
 

Open Peer Review

F1000 Faculty Reviews are commissioned from
members of the prestigious  . In orderF1000 Faculty
to make these reviews as comprehensive and
accessible as possible, peer review takes place
before publication; the reviewers are listed below,
but their reports are not formally published.

Any comments on the article can be found at the
end of the article.

REVIEW

Emerging ideas and tools to study the emergent properties of
the cortical neural circuits for voluntary motor control in

 non-human primates [version 1; peer review: 4 approved]
John F. Kalaska
Groupe de recherche sur le système nerveux central (GRSNC), Département de Neurosciences, Faculté de Médecine, Université de
Montréal, C.P. 6128, Succ. Centre-ville, Montréal (Québec), H3C 3J7, Canada

Abstract
For years, neurophysiological studies of the cerebral cortical mechanisms
of voluntary motor control were limited to single-electrode recordings of the
activity of one or a few neurons at a time. This approach was supported by
the widely accepted belief that single neurons were the fundamental
computational units of the brain (the “neuron doctrine”). Experiments were
guided by motor-control models that proposed that the motor system
attempted to plan and control specific parameters of a desired action, such
as the direction, speed or causal forces of a reaching movement in specific
coordinate frameworks, and that assumed that the controlled parameters
would be expressed in the task-related activity of single neurons. The
advent of chronically implanted multi-electrode arrays about 20 years ago
permitted the simultaneous recording of the activity of many neurons. This
greatly enhanced the ability to study neural control mechanisms at the
population level. It has also shifted the focus of the analysis of neural
activity from quantifying single-neuron correlates with different movement
parameters to probing the structure of multi-neuron activity patterns to
identify the emergent computational properties of cortical neural circuits. In
particular, recent advances in “dimension reduction” algorithms have
attempted to identify specific covariance patterns in multi-neuron activity
which are presumed to reflect the underlying computational processes by
which neural circuits convert the intention to perform a particular movement
into the required causal descending motor commands. These analyses
have led to many new perspectives and insights on how cortical motor
circuits covertly plan and prepare to initiate a movement without causing
muscle contractions, transition from preparation to overt execution of the
desired movement, generate muscle-centered motor output commands,
and learn new motor skills. Progress is also being made to import
optical-imaging and optogenetic toolboxes from rodents to non-human
primates to overcome some technical limitations of multi-electrode
recording technology.
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Introduction
For many years, neural recording studies of the cerebral corti-
cal control of voluntary movements in awake, behaving animals 
were dominated by attempts to correlate the task-related activ-
ity of single neurons to the externally measurable properties 
of the executed movements. The development of simultaneous 
multi-neuron recording technologies and much more powerful 
computers over the past two decades has dramatically enhanced  
our ability to study cortical motor-control mechanisms. This 
has also led to translational applications such as brain–machine 
interfaces (BMIs) that allow non-human primates (NHPs)1–6 
and paralyzed patients7–11 to impose real-time volitional control 
over computer cursors, robotic neuroprosthetic devices and even 
their own limb muscles12 to perform various tasks. The focus of 
this review, however, is on how recent advances in quantitative 
tools to analyze population-level activity patterns are provid-
ing new insights into the cortical mechanisms of motor control  
and motor learning.

Representational models of voluntary motor control
When single-electrode neurophysiological studies of corti-
cal motor control began in the 1960s13,14, the field was domi-
nated by “representational” models of brain function, which 
assumed that the activity of single neurons explicitly expressed 
specific kinds of information, such as particular properties of 
a sensory input or motor output. Behavioral and theoretical  
studies suggested that the conversion of an intention to move into  
muscle-centered motor commands could be described for-
mally as a sequence of sensorimotor transformations between  
combinations of sensory and motor-related signals in definable  
coordinate frameworks, culminating in the generation of a descend-
ing motor command15–21. Computational models of voluntary 
motor control assumed that the motor system explicitly planned 
and controlled the specific features of reaching movements 
over which we appear able to impose volitional control, such as 
their direction, endpoint, spatial trajectory, velocity and output  
forces15–34. Representational models of brain function pre-
dicted that those controlled properties of movements would be  
explicitly encoded in the time-varying discharge patterns of  
single neurons generated while the motor system performed the 
neural equivalent of solving sets of equations that defined the 
inverse sensorimotor transformations between desired movement  
properties and causal muscle activity22–34. Neural correlates of the 
controlled parameters and coordinate transformations therefore  
would be directly observable in the task-related discharge of  
single neurons and could be identified by analyzing their activ-
ity in different motor tasks. Each neuron’s activity should 
show a consistent correlation to a particular parameter at all 
times before and during a movement, and the cortical control 
of movement could be understood by piecing together the  
contributions made by each neuron.

