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Abstract
Biophysical models are increasingly used to gain mechanistic insights by fitting and reproducing experimental and clinical

data. The inherent variability in the recorded datasets, however, presents a key challenge. In this study, we present a novel

approach, which integrates mechanistic modeling and machine learning to analyze in vitro cardiac mechanics data and

solve the inverse problem of model parameter inference. We designed a novel generative adversarial network (GAN) and

employed it to construct virtual populations of cardiac ventricular myocyte models in order to study the action of

Omecamtiv Mecarbil (OM), a positive cardiac inotrope. Populations of models were calibrated from mechanically

unloaded myocyte shortening recordings obtained in experiments on rat myocytes in the presence and absence of OM. The

GAN was able to infer model parameters while incorporating prior information about which model parameters OM targets.

The generated populations of models reproduced variations in myocyte contraction recorded during in vitro experiments

and provided improved understanding of OM’s mechanism of action. Inverse mapping of the experimental data using our

approach suggests a novel action of OM, whereby it modifies interactions between myosin and tropomyosin proteins. To

validate our approach, the inferred model parameters were used to replicate other in vitro experimental protocols, such as

skinned preparations demonstrating an increase in calcium sensitivity and a decrease in the Hill coefficient of the force–

calcium (F–Ca) curve under OM action. Our approach thereby facilitated the identification of the mechanistic underpin-

nings of experimental observations and the exploration of different hypotheses regarding variability in this complex

biological system.

Keywords Omecamtiv Mecarbil � Populations of models � Generative adversarial networks � Parameter inference �
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Introduction

Complex biological systems, such as tissues, exhibit

tremendous cell-to-cell variability of biochemical and

physical properties, which in turn underlie both stability

and variability in the functioning of these systems. As a

result, researchers face major difficulties in the design and

analysis of experiments that attempt to provide conclusive

evidence about the biological mechanisms underlying these

variable observations. Computational models are increas-

ingly leveraged to provide plausible, quantitative expla-

nations of the observed phenomena, and this approach has

become indispensable for hypothesis generation. However,

these biophysical models are often also highly complex in

their own right, making inference of model parameters that
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produce model outputs matching variable experimental

data a major challenge and bottleneck in research design.

Researchers in different areas have expended significant

effort developing mechanistic models of complex biologi-

cal systems to capture the variability in experimental

measurements by constructing virtual populations of

models, i.e. parametric families of models fit to groups of

in vitro datasets.

‘‘Population of models’’ has received significant atten-

tion in the cardiac modeling community over the last

decade following initial developments in the field of neu-

roscience [31, 43]. This avenue of research has greatly

improved understanding of model input-output relation-

ships among cardiac models [51] and influenced the con-

struction and refinement of biophysical models used to

identify molecular mechanisms of arrhythmia and transi-

tion to disease, as well as to explore variability in response

to drugs across different patient cohorts

[5, 14, 21, 23, 34, 40, 41, 47, 50, 60]. In a recent study,

Lawson et al. [23] proposed a general heuristic method for

the construction of populations of models that employs

Markov chain Monte Carlo (MCMC) methods to sample

model parameters and reproduce biomarkers from the

action potential of isolated human cardiomyocytes. Sig-

nificant work has also been carried out in quantitative

systems pharmacology to improve methods for generation

and selection of virtual patient populations, which capture

the statistics of clinical populations [3, 10, 12, 18, 46].

State-of-the-art methods to construct populations of

models are essentially limited to finding a single distribu-

tion of model parameters x with density qXðxÞ that, after

being pushed by a function y ¼ MðxÞ into the space of

model outputs y, produces a distribution of features with

density qYðyÞ that matches experimental/clinical

observations,

x� qXðxÞ ) y ¼ MðxÞ ) y� qYðyÞ: ð1Þ

For instance, among cardiac models of the action potential,

features y could represent upstroke velocity, action poten-

tial duration, and other characteristics of the action

potential shape. Parameters of the model, x, would typi-

cally represent conductivity of the membrane channels and

transition rates of channel gates. Note that although most

biophysical models are represented by systems of ordinary

differential equations, the relationship between x and y can

always be represented by the function y ¼ MðxÞ, despite
not always being used in the closed form. As the function

y ¼ MðxÞ is typically not invertible, the problem in (1) is

under-determined, and an infinite number of possible

densities qXðxÞ of model parameters can provide a correct

solution. The prior on the parameters pXðxÞ provides an

additional constraint, which in its simplest form comprises

a uniform distribution with upper and lower bounds for

each parameter (possibly derived from observations in

other experiments).

