemical composition of essential oils extracted from leaves of Myrcia eximia DC, at different
periods, by hydrodistillation (HD) and steam distillation (SD).

RI (C) RI (L) Constituents 2017 2018

HD HD SD
798 801 Hexanal 26.1
845 846 (2E)-Hexenal 6.63
901 901 Heptanal 1.78
1003 998 Octanal 0.59
1009 1005 (2E,4E)-Heptadienal 0.24
1054 1049 (2E)-Octen-1-al 0.2 0.69
1062 1060 (2E)-Octen-1-ol 0.05
1104 1100 Nonanal 1.28 3.24 1.42
1158 1157 (2E)-Nonen-1-al 0.41 0.53 0.2
1190 1186 α-Terpineol 0.05
1194 1190 Methyl salicylate 0.05
1294 1292 (2E,4Z)-Decadienal 0.12 0.18 0.1
1289 1299 10-Undecenal 0.06 0.04
1318 1315 (2E,4E)-Decadienal 0.2 0.23 0.22
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Table 1. Cont.

RI (C) RI (L) Constituents 2017 2018

1333 1335 δ-Elemene 0.96
1345 1345 α-Cubebene 0.05
1362 1357 Undec-(2E)-enal 0.11 0.1 0.27
1369 1373 α-Ylangene 0.16
1374 1374 α-Copaene 3.25 4.84 10.98
1387 1389 β-Elemene 0.24
1402 1400 β-Longipinene 0.19
1404 1403 Eugenol methyl
1418 1415 (2E,4E)-Undecadienal 0.14 0.25
1420 1417 (E)-Caryophyllene 15.71 20.3 15
1426 1419 β-Ylangene 0.19
1429 1428 (E)-α-Ionone 0.12
1431 1432 trans-α-Bergamotene 0.25 0.15 0.49
1435 1434
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Table 1. Cont.

RI (C) RI (L) Constituents 2017 2018

1575 1571 Caryolan-8-ol 0.22
1576 1577 Spathulenol 2.67 1.5
1581 1582 Caryophyllene oxide 10.25 16.3 22.16
1582 1484 Germacrene B 0.56
1590 1586 Thujopsan-2α-ol 0.69
1592 1589 Allohedycayol 0.53
1593 1590 Globulol 1.78
1595 1592 Viridiflorol 0.72 0.16
1596 1595 Cubeban-11-ol 1.7
1597 1596 Fokienol 0.98
1605 1600 Rosifoliol 0.5 0.2
1607 1608 Humulene epoxide II 1.05 0.36 1.07
1615 1618 1,10-di-epi-Cubenol 0.74
1620 1618 Junenol 1.18
1625 1627 1-epi-Cubenol 1.85 0.48 0.52
1627 1629 Eremoligenol 0.58 0.2
1632 1635 cis-Cadin-4-en-7-ol 1.18
1641 1638 epi-α-Cadinlol 1.17
1642 1639 Caryophylla-4(12),8(13)-dien-5-α-ol 3.31 1.69 3.35
1643 1639 Alloromadendrene epoxide 1.13 0.49 1.57
1644 1640 epi-α-Muurolol 1.71 0.39
1645 1644 α-Muurolol 1.21
1651 1645 Cubenol 0.11
1656 1649 β-Eudesmol 0.22 0.28
1359 1652 Himachalol 0.15 0.4
1656 1652 α-Cadinol 5.0 0.1 0.46
1660 1658 Selin-11-en-4α-ol 0.58
1662 1661 Allohimachalol 3.49
1670 1668 14-Hydroxy-9-epi-(E)-caryophyllene 7.02 4.63 7.84
1688 1685 Germacra-4(15),5,10(14)-trien-1α-ol 0.72 3.7
1696 1700 Eudesm-7(11)-en-4-ol 0.21
1699 1706 14-Hydroxy-4,5-dihydro-caryophyllene 0.17
1711 1713 14-Hydroxy-α-humulene 0.09
1712 1714 Nootkatol 0.08
1734 1740 Mint sulfide 0.05
1840 1841 Phytone 0.05 0.08
1944 1942 Phytol 0.02 0.43

Aldehydes 2.38 40.5 2.81
Hydrocarbon sesquiterpenes 36.21 23 26.74
Oxygenated sesquiterpenes 53.41 30.5 53.89

Others 0.27 0.02 0.85
Total 96.93 98.8 95.27

RI (C): Retention index calculated from a series of n-alkanes (C8–C40) in column DB-5MS. RI (L): Retention index
found in the literature—Adams [22], Mondello* [23].