This conceptual foundation motivated many studies that used a 
wide variety of tasks to try to identify the motor output param-
eters and coordinate frameworks expressed by neurons in  
different cortical motor areas, including the primary motor  
cortex (M1), dorsal premotor cortex (PMd), ventral premotor  
cortex (PMv), supplemental motor area (SMA), parietal  

cortex area 5 (PA5) and adjacent medial intraparietal cortex (MIP). 
These studies revealed important differences in single-neuron 
response properties and in the strength and timing of correlations 
with different motor output parameters both within and across 
cortical areas that presumably reflected the different roles played  
by each neural population in motor control22–34.

These findings were consistent with the representational per-
spective on the cortical mechanisms of voluntary motor control. 
Ultimately, however, they have not provided a consensus as to 
the identity of the controlled parameter(s) or coordinate transfor-
mations that are encoded in any cortical motor area. Reasons for 
this failure include non-stationary correlations between single-
neuron activity and motor output parameters at different times 
before and during movement, overlapping ranges of properties  
among neurons in different cortical areas, and partial corre-
lations of single-neuron activity with multiple motor output 
parameters, in part because different movement parameters are  
coupled through the laws of motion and limb biomechanics34–38.  
When applied in their most simplistic literal sense—single  
neurons that unambiguously encode a specific controlled parameter 
in a specific definable coordinate framework—representational 
models do not account satisfactorily for the complexity of neural  
activity during the planning and execution of movements.

Parsing the emergent properties of dynamical 
cortical motor circuits by dimensionality reduction
Multi-electrode recordings of the simultaneous activity of 
many neurons have provided critical neural data to test hypoth-
eses that regard the cortical motor system as dynamical neural 
circuits whose emergent properties accomplish the compu-
tations underlying the planning and execution of voluntary  
movements34,38–42. Here, the term “emergent properties” refers 
to the computational features of a neural circuit that arise from 
the interactions among the neurons within the circuit. The 
input–output transformations that generate a movement emerge 
as collective properties of the interactions among neurons  
within the circuits.

This perspective suggests that one cannot fully reveal how  
cortical circuits control movements by determining single-neuron  
correlates with different movement properties. Instead, one 
should analyze the activity of neural ensembles to try to parse 
out the internal computational structure by which the circuit  
contributes to movement control. One can envisage that the 
activity of n recorded neurons comprises an n-dimensional  
“state space” in which each neuron’s activity forms one axis 
(dimension) of that space. The instantaneous activity of the 
entire recorded population occupies a specific point in that 
state space at a given moment. The activity generating a given  
movement traces out a trajectory in that n-dimensional space as 
time progresses. Furthermore, the activity of overlapping subsets  
of neurons contributing to the unfolding neural trajectory is  
correlated in different ways via shared input signals and via the 
synaptic interactions among the neurons in the circuit. Trying to  
understand what the circuit is doing just by quantifying every neu-
ron’s discharge rate at every moment in time is intractable. Instead, 
a more efficient approach that is now being used is “dimensionality 
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reduction” (DR)38–48. DR seeks sets of time-varying patterns of 
response covariation (“latent variables”) which are shared by 
many neurons in the population as well as the weightings that 
determine how much each neuron’s activity contributes to each 
latent variable. This reduces the entire n-dimensional neural  
activity space into a much more compact and tractable low- 
dimensional space of latent variables that account for the major-
ity of the total variance of the neural activity and that shape the 
trajectory of neural population activity through state space.  
The extracted latent variables capture patterns in the statis-
tical covariance structure of the neural population activity 
which arise while the cortical neural circuits perform the com-
putations required to generate movements. Rather than trying 
to identify whether a movement parameter is “encoded” by a 
single neuron, DR parses the statistical covariance structure of 
population activity patterns to identify multi-neuron correlates  
of different computational processes.