In real-world applications, the parameter inference

problem may have a more complicated structure that is not

easy to address with traditional approaches based on

rejection sampling, prevalence weighting and MCMC

methods [10, 23, 46]. For example, in the current study, we

have in vitro cardiac mechanics data from two groups of

myocytes, the control group and the group with presence of

a cardiac inotrope Omecamtiv Mecarbil (OM). Our goal is

to find parameters of the mechanistic model that reproduce

the experimental observations from both groups. Currently,

such parameter inference problems are usually solved

independently for each group [23]. However, this inde-

pendent treatment of each group may ignore additional

constraints that come from prior knowledge about the

biophysics involved. In our case, the prior knowledge

comes from previous experiments showing that OM does

not affect calcium concentration and cell stiffness, as it

directly targets contractile proteins [13, 27]. Therefore,

marginal distributions of parameters that are not affected

by the drug must be the same for cell groups under the two

different conditions, yet this requirement is impossible to

satisfy if the groups are treated independently. It is

tempting to attempt sequential analysis to infer parameters

from a first group then fix their distribution for analysis of a

second group. However, this approach fails due to its

asymmetry, in that the distributions of the model parame-

ters are dependent on the observations in the output space

of the model.

Formally, the graphical forward model of the composite

problem described above is expressed as

Model parameter vectors xc ¼ ½x1; x2;c� for the control

group and xd ¼ ½x1; x2;d� for the drug group comprise three

x2;c � qX2;cjX1
ðx2;cjx1Þ ) yc ¼ MðxcÞ ¼ Mðx1; x2;cÞ ) yc � qYcðycÞ

x1 � qX1
ðx1Þ )

x2;d � qX2;d jX1
ðx2;djx1Þ ) yd ¼ MðxdÞ ¼ Mðx1; x2;dÞ ) yd � qYd ðydÞ

ð2Þ
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parameter sets: x1, which is not affected by the inotrope,

x2;c, made up of unmodified drug targets in the control

group, and x2;d, the same targets after the drug is applied.

The model produces outputs yc and yd with distribution

densities qYcðycÞ and qYdðydÞ matching the densities derived

from the experimental data. Note that pairwise information

such as joint distribution qYc;Yd ðyc; ydÞ is not available

unless the experiment is conducted on the same group of

cells in different conditions. Our goal is to infer joint

densities of model parameters, qXc
ðxcÞ ¼ qXc

ðx1; x2;cÞ and

qXd
ðxdÞ ¼ qXd

ðx1; x2;dÞ from given experimental observa-

tions qYcðycÞ and qYd ðydÞ.
A wide variety of parameter inference problems for

populations of models exist, for which different require-

ments from prior biophysical knowledge must be satisfied,

but current MCMC-based methods are limited to tackling

simpler problems, as formulated in (1). Therefore, other

statistical and machine learning methods are needed to

solve these complex parameter inference scenarios. The

deep learning field has experienced an explosion of novel

method development in the last decade. Neural networks,

such as normalizing flows for explicit density estimation,

have been successfully applied in parameter inference

problems for simulation-based inference [11]. Another

generative neural network from the deep learning domain

that can compete with MCMC is the Generative Adver-

sarial Network (GAN) [15]. Several GANs have been

proposed for variational inference and could replace

MCMC methods for sampling from posterior distributions

in general [17]. We have recently proposed a novel GAN

[39] specifically for parameter inference problems as given

in (1), which is readily extensible to incorporate estimation

of qXc
ðxcÞ and qXd

ðxdÞ from experimental data qYcðycÞ and
qYdðydÞ as in (2). This GAN architecture implements a

constrained optimization formulation of the stochastic

inverse problem and is designed to solve parameter infer-

ence problems with these difficult requirements using the

complex structures it makes possible.

