
REPORT

A simple and efficient algorithm for genome-wide
homozygosity analysis in disease

Wei Liu1,2,*, Jinhui Ding1, Jesse Raphael Gibbs1,3, Sue Jane Wang2, John Hardy3 and Andrew Singleton1

1 Laboratory of Neurogenetics, NIA, Porter Neuroscience Building, NIH Main Campus, Bethesda, MD, USA, 2 Office of Biostatistics, OTS, Center for Drug Evaluation
and Research, US Food and Drug Administration, Silver Spring, MD, USA and 3 Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of
Neurology, University College London, Queen Square, London, UK
* Corresponding author. DB2, Office of Biostatistics, WO 21, Mail Stop 3562, Silver Spring, MD 20993, USA. Tel.: þ 1 301 796 2427; Fax: þ 1 301 796 9735;
E-mail: Wei.Liu@fda.hhs.gov

Received 25.9.08; accepted 7.7.09

Here we propose a simple statistical algorithm for rapidly scoring loci associated with disease or
traits due to recessive mutations or deletions using genome-wide single nucleotide polymorphism
genotyping case–control data in unrelated individuals. This algorithm identifies loci by defining
homozygous segments of the genome present at significantly different frequencies between cases
and controls. We found that false positive loci could be effectively removed from the output of this
procedure by applying different physical size thresholds for the homozygous segments. This
procedure is then conducted iteratively using random sub-datasets until the number of selected loci
converges. We demonstrate this method in a publicly available data set for Alzheimer0s disease and
identify 26 candidate risk loci in the 22 autosomes. In this data set, these loci can explain 75% of the
genetic risk variability of the disease.
Molecular Systems Biology 5: 304; published online 15 September 2009; doi:10.1038/msb.2009.53
Subject Categories: bioinformatics; computational methods
Keywords: disease network; homozygous segments; risk loci; statistical algorithm; whole-genome
screening

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence,
which permits distribution and reproduction in any medium, provided the original author and source are
credited. Creation of derivative works is permitted but the resulting work may be distributed only under the
same or similar licence to this one. This licence does not permit commercial exploitation without specific
permission.

Introduction

Advances in whole-genome single nucleotide polymorphism
(SNP) assay technology have provided a powerful array of
tools for simultaneously scoring common genetic variation.
However, it is often difficult to identify loci associated with
disease because of the large number of tests carried out and the
associated conservative multiplicity adjustment, such as
Bonferroni method. We are interested in identifying such loci
associated with a disease likely due to recessive mutation or
gene deletions.

High density SNP analysis readily reveals the presence of
large homozygous segments in unrelated subjects (Hinds et al,
2005; Simon-Sanches et al, 2007; Wang et al, 2007). The
probability of a randomly selected SNP locus being homo-
zygous (‘AA’ or ‘BB’) based on data from HapMap is about 0.65
(Hinds et al, 2005; Rabbee and Speed, 2006) and this may
lend itself to autozygosity mapping in ostensibly outbred
populations; however, traditional autozygosity mapping
methods (Lander and Botstein, 1987; Mueller and Bishop,

1993; Gschwend et al, 1996) based on consanguineous
relationships are not appropriate for unrelated individuals.
To identify loci with possible recessive effects of relatively high
penetrance in outbred populations, large sample sizes are
needed for genotyping. Some recent studies on homozygosity
analysis of SNP assays have been attempted using different
approaches (Woods et al, 2004; Lencz et al, 2007; Miyazawa
et al, 2007). However, they either have some familial relation-
ship requirements (Woods et al, 2004; Miyazawa et al, 2007) or
a high false positive rate (Lencz et al, 2007).

In the context of SNP genotyping, it is often not easy to
distinguish heterozygous genomic deletion from homozygosity;
thus a segment with all loci genotyped being ‘AA’ or ‘BB’ in a
pedigree genotype file could be either a region of genuine
homozygosity or effective hemizygosity caused by genomic
deletion. We call such a region ‘apparently homozygous region’
(AH). By carrying out an appropriate association analysis on
AHs, one can detect not only the possible recessively mutated
loci from some common ancestor but also deletions (Hunter,
2005; Klein et al, 2005; Van Eyken et al, 2007).
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In this paper, we propose a simple statistical algorithm for
genome-wide AH analysis (GAHA) of case–control data in
unrelated subjects. It can robustly identify loci that are
associated with disease by efficiently removing false positive
loci. We demonstrate this method in a publicly available data
set for Alzheimer’s disease (AD) (Coon et al, 2007), consisting
502 627 SNP loci genotyped in unrelated 859 cases and 552
neurologically normal controls. A total of 26 loci from the 22
autosomes are identified and they explain 75% of the genetic
risk variability of the disease.