DR techniques are diverse and include principal component 
analysis (PCA), independent component analysis, factor analysis 
(FA), hidden Markov models, Gaussian process factor analysis, 
linear discriminant analysis and “demixed” PCA (dPCA)43–48,  
and other state-space49 and factor46,47 models. New methods con-
tinue to be developed47,50–53. All of these methods try to reduce 
a cost function associated with the covariance structure of the 
neural activity41,44–46. Critically, however, different methods 
make different assumptions about the statistical structure of 
the neural data and seek specific features in that structure 
while ignoring features that might be better captured by other  
methods45,46. Thus, the choice of DR method can impact the 
interpretation and conclusions drawn from a neural data set. 
Furthermore, some DR methods, such as PCA, are performed  
on multi-trial-averaged activity and so can be used to analyze 
data collected during sequential recording sessions using  
conventional single electrodes, whereas others are performed 
on multi-neuron activity recorded during single trials to probe  
circuit function45–53. The key innovation of all DR meth-
ods is that they extract task-related patterns of multi-neuron 
co-modulation of activity—the latent variables—that are not  
observable when each neuron’s activity is processed separately.

DR analyses have yielded a number of novel perspectives on 
long-standing questions about the cortical control of reaching 
movements. For instance, classic models of the reaction-time 
process assume that the onset of a voluntary movement is pre-
ceded by essential neural events that prepare the motor system 
to generate a desired movement before it can emit the motor  
commands to execute it22–33,54–58. This preparatory activity has 
been extensively studied in instructed-delay tasks in which  
subjects are first given an instructional cue that provides informa-
tion about the intended movement, such as the spatial location 
of a reach target, and later receive a “GO” signal to make  
the movement. Many neurons in PMd and M1 show changes 
in activity during the delay period which vary systemati-
cally with the information provided by the cue, such as broad  
directionally tuned activity as a function of the intended direction,  
amplitude and speed of the reaching movement22–34,54,59–62.  
Representational models presume that those preparatory neu-
ral events implement the sensorimotor transformations that  

calculate the desired properties of the movement and that the 
observed single-neuron activity expresses the planned properties of 
the intended movement22–34,54–62.

Initial DR studies suggested a different way to view those  
neural responses38–44. They showed that the preparatory activity 
of the recorded population occupied a local region within the 
total possible neural-activity state space, dwelled within that 
local volume for the duration of the delay period, and then  
transitioned into movement-execution regions of state space 
after the GO signal appeared38–41,43–45. The instantaneous location 
of the population activity within the preparatory state-space  
volume when the GO signal appeared was significantly cor-
related with the reaction time in each trial63,64. The preparatory 
states prior to different reaching movements occupied different 
regions of state space and the subsequent movement execution-
related activity for each movement followed a different trajectory  
through state space after exiting the preparatory state38–41,43–45.

Strikingly, a subset of the latent variables extracted from  
neural activity in the caudal part of PMd during movement  
execution exhibited strongly rotating trajectories through certain 
dimensions of state space whose amplitude and phase varied 
systematically as a function of the initial preparatory state and  
physical properties of each movement38,40,41,65. Those state-space 
rotations could be simulated by a simple linear dynamical model,  
suggesting that neural circuits in caudal PMd possessed dynami-
cal properties during movement execution. This is consist-
ent with theoretical models and behavioral evidence that  
the motor system displays computational properties of a 
dynamical system66–70. A critical feature of a dynamical sys-
tem is that the change in the system’s state at any given moment 
is determined by its current instantaneous state. This led to  
the hypothesis that the cortical motor system generates a 
desired movement by first establishing the corresponding ini-
tial preparatory state. Once released from that preparatory 
state, circuits in caudal PMd contribute to the generation of the 
motor command by evolving along a neural trajectory in state  
space pre-determined by the initial preparatory state and driven 
by its own internal dynamics38–41,71. This suggests a biologi-
cally plausible mechanism by which the motor cortical circuits 
can implement computations that accomplish the equivalent of a 
coordinate transformation between desired movement properties 
and causal muscle activity34–38.