Here, we constructed populations of cardiac ventricular

myocyte models using our novel GAN architecture to

better understand the action of the OM drug, which has

shown promising results in improving cardiac function in

clinical trials [54, 56, 57]. Although in the late stages of

clinical trials, the molecular mechanism underlying

improved contractility by OM is still not well understood,

and recently a phase III clinical trial with OM also missed

some key endpoints [55]. A diverse set of experimental

studies have revealed different actions of OM on cross-

bridge (XB) cycling dynamics [2, 16, 19, 20, 25, 27, 28,

30, 36, 52, 59], indicating a need for improved under-

standing of OM mechanism of action. In particular, our

population of myocyte models captured experimentally

observed unloaded shortening contraction profiles recorded

in isolated cell preparations in the control and OM groups.

The calibrated population of myocyte models allowed us to

characterize the variability inherent in the experimental

data and map the observed changes in experimental signals

after drug application to quantitative changes in only those

mechanistic model parameters that our prior knowledge

points to as being targeted by the drug. Our modeling

results thereby provide a quantitative interpretation of

experimental data. To validate our findings, we used the

inferred model parameters to simulate a different experi-

mental protocol in skinned cell preparations, which is

commonly used to obtain the steady-state force-calcium (F-

Ca) relationship. We are the first, to our knowledge, to

qualitatively reproduce in simulation the most distinctive

feature of OM: increased calcium sensitivity and a decrease

in the Hill coefficient of the F-Ca curve.

Methods

Experimental methodology

Myocyte isolation

This study was carried out in accordance with the Directive

2010/63/EU and recommendations of The Animal Care

and Use Committee of the Institute of Immunology and

Physiology UB RAS. The experimental protocol was

approved by The Animal Care and Use Committee of IIP.

Studies were performed using healthy male Wistar rats (7

animals), 16-24 weeks of age. The rats were injected

intramuscularly with heparin sodium (5000 U/kg) to pre-

vent development of coronary thrombosis, anesthetized 20

min later with 30 mg/kg mg/kg tiletamine/zolazepam

(Zoletil100�, Virbac, France) and 20 mg/kg xylazine

hydrochloride (Alfasan, The Netherlands), and then in

15-20 min were subjected to a terminal bilateral thoraco-

tomy for removal of the heart. Left ventricular cardiomy-

ocytes were isolated using the combined Langendorff

perfusion method and intraventricular injection technique

with a collagenase-containing solution as described in

detail elsewhere [7]. After perfusion of the isolated heart

by enzymes to digest extracellular matrix using the Lan-

gendorff system, the heart was transferred in a Petri dish

and perfused by intraventricular injections. Then, cells

were removed from digestion buffer and resuspended in a

sequence of perfusion buffers supplemented with fetal

bovine serum and with gradually increasing calcium con-

centrations (0.1-1.0 mM). The cell suspension was trans-

ferred to Hepes-buffered Tyrode solution (in mM: NaCl

140, KCl 4.7, MgSO4 1.2, CaCl2 1.8, HEPES 10, glucose

11.1, pH of 7.4 adjusted using NaOH). Experiments were
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performed after allowing cells to rest for at least 40

minutes.

Unloaded sarcomere shortening measurements

Sarcomere shortenings were measured by a laser confocal

scanning microscope (LSM 710, Carl Zeiss, Germany).

Only rod-shaped cardiomyocytes with well-defined sar-

comere striations were measured. Cardiomyocytes that did

not respond to pacing were excluded regardless of

appearance. Prior to the measurement, a narrow region of

scanning was selected on the cell image and the intensity

profile was recorded. Data signal was then processed and

the mean sarcomere length was derived from the striation

pattern based on Discrete Fourier Transform using custom

made software [35].

Omecamtiv Mecarbil treatment

All chemicals except for collagenase (Collagenase Type 2,

Worthington Biochemical Corporation, USA) and CK-

1827452 (OM, Selleck Chemicals LLC) were obtained

from Sigma-Aldrich Co. (St. Louis, MO, USA). Stock

solution with final OM concentrations 10 mM were pre-

pared in DMSO as solvent and stored at 4 �C. Appropriate
volume of the concentrated stock solution was dissolved in

Tyrode solution to obtain final OM concentration of 1 l M

carried in 0.01 % DMSO. The control (OM-free) solution

contained the same amount of DMSO (0.01 %). The qui-

escent cells from OM group were exposed to OM for 8 min

and then were field-stimulated at 1 Hz at least 2 minutes for

equilibration prior to functional measurements. The dura-

tion of OM treatment for each cell did not exceed more

than 13 minutes All single cell experiments were per-

formed at 36±1 �C.