Results and discussion

AH size threshold

In the context of the current data, it is not appropriate to use
the number of loci as a measure of AH size as previously
reported (Lencz et al, 2007) because of its dependence on SNP
density. Here we use the number of nucleotide basepairs
between the first and last loci of an AH as a measure of AH size.

Let C be a size threshold of AHs. We are interested in
identifying loci proportions of which are significantly different
between controls and cases in AHs with sizes XC. As seen in
Figure 1, for example, there are n1 cases and with a given C we
count the proportion of the locus SNP-1 on AHs p1¼(number of
AHs containing SNP-1)/n1. Similarly, for n0 controls, we find
the proportion p0 of the same locus. Using p1 and p0, we
compute z-statistic for proportional test as described in
Materials and methods. The locus is selected for further
screening if |z|Xz1�a/2, where a is the level of significance.
The test statistic z follows a standard normal distribution
asymptotically as n0 and n1 increase with each greater than 30.

We investigated the power for selecting loci based on a, AH
percentage difference between cases and controls, and AH size
threshold C through simulation. The relationships between z
value and AH percentage difference with various C are shown
in Supplementary Figure 1. At a significance level a¼0.001, the

powers to detect candidate loci were computed accordingly.
We define that a candidate locus is detectable if the
power40.8. Our results showed that at a significance level
a¼0.001, we could detect a locus on AHsXC with a difference
of 30% between cases and controls using C¼10 kb, or only of
7% using C¼1 Mb.

On the basis of above significance level a and a moderate C
value, typically thousands of loci could be selected with a large
false positive rate from data of unrelated subjects. A key step is
to efficiently remove these falsely associated loci from the
candidate list. If we knew the minimum size of risk loci, then
we would set it as C and consider only AHXC, leading to a
lower false positive rate. However, such a C value is unknown.
One approach is to use multiple values of C as discussed below.
In convention, define C¼1 for considering AHs with size X1.

Algorithm for screening risk loci

We propose to use multiple C values for screening risk loci.
Suppose we choose C1 and C2, with C1oC2, for selecting
candidate loci with |z|Xz1�a/2. It should be noted that the
distance between C1 and C2 must be larger than the minimum
distance between loci of the platform and may be chosen by
referring to some public genotyping parameters (for example,
the average distance between loci is B9 kb in Affymetrix
500K GeneChip, and a median distance is B3 kb in Illumina
HumanHap550 BeadChip according to Gunderson et al, 2005;
Steemers and Gunderson, 2007). Let S1 be the set containing
the loci selected with C1 and S2 with C2, respectively. As the
true AHs with size XC24C1 will remain using either C1 or C2,
the loci, not in S1

T
S2, should be more likely false positives

and thus be removed. For example, in the AD data using a
significance level a¼0.001, among the 25 086 loci on chromo-
some 1, there were 18 loci selected using C¼10 kb and 12 loci
using C¼30 kb, respectively, with only three being common
loci in both sets. In general, we set C¼{Ci, i¼1, 2,y, L} with
C1oC2oyoCL to cover a wide range of AHs and let S be the
set containing all loci common in adjacent sets S¼{S1

T
S2,

S2

T
S3,y, SL�1

T
SL}. This loci-selecting procedure is called

‘procedure of adjacent-C-selection’ (PACS).
The PACS can efficiently remove false positive loci, however,

for a real data set in unrelated individuals with large genetic
variation, the selected loci usually still contain some false
positives, many of which could be removed through further
‘purification’. To achieve this, ideally we should repeat the
above steps using an independent data set from the same
population to get another candidate set. Then identify the
common loci from both sets. This new candidate set contains
fewer false positive loci, which could be further removed by
repeating above steps iteratively until the number of candidate
loci converges. Although it is generally not realistic to do so,
we could do the ‘purification’ using random subsets from the
full data set as described below.