These findings suggested that the widely documented single-
neuron response correlates with different motor output param-
eters such as preparatory activity that predicts the direction, speed 
and length of an impending movement59–62, or that correlates 
with muscle activity and other evolving properties of the move-
ment during execution34 are the local expression of those state- 
space changes occurring at the population level within the  
neural circuit38–41,72. More recent DR studies have yielded further 
novel perspectives on the role of preparatory activity and the 
transition from the preparatory to the movement-execution  
state.

Classic reaction-time models assume that the initial prepara-
tory neural events are obligatory and must be expressed not 
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only during the delay period of instructed-delay tasks but also 
early in the reaction-time period of non-delayed tasks54–58. A  
single-electrode study that compared PMd activity in reac-
tion-time and instructed-delay tasks found evidence consistent 
with this prediction but could not distinguish distinct prepara-
tory and movement-execution discharge components in the tem-
porally compressed reaction-time activity54. A recent study that 
addressed this issue with DR tools found evidence that provided  
stronger support for that prediction of the classic model73.  
The investigators identified latent variables in the preparatory 
neural activity during an instructed-delay period which were 
maximally orthogonal to some latent variables extracted from 
execution-related activity recorded after the GO signal. They 
then showed that the neural activity recorded during the reaction- 
time period of two different non-delayed tasks always passed 
through an activation state resembling the preparatory state of 
the instructed-delay task before transitioning to the orthogonal  
movement-execution region of state space.

A long-standing question is why the preparatory activity in 
PMd during the instructed-delay period does not generate 
overt muscle contractions and movements62,74,75. DR analyses 
provide one possible explanation75. They revealed that the  
activity state space occupied during instructed-delay tasks 
could be divided into regions that can generate muscle activity 
(“output-potent”) and regions that cannot (“output-null”). Pre-
paratory activity in PMd during the instructed-delay period is 
in the output-null region of state space (that is, a “prepare-but- 
withhold-movement” state). It then transitions into the output-
potent region after the GO signal to generate muscle activity75.  
This was recently extended by a study that found that the pre-
paratory and execution-related regions of state space in PMd/M1  
are almost completely non-overlapping and nearly maximally  
orthogonal76. This occurred because the overall pattern of 
discharge correlations between all pairs of neurons in the 
population during the delay period was very different from  
that during movement execution, even though many neurons 
were active during both trial periods. This suggested that the 
dynamical computational structure and resulting emergent prop-
erties of the neural circuits change dramatically and rapidly  
during the transition from preparatory to movement-execution 
regions of state space76. This could explain how the same neurons  
can discharge during both preparatory and execution phases  
of a trial and yet not produce muscle activity during preparation.

An obvious next question is how the dynamical computational 
structure of the neural circuits changes during the transition 
from a preparatory state to a movement-execution state. A study 
using a dPCA analysis of the post-GO activity in a delayed 
reaching task65 extracted several “condition-variant” latent  
variables related to the different reaching movements and fixed  
“condition-invariant” latent variables that were associated with 
all movements independent of their details. The two sets of 
latent variables were orthogonal to each other in the dPCA state  
space. The condition-invariant latent variables explained much 
more of the total activity variance than the condition-variant  
latent variables. Importantly, the condition-invariant latent vari-
ables appeared to capture the process by which the popula-
tion transitioned from a stable output-null preparatory region 

of state space to a dynamical output-potent region of state space 
that generated the time-varying motor output commands65,71,76.  
This suggests that the condition-invariant activity reflected an 
internal computational process within the neural circuit that 
drove the network’s dynamics towards a state that can initi-
ate movement without contributing to the planning or control of 
any feature of the ensuing movement. Similarly, a PCA-based 
DR analysis of M1 neural activity while monkeys reached to 
and grasped four different objects in one of eight different target  
locations (for technical reasons, only 24 of the 32 unique object/
location combinations were used)77 found that the largest com-
ponent of task-related neural variance was condition-invariant. 
In contrast, condition-specific activity accounted for only about 
a third as much of the task-related neural variance. Finally, some 
components of M1 activity might serve primarily to maximize 
the separation of neural trajectories for different movements 
that otherwise might approach and become “tangled”, resulting  
in undesired motor outputs78.

The novel insight provided by these DR analyses65,71,76–78 is that 
a major component of the task-related activity in M1 reflects 
aspects of the overall structure of the task such as transitions 
between stable postures and movement, and may have impor-
tant functional roles in those processes without contributing 
directly to the specification of the properties of the motor output. 
This discharge component had been essentially ignored in prior  
single-neuron analyses. In contrast, the neural modulations that 
correlated with specific parameters of the task and that had pre-
occupied the field for many years comprised a significantly  
smaller proportion of total task-related neural variance.