All the EO samples presented qualitative and quantitative variations depending on the
season of collection. In the dry period, (E)-caryophyllene (15.71%), caryophyllene oxide (10.25%),
14-hydroxy-9-epi-(E)-caryophyllene (7.02%), α-cadinol (5%), allohimachalol (3.49%), caryophylla-4(12),
8(13)-dien-5-α-ol (3.31%), and α-copaene (3.25%) were obtained as the main components. In the rainy
period, hexanal (26.1%), (E)-caryophyllene (20.3%), caryophyllene oxide (16.3%), (2E)-hexenal (6.63%),
α-copaene (4.84%), 14-hydroxy-9-epi-(E)-caryophyllene (4.63%), and nonanal (3.24%) were obtained as
the major constituents. Therefore, EOs of the same species may vary qualitatively and quantitatively
in composition, depending on the location, time of the day, climate, and season of the year [24–26].

The chemical constituents of the EO samples obtained by HD in 2017 and 2018 were different,
and 96.93% and 98.84% of their components were identified, respectively.
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By comparing the chemical constituents of these oils, the differences among the molecules can be
identified. For instance, there are molecules that were identified only in the 2017 material obtained
by HD, such as hexanal (26.09%) and (2E)-hexenal (6.63%). The difference in chemical compositions
of these oils can have a direct impact on their biological activities, as well as their industrial and
food applications.

From 2018 samples, hexanal (26.09%) and (2E)-hexenal (6.63%) could be obtained as major
compounds by HD. These compounds were not found in the EO of the same plant sample obtained
by SD, and they were not present in the oil extracted by HD of the material collected in 2017, either.
Hexanal and (2E)-hexenal have antimicrobial activity against Salmonella enteritidis, Escherichia coli,
Listeria monocytogenes, and Aspergillus flavus [27–29]; therefore, they can be used to extend the shelf life
of minimally processed foods, such as apples, which are sold to customers, on a regular basis, ready to
be consumed [29].

Nonanal was identified in the EO obtained by HD of the samples collected in 2017 and 2018, with
its contents being 1.28% and 3.24%, respectively. This compound was also identified in the oil extracted
by SD of the 2018 sample. The presence of this substance enhances the antimicrobial activity of the
EO against bacterial and fungal pathogens. The minimum inhibitory concentration (MIC) and the
minimum fungicidal concentration (MFC) against Penicillium cyclopium were investigated [30], and the
results demonstrated that this volatile compound could alter the fungal hyphae morphology, leading to
loss in cytoplasmic material and mycelial distortion. In addition, this substance caused severe changes
in the permeability of fungal cell membranes. In this study, the authors obtained MIC = 0.3 mL/L
and MFC = 0.4 mL/L, demonstrating that nonanal has suitable activity against P. cyclopium fungus.
Zavala-Sánchez et al. [31] reported the antidiarrheal activity of nonanal, which showed significant
inhibitory effects in mice with diarrhea induced by castor oil, magnesium sulfate, and arachidonic
acid [31]. Nonanal was also used for alpha stimulation [32], and improvement of trap performance
against Aedes aegypti [33].

α-Copaene was also identified, and its contents were 3.25% and 4.84% in the EO extracted from
the samples collected in 2017 and 2018, respectively, by HD. The sample collected that same year
was subjected to extraction by steam distillation, in which this compound was obtained in greater
quantities (10.98%). This sesquiterpene has antioxidant and antigenotoxic activities [34]. There are
also reports in the literature that host plants producing α-copaene are able to influence the mating of
Ceratitis capitate, the male Mediterranean fruit fly [35].

Sesquiterpene (E)-caryophyllene was obtained as the major product in both the extraction methods
used. When HD was used, (E)-caryophyllene contents were 15.71% and 20.27% in the 2017 and 2018
samples, respectively. When SD was used, (E)-caryophyllene content was 15.0%. (E)-Caryophyllene
is a generally recognized as safe (GRAS) food cannabinoid, and its use is approved by the United
States Food and Drug Administration (FDA). Its biological activities are widely reported in the
literature, such as those against bacteria, [36], fungi [37], and viruses [38]. There are also reports
of its anti-inflammatory [39], anticancer [40], analgesic [41], and antiphytoviral [42] activities. The
analogs caryophyllene oxide and 14-hydroxy-9-epi-(E)-caryophyllene were also identified in the three
extractions performed.

Caryophyllene oxide was identified in the sample oil obtained by HD with contents of 10.25% and
16.31% in 2017 and 2018, respectively. When the 2018 sample was subjected to SD, caryophyllene oxide
was obtained in greater quantity (22.16%). 14-Hydroxy-9-epi-(E)-caryophyllene was also obtained from
the three extractions. Its contents were 7.02% and 4.63% in the oil obtained by HD of samples collected
in 2017 and 2018, respectively, and 7.84% of the EO obtained by SD of the sample collected in 2018.
There are several reports in the literature on plants in which these compounds are the major components
of the EOs, and these were investigated in relation to their property of inducing programmed cell
death in Trypanosoma cruzi [43] and antioxidant activity [44].