Let nk*¼[f�nk]430 be the size of a random subset
from the full data set of size nk, where k¼1 for cases and
k¼0 for controls, and f be a constant with 0ofofmax,
fmax ¼ ðmink ðnkÞ � 1Þ=mink ðnkÞ. The randomly and indepen-
dently chosen n1* cases and n0* controls form a random case–
control sub-data set for further removing the false positive loci

Figure 1 Scheme for computing the proportion of a locus on AHs. For a
given chromosome of a subject, the symbols (K, J) represent SNP loci. The
shaded segments denote AHs with size greater than or equal to a pre-selected
threshold C. The proportion of a locus on AHs is computed as p¼ (the number of
AHs containing this locus)/(the total number of individuals), for example p1¼4/6
for SNP-1.
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from the candidate set using the same set of C values as applied
to the full data set.

Let S be the set containing the selected loci from the full data
set and S* be that from the first random sub-data set. Let
S1*¼S*

T
S containing the common loci in both sets and

N1¼|S1*| be the number of loci in S1*. Next we generate a new
S* from the second random sub-data set and let S2*¼S1*

T
S*

with N2¼|S2*|. Repeating these steps to update the candidate
loci set until the number of Nt, t¼1,2,yyy, converges to a
constant integer Nc with Nc ¼0 if the null hypothesis of no

difference between p1 and p0 is true and Nc40 if the alternative
hypothesis p1ap0 is true. For a given f, there are

n0

½f�n0�

� �
� n1

½f�n1�

� �

possible ways for selecting case–control subset, which should
be much larger than the number required for reaching
convergence at an appropriate level of significance. The above
GAHA algorithm is summarized in Box 1.

Box 1 Outline of the GAHA algorithm

(1) For case–control SNP data with n1 cases and n0 controls, choose a level of significance a, set AH thresholds C¼{Ci, i¼1, 2,y, L} with
C1oC2oyoCL, and then find AHs with size Ci, i¼1, 2,y, L, for each subject

(2) Compute z at each locus and select it if |z|Xz1-a/2. Perform the PACS and let Sold be the set of selected loci and Nold¼|Sold|.
Chose 0ofominkðnkÞ � 1=minkðnkÞ, and c¼0

(3) Randomly select a case–control sub-dataset from (1) with n1* ¼ [f� n1] 430 cases and n0* ¼ [f� n0] 430 controls. Find AHs for each
subject at given C, then compute z at each locus and select it if |z|X z1-a/2

(4) Carry out the PACS and let S* be the set containing all the loci selected from the sub-dataset. Find
Snew¼Sold

T
S*

Nnew¼|Snew|
(5)

If Nnew ¼¼ Nold
Yes! stop
No! let Sold ¼ Snew;Nold ¼ Nnew; ‘¼‘þ 1; then GOTO ð3Þ

�
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Figure 2 The plot of z versus nucleotide basepair of chromosome 19 in the AD data set: (A) before and (B) after the procedure of adjacent-C-selection, (C) the most
significant region—the peak locus is rs4420638, (D) the most significant region with two loci on APOE (k).

Algorithm for genome-wide homozygosity analysis
W Liu et al

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 3



The false positive rate of a locus in the final set should be
pa. The false negative rates of loci selection in a random
subset were estimated under the same settings for the full data
set (Supplementary Table 2).

Application to AD data set

Set C¼{1, 10 kb, 30 kb, 50 kb, 100 kb, 140 kb, 250 kb, 500 kb,
1 Mb} and a¼0.001. We identified 607 loci from 4054 loci
whose |z|Xz1�a/2 (Figure 2A) from the 22 autosomes in the
AD data set (Coon et al, 2007).

The most significant AH region was on 19q13.2 (see
Figure 2B) with positive z values suggesting significantly more
AHs in controls than in cases. This region, covering the whole
apolipoprotein E (APOE) gene, contains four loci including
rs4420638 (Figure 2C), which is in linkage disequilibrium with
APOE (Coon et al, 2007). However, there were no genotypes
within APOE in the AD data. We added available genotyping
information (Coon et al, 2007) of two loci on APOE, rs429358
and rs7412, to the AD data. The two APOE loci define the e2/
e3/e4 genotypes. Figure 2D shows the APOE loci indeed on the
AH region where the majority controls have the e3 genotype,
supporting the observation that APOE e3 is protective against
the disease when compared with e4 (Farrer et al, 1997).