Future directions
The study of population-level activity using DR techniques  
continues to advance to provide intriguing new perspectives 
on the cortical mechanisms of voluntary motor control. They  
suggest that the emergent computational properties of dynami-
cal neural circuits may provide a mechanism by which the  
cortical motor system can implement implicitly such algorith-
mic formalisms as sensorimotor coordinate transformations that 
describe how sensory and central signals may be converted into  
motor output commands. They indicate that the activity of 
each neuron is only a local window on the underlying low-
dimensional computational processes by which entire neural 
circuits generate movements34–41,72. This does not mean, how-
ever, that those single-neuron responses are uninterpretable 
epiphenomena. These studies confirm rather than refute the  
descriptions of single-neuron responses revealed in previous 
studies, while providing new ways of interpreting their nature, 
origin and role. Furthermore, the fundamental questions that  
motivated previous single-neuron studies are still valid and 
largely unanswered. How does the motor system transform 
diverse signals about the current state of the external world and 
the peripheral motor system and about the subject’s own internal  
physiological, motivational, and cognitive state into motor  
commands to generate the appropriate movement in the current 
context to fulfill a particular goal34–38? How do these processes  
allow for the volitional control of different properties of a move-
ment in different contexts, such as speed versus accuracy, straight 
versus curved reach trajectories79 or similar reach trajectories 
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of the hand through space performed while holding the arm and 
hand in different postures80? What roles do different neural pop-
ulations and different cortical areas play in these processes and 
how can one account for the known differences in task-related 
activity in different cortical areas in a given motor task22–34? We  
need to understand what population-level computational processes 
within and across cortical regions could produce those widely 
documented single-neuron response correlates and what that 
reveals about how each population and cortical area contributes  
to voluntary motor control.

So far, however, most DR studies of cortical motor control 
have focussed on circuit dynamics in caudal PMd and M1 
and how they might contribute to the generation of muscle  
activity38–41,63–65,71–78. Studies must expand into other cortical motor 
areas and to other behaviors such as grasping actions of the hand. 
A recent comparative study of sensory versus motor areas81 has  
shown the utility of this approach.

For instance, the latent variables extracted from reach-related 
activity in SMA do not show rotational dynamics82. This indi-
cates that the evidence for rotational dynamics found in cau-
dal PMd38–41,65 is not a trivial or inevitable result of the task or 
the DR analyses. They also indicate that the two regions make  
different contributions to the control of reaching. A deeper  
analysis of the latent-variable structure of the activity in the two  
regions could help to clarify the nature of those differences. 
Similar approaches might provide a deeper understanding about 
the known differences in the directional tuning of M1, PMd 
and PA5/MIP activity in tasks with different degrees of disso-
ciation of the direction of gaze versus reach29,30 and how neural 
correlates of causal forces are far more prominent in M1 than  
PA5/MIP during reaching movements with external loads or in  
isometric-force tasks34,83–86.

Two studies used demixed DR to compare the activity of 
hand grasp-related neurons in PMv and anterior intraparietal  
cortex (AIP)87,88. Their findings showed several parallels with 
the reach studies in PMd/M138–41,62–65, suggesting some common 
features in the low-dimensional computational structure of the  
neural mechanisms underlying both behaviors. For instance, 
they identified distinct preparatory and execution-related regions  
of state space. Neural activity followed different trajectories 
through latent-variable space during both grasp preparation and 
execution, depending on whether the monkeys performed preci-
sion-pinch or power-grip actions, on the spatial orientation of 
the grasp object, and on whether they used the hand contralat-
eral or ipsilateral to the neural recording site. The findings iden-
tified condition-variant and condition-invariant latent variables 
in the neural activity; the latter accounted for most of the total  
activity variance and were more prominent during move-
ment execution than preparation. Importantly, they also found  
differences in the properties of the latent variables in the two  
areas. For instance, the neural activation state showed more  
prominent time-dependent changes during preparation in PMv 
than in AIP, suggesting that PMv is more implicated than AIP 
in preparation for the increasingly imminent initiation of move-
ment as the delay period progressed. Neural trajectories in 
AIP were more closely coupled to the spatial orientation of 