α-Cadinol constituted 5.00% and 0.10% of the total EOs obtained by HD of the 2017 and 2018
samples, respectively, while the oil obtained by SD contained 0.46% of this compound. The EO of
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plants containing α-cadinol are reported to have cytotoxic [45], anti-tyrosinase [46], and antimicrobial
activities [47].

3. Materials and Methods

3.1. Plant Material

Leaf samples of Myrcia eximia DC were collected in two different periods from the city of Magalhães
Barata, Pará, Brazil. The first sample was collected during the dry season (Amazonian summer),
on 12 June 2017, at geographic coordinates of 00◦47′51.6′′ south (S) and 047◦33′38.4′′ west (W). The
samples were identified by Dr. Antonio Elielson Sousa da Rocha and the incorporation of an exsicata
in the Herbarium of Emílio Goeldi Museum, in the city of Belém, Pará, Brazil, under the registration
number MG-231868. The second sample was collected in the rainy season (Amazonian winter),
on 10 March 2018, at geographic coordinates of 00◦47′54.2′′ S and 047◦33′5.56′′W with the incorporation
of an exsicata in the Herbarium of Emílio Goeldi Museum, in the city of Belém, Pará, Brazil, under the
registration number MG-237469.

3.2. Preparation and Characterization of the Raw Material

The leaf samples of Myrcia eximia DC were dried in an air-circulation oven for five days, at 35 ◦C,
and then crushed in a knife mill (Tecnal, model TE-631/3, Piracicaba/SP, Brazil) at a speed of 2251 rpm
for 10 min. The moisture content was analyzed by using a moisture analyzer (model IV2500, GEHAKA,
Duquesa de Goiás, Real Parque, São Paulo, Brazil).

3.3. Hydrodistillation

Hydrodistillation was performed on a Clevenger-type apparatus [48,49], using 176.29 g of the
plant material collected in 2017 and 2018. The extraction period was 10,800 s with a temperature of
100 ◦C. After extraction, anhydrous sodium sulfate (Na2SO4) was added, and the EO was centrifuged
to eliminate moisture. The mass yield of the EO was calculated on dry basis (db), by relating the oil
mass obtained by HD and the dry mass used in the extraction process, according to Equation (1).

% yield oil
(w

w

)
db =

moil

msample − (humidity (%))
× 100. (1)

3.4. Steam Distillation

For extraction by SD [50], 100 g of MG-231868 (vegetable material collected in 2018) was used.
The extraction time was 10,000 s, and the yield was calculated according to Equation (1).

3.5. Analysis of Volatile Compounds

The chemical composition of the EOs was evaluated according to a reported methodology [51],
by using gas chromatography/mass spectrometry (Shimadzu, QP-2010 plus system, (City Kyoto,
Japan), under the following conditions: silica capillary column Rtx-5MS (30 m × 0.25 mm,
film thickness = 0.25 µm), program temperature of 60–240 ◦C (3 ◦C/min), injector temperature of
250 ◦C, helium as drag gas (linear velocity of 32 cm/s, measured at 100 ◦C), and splitless injection
(1 µL of a 2:1000 hexane solution). Ionization was obtained by the electronic impact technique at 70 eV;
the temperature of the ion source and other parts was 200 ◦C. The volatile compounds were quantified
by gas chromatography using a flame ionization detector (FID) (Shimadzu, QP 2010 system), under
the same conditions as GC/MS, except that nitrogen was used as the drag gas. The retention index
was calculated for all the volatile constituents using a homologous series of n-alkanes (C8–C20). They
were identified by comparison of their mass spectra and retention indices to those reported in the
literature [22,52].
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4. Conclusions

High concentrations of oxygenated sesquiterpenes were found in the EOs of Myrcia eximia DC
specimens collected in 2017 and 2018, among which (E)-caryophyllene gained prominence in the
chemical composition of both specimens. Aldehydes were responsible for the characterization of
the 2018 sample (HD) oils, with emphasis on hexanal. Notably, hydrocarbon sesquiterpenes are
commonly found in the chemical composition of EOs of the genus Myrcia, such as (E)-caryophyllene.
The results of this study of M. eximia can contribute to dissemination of knowledge regarding the
chemical composition of this species, which is almost incipient in the literature. As noted, important
molecules were identified in the Myrcia eximia DC essential oil, which shows that this species can be a
natural source of chemically active substances for a wide range of industrial applications.
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