To further reduce the false positive rate within this list, we
chose f¼0.9 for generating random subsets, each with 773
cases and 497 controls. The use of f¼0.9 may not be the
statistically optimal choice; it is, however, the best we tried.
The convergence of the loci number is shown in Figure 3.
There were 26 loci in the final list (Figure 3B) (Table I). Based
on a logistic regression model fit, the percent variation of the
genetic risk explained by these 26 loci was 75.3%. Model
selection removed 10 confounder loci and retained 16 loci
(each with P-valueo0.05), including rs4420638, in the
reduced model with 74.8% of the genetic risk variation
explained (Supplementary Table 3, 4).

The APOE e4 was carried by B40% of the later-onset AD
cases (Poirier et al, 1993; Laws et al, 2003). Recall that rs4420638
is in linkage disequilibrium with APOE, we found that the
percent genetic risk variation explained by this locus alone was
34.2%. However, when rs4420638 was excluded from the
reduced model, the percentage genetic risk variation explained
by the remaining 15 loci was decreased only by 2.9% (from
74.8% to 71.9%). This suggests these loci explain the genetic
risk variation of AD as a group. Several of the 26 loci identified in
this screening were also found in homozygous regions identified
in an early onset AD study of a consanguineous family
(Clarimón et al, 2008), suggesting that one of these regions
harbors a recessive genetic lesion causing AD.

The 26 loci are on 20 genes of which 13 are in known
functional pathways or networks as revealed from an
Ingenuity Pathway Analysis (Ingenuity Systems, www.
ingenuity.com) (Supplementary Pathway/Network analysis).
On the basis of the correlations among the 20 genes and AD
status of subjects, we construct an AD genetic network
(Supplementary Figure 2).

Summary

We propose a statistical method for GAHA of SNP case–control
data in unrelated subjects to identify risk loci that are most

likely associated with a disease or abnormality due to recessive
mutation or deletion. The main novelty of this method over
other approaches is to minimize the false positive rate of the
risk candidates. We remove the false positive loci by selecting
the common loci with different size thresholds of homozygous
segments and repeating these steps iteratively using random
sub-data sets until the number of selected loci converges.
Furthermore, this method allows selects risk loci from a wider
AH size range. By demonstrating of the method using a
publicly available AD SNP assay data set, we identified 26
candidate risk loci from the 22 autosomes.

Materials and methods

Notes

Suppose there are n SNP loci genotyped on a given chromosome (an
autosome). We view the sequences of SNP loci on a chromosome as
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Figure 3 Convergence of the loci number. (A) At a level of significance
a¼0.001, a total of 607 loci (&) were selected from the 4054 loci for which |z|X
z1�a/2 (D) by applying the procedure of adjacent-C-selection in the AD data set.
Random case–control subsets were generated using f¼0.9 and used in
screening iteration (J). (B) The enlarged plot showing the convergence of
selected loci to the number 26.
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linked regions either being heterozygous or AHs. Let H be a set such
that H¼{h1, h2,y, hm} where hi denotes the number of AHs containing
i consecutive SNP loci genotyped, and m is the maximum number of
consecutive SNP loci. The probability of a randomly selected SNP
locus on AHs with SNP number being equal to or larger than a
predetermined integer k is Pk ¼ PðXXkÞ ¼ 1

n

Pm
i¼kihi.

Data

A SNP genotype data set of late-onset AD(500K Affymetrix)
was downloaded from a publicly available website, http://www.
neuron.org, to demonstrate our method. This data set consists of
502 627 SNP loci genotyped in unrelated 859 cases and 552
neurologically normal controls.

Proportion test

We are interested in identifying loci at which the proportion of a SNP
locus, on AHs with size equal to or larger than a given threshold C, is
significantly different between controls and cases. Our null hypothesis
is that the SNP at a given locus has the same probability of being on
AHs with size XC in the control and case groups. The test statistic in a
standard proportion test is

z ¼ p0 � p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pð1� �pÞ 1

n0
þ 1

n1

� �r with �p ¼ n0p0 þ n1p1

n0 þ n1
ð1Þ

and follows a Gaussian distribution under the null hypothesis,
where the p0 is the proportion of the locus on AHs for the n0 control
subjects and the p1 is that for the n1 cases. We define z¼0 when both
p0¼0 and p1¼0. For a given level of significance a, a locus is selected if
|z|Xz1�a/2. This test requires large sample size (n0, n1430).

Logistic regression

In logistic regression using the selected loci as predictor variables, let
xij¼1 if the ith locus of the jth subject is on an AH with size being equal
to or larger than C¼10 kb and xij¼0 otherwise. Logistic regression is
carried out using SAS 9.0.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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