the grasped object independent of the grasping hand but were 
more strongly coupled in PMv to the laterality of the hand used.  
These differences suggest different but overlapping roles for 
PMv and AIP in the reach-to-grasp task that, both interestingly 
and reassuringly, are consistent with earlier studies of single-
neuron properties in the same two areas28,33. Similarly, activity 
in M1 during a reach-to-grasp task contained condition-variant 
latent variables associated with object locations and identities77. 
The level of neural modulation in latent variables associated 
with object location versus identity shifted progressively in  
time, so that object location correlates were strongest near the 
onset of reach and object identity modulations were progres-
sively stronger later in the trial as the hand approached the  
objects and adjusted its configuration to grasp them.

These various findings also indicate that it should be very 
informative to extend DR from separate analyses of activity in 
each cortical motor area to the pooled activity patterns recorded 
simultaneously in multiple areas of the same monkeys in the 
same task and using the same DR methods. This might provide  
unique new insights into how movement-related information 
is transformed across the distributed cortical motor system  
during the planning and execution of voluntary movements. DR 
should also be used to parse out how higher-order cognitive and 
decision-making processes interact with motor preparatory and 
execution circuits to select the appropriate action to perform in 
a given behavioral context31,32,61,89–95. For instance, one study95  
documented how dorsolateral prefrontal neural populations 
can simultaneously express both the predominant color and 
direction of colored-dot random-motion stimuli in separate 
latent variables but selectively use only the color or the motion  
direction of the stimulus to choose the direction of a saccadic eye 
movement in a given trial while discounting the other stimulus 
property. Finally, to enhance the power of new experiments, we  
also need more robust hypothesis-validation tools to assess to 
what degree DR techniques reveal truly novel emergent features 
of neural circuit processing or simply reflect prior known  
properties of single-neuron responses72,96.

Latent variables, neural manifolds and motor 
learning
DR reveals that the covariance patterns of multi-neuron activ-
ity during the performance of typical motor tasks such as 
reaching in 2D and 3D physical space occupy a limited 
region—a “neural manifold”—of the full theoretically possi-
ble n-dimensional neural state space97–99. This neural manifold  
contains the intrinsic statistical structure (the latent variables) 
resulting from all the combinations of multi-neuron activity  
co-modulation patterns within the network which are sufficient 
to control the movements used in a given task. Recent DR stud-
ies that leveraged BMI technology suggest that the neural 
manifold also determines which motor skills are easy to learn  
and which are difficult.

In typical BMI tasks, subjects control the movements of an effec-
tor such as a cursor on a monitor or a robotic arm by volitional 
modulation of neural activity recorded by multi-electrode arrays 
in cortical motor areas1–11. A “decoder” algorithm translates 
the recorded activity into control signals for the effector. The 
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unique experimental advantage offered by the decoder is that  
the recorded neurons are the sole source of its input signals, 
and the mapping between their activity and effector motions is  
completely defined by the decoder algorithm. Studies have used 
BMI tasks to document how subjects learn to control an effector 
through the decoder and how they alter neural activity patterns 
as they try to adapt to experimental alterations of the decoder  
mapping between neural activity and effector motions6,100–104.

One study97 used a BMI paradigm to assess the contribution of 
the neural manifold to motor learning. At the start of each ses-
sion, the investigators recorded neural activity in M1 while 
monkeys controlled cursor motions with a familiar (“intuitive”) 
decoder and used FA to identify the latent variables within 
the intrinsic neural manifold associated with the intuitive  
decoder. The investigators then altered the decoder mapping in 
very specific ways so that the required compensatory changes 
in recorded neural activity either remained within the intrinsic 
manifold or had to explore regions of state space outside of 
the manifold. Within-manifold re-mappings maintained the  
contributions of each neuron to the latent variables but altered 
the mapping between the latent variables and cursor motions. 
This allowed the monkeys to use the familiar covariance  
patterns of the intuitive manifold but they had to associate them 
with different movements. Outside-manifold re-mappings  
altered the way that single neurons contributed to the latent 
variables but preserved the mapping between each latent vari-
able and cursor motions. This required the monkeys to learn new  
multi-neuronal activity covariance patterns for each movement.

The monkeys showed considerable adaptation to within-manifold 
re-mappings over a few hundred trials in a single recording 
session but very limited ability to adapt to outside-manifold  
re-mappings within the same time frame97. These results  
suggested that the low-dimensional latent-variable structure  
within the intrinsic manifold imposes important constraints 
on motor learning. A subsequent study probed more deeply 
how the covariance structure of the intrinsic neural manifold 
associated with the intuitive decoder influenced adaptation to  
within-manifold perturbations105. The optimal solution would be  
to create a new multi-neuron covariance pattern for each reach 
direction, essentially a new set of latent variables. Instead,  
the monkeys tended to retain the latent-variable structure of 
the intuitive manifold and learned how to reweight and reas-
sign different intrinsic latent variables to new reach directions 
when the decoder mapping was changed. This also could not 
be explained by redundancy in muscle activity patterns106.  
This provided further evidence that the circuit dynamics respon-
sible for the multi-neuron co-modulation patterns in the intrinsic 
manifold, not the activity of single neurons, are the basic  
computational mechanism of motor control97,105,106. This is 
consistent with other findings that monkeys initially attempt 
to adapt to decoder perturbations by searching through the 
neural activity patterns associated with their natural motor  
repertoire6,107.

These results showed that the monkeys could not acquire  
outside-manifold solutions during a single training session.  
However, monkeys can adapt to an arbitrary decoder re-mapping if 

allowed to practice for several training sessions101,102. Importantly,  
this longer-term learning involved changes in both the independent 
and coordinated variance across neurons108. This provided  
further evidence that the latent-variable structure of the intrinsic 
manifold allows for rapid motor learning when that structure  
is preserved but that it can be altered over longer time frames.

Optical imaging and optogenetics
Neural data collected with chronically implanted multi-electrode 
arrays have greatly enhanced our ability to study cortical func-
tion but this technology still has important technical limitations. 
Among them, they provide a very sparse sampling of a small 
fraction of all the neurons within the implanted cortical volume, 
the neurons are usually unidentified, and the number of isolat-
able neurons usually declines substantially over several months. 
Advances in electrode technology may resolve some of these  
limitations. For instance, newly developed Neuropixel probes 
carry about 1000 closely spaced recording surfaces on a shaft 
that is 1 cm long and 70 µm wide109,110. They can permit simul-
taneous observation of the activity of most or all of the  
hundreds or even thousands of recordable neurons along a long 
narrow cylindrical volume of neural tissue around the probe. 
The resulting 1– to 2–order of magnitude increase in the size of 
neural data sets will present new challenges and opportunities  
for data analyses47,109,110.

However, a different potential solution to these limitations may 
be two-photon (2P) optical imaging of neural activity using fluo-
rescent signals generated by Ca++ reporter molecules expressed 
by neurons111–113 and optogenetic methods to modulate the activ-
ity of targeted neural populations114. These techniques have 
developed rapidly in rodent and other small-animal models. 
2P Ca++ imaging allows the simultaneous observation of the 
spiking activity of most or all single neurons that express the  
Ca++ reporter within a microscope’s field of view (FOV). One 
can reliably image the activity of the same identified neurons 
within the FOV for many weeks or months. One can locate 
each neuron within the 3D cortical volume and reconstruct the 
spatiotemporal pattern of activity within that cortical volume. 
Double-labelling of neurons with different markers can allow 
one to identify specific neural subpopulations within the FOV.  
One can examine cortical function from the macro level of 
hundreds to thousands of neurons to the micro level of single  
dendritic spines. Ultimately, one could link all of these observa-
tions about neural activity to computational models of cortical 
local-circuit function. These tools have been used successfully 
in rodent studies of motor control and motor learning, and 
DR has been used on those data to extract features of the  
computational structure of neural activity115–126.

The potential power of optical imaging and optogenetic 
tools has spurred interest in developing similar toolboxes for  
NHPs127–131. However, progress has been slow because of the 
lack of the many transgenic lines, promoters and other tools to 
manipulate gene expression in specific cell types that are avail-
able in rodent models. As a result, the field is still largely in the 
proof-of-concept stage. Nevertheless, successful imaging of  
fluorescent signals from populations of identified neurons for 
weeks and months has been demonstrated in several NHP  
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species, including macaque monkeys128,132–139, squirrel monkeys113 
and marmosets140–143.

Optical-imaging studies of primary visual cortex (V1) in NHPs 
have successfully reconstructed the functional organization  
within an FOV, including visual-stimulus orientation bands 
and other known features of V1 hypercolumn structure134,135. 
They have shown that single layer 2/3 V1 neurons are preferen-
tially activated by relatively complex features of arbitrary visual 
stimuli such as curvature, junctions and corners136 and that the 
representation of complex natural visual scenes is extremely  
sparse in layers 2/3 of V1137. Finally, the activity of 150 to 250 
neurons has been imaged in M1 of marmosets while they per-
formed reaching movements or attempted to adapt to external  
force fields during reaching143. These initial results confirm the 
potential of 2P optical-imaging methods to study the activity 
of large populations of identified neurons within an FOV in the  
cerebral cortex of behaving NHPs over extended periods of time.

Nevertheless, current 2P optical-imaging methods have a 
number of important limitations. They provide signals about 
neural spiking activity but not local field potentials. Most Ca++ 
imaging methods with the spatiotemporal resolution needed to 
observe the spiking activity of many single neurons can image 
to a depth of only about 1000 µm, so that all NHP imaging  
studies to date have been limited to cortical layers 2/3. Advances 
in Ca++ reporter molecules and imaging optics might even-
tually extend the depth of imaging129,131,144–146, but the light  
scattering and absorption properties of the heavily myelinated 
cortical tissue of NHPs present a major technical challenge.  
Moreover, many important functional areas are buried deep 
in the sulci of NHPs with gyrencephalic brains, making 
them inaccessible to direct optical imaging from the cortical  
surface. Optically refractive GRIN (gradient-index) lenses or  
periscope-like mirror probes could be inserted into the sulcal 
folds, but they are relatively large (>1 mm), can cause tissue 
damage when inserted, and are too rigid to be appropriate for 
long-term chronic recordings147. Very thin micro-endoscopes that  
can be inserted to any depth are under development147.

Furthermore, the FOV of most optical-imaging studies of  
multi-neuron spiking activity is relatively small, typically rang-
ing from 500 × 500 µm to 850 × 850 µm, and much less when 
imaging single dendrites or spines. An FOV smaller than 
1000 × 1000 µm will image the activity in only a very small  
part of the entire M1 motor map for the arm or about one visual 
hypercolumn in V1 of a macaque monkey. This severely con-
strains the ability to study functional organization over large 

expanses of a given cortical region. New advances in microscope 
optics and scanner engines may substantially increase the FOV to  
dimensions more appropriate for brains of the size in NHPs148–150.

Finally, microelectrode recordings of well-isolated neurons pro-
vide streams of discrete action potentials that can be measured 
with millisecond precision. In contrast, the fluorescent optical 
signals are noisy and indirect signs of neural spiking activity, 
and measurement and estimation errors are introduced at every 
stage in the data acquisition and processing pipeline from  
signal generation to signal measurement and subsequent analy-
sis. The optical-imaging system can observe only the fluorescent 
photons that happen to enter the optical aperture of the photo-
multiplier sensor as it raster-scans the FOV. The time course of 
the fluorescent response to a single spike is slow and prolonged  
compared with the causal action potential. As a result, the fluo-
rescent signals generated by each spike of a high-frequency 
multi-spike discharge burst with short inter-spike intervals will 
sum and deconvolution techniques to reconstruct the causal 
spike sequence can introduce estimation errors. Fluorescent  
signals from neurons whose somata overlap visually in the FOV 
further confound the spike deconvolution process. Motions 
of the brain during scanning cause shifts of the positions of 
imaged neurons within the FOV, and techniques to co-register  
sequentially scanned images can introduce errors in single-
neuron alignment across images and in the measurement of 
each neuron’s fluorescent signals across time. These and other 
sources of measurement and estimation errors may introduce a 
significant level of uninformative and even potentially mislead-
ing noise in the reconstructed multi-neuron activity patterns151.  
This may compromise the ability of methods like DR, that  
analyze the covariance structure of multi-neuron activity pat-
terns, to parse out the internal computational dynamics of local  
neural circuits, especially at a temporal resolution approaching  
that afforded by microelectrode recordings of neural spike trains.
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