Biophysical and statistical modeling

To simulate groups of cells in the presence and absence of

OM, 1) a model of sarcomere contraction was fit to the data

from the literature to obtain a default set of parameters for

rat myocytes, 2) parameter sensitivity analysis was per-

formed, selecting sets of parameters to simulate cell-to-cell

variability, and 3) a generative model was trained to esti-

mate density qXc
ðxcÞ and qXd

ðxdÞ. More details on each of

the 3 stages of analysis are given in the following sections.

For our problem, qYcðycÞ and qYdðydÞ are densities of 3

features that were extracted from experimental traces of

sarcomere shortening in the presence and absence of OM,

respectively. The extracted features include diastolic length

(dSL), systolic length (length at the peak of shortening)

(sSL), and time to peak of sarcomere shortening (TTP) and

were obtained by fitting the equation,

SLðtÞ ¼ ðdSL� sSLÞ � ð1� e�log2 t
TTP½ �Þ þ sSL ; ð3Þ

to the experimental traces (Fig. 1A). Here, t is the time

variable; SL(t) is the change in the sarcomere length with

time. Explicit density models qYcðycÞ, qYdðydÞ were built for
each group of cells by fitting a multivariate Gaussian.

Model of sarcomere

We used our previously proposed phenomenological mean-

field model of myofilament contraction [1] to evaluate the

effects of different mechanisms of OM action. The

myofilament model is a modified version of [45] with the

addition of XB-XB cooperative effects and a simple mean-

field strain formulation similar to [44]. The model equa-

tions were designed to reproduce several experimental

features observed in both isolated muscle and physiological

measurements at the ventricle level. The complete set of

model equations is listed in the Supplemental Material.

Here, we only discuss equations with parameters that will

be inferred by the generative model.

nA, A50. We simulated XB dynamics from the per-

spective of XB-groups, similar to previous models

describing cooperative behavior of XBs within regulatory

units (RUs) (e.g., [37]). The core model equation describes

the formation and collapse of XB ‘‘populations’’, groups of

XBs featuring XB-XB cooperative effects within a group

of a fixed size, with a fraction of groups GXB in the

sarcomere:

dGXB

dt
¼ fGð �AÞð1� GXBÞ � gGð �A; sÞ GXB: ð4Þ

Active tension Ta ¼ Sa � GXB � ::: generated by the sar-

comere is a product of several factors including a scaling

constant Sa and GXB. Forward fG and reverse gG rates

depend on average XB strain s and �A, the ratio of RUs in

permissive states, when active sites are open for myosin

heads, to RUs in nonpermissive states. The ratio �A is

controlled by the amount of troponin C (TnC) with bound

calcium, tropomyosin chain properties among other fac-

tors. We describe the complex nonlinear relationship

between �A and the fraction A of troponin bound with cal-

cium as a Hill equation:

�A ¼ AnA

AnA þ AnA
50

: ð5Þ

Our main assumption was that the primary effect of OM

could be simulated by changing only parameters nA and

A50, thereby also satisfying the requirement that OM not

affect calcium concentration and cell stiffness.
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Caamp, Cadiast, s2. To simulate cell-to-cell variability,

several other parameters of the model were selected

(Fig. 1). These are amplitude of calcium transient Caamp,

diastolic calcium Cadiast concentration, and the constant of

exponential decay s2 that define the shape of calcium

transient. The calcium transient Ca(t) equation is defined as

in [45],

CaðtÞ ¼ Caamp � Cadiast
b

ðe
�ðt�tstart Þ

s1 � e
�ðt�tstart Þ

s2 Þ þ Cadiast

ð6Þ

where

b ¼ ðs1
s2
Þ

�1
s1
s2

�1 þ ðs1
s2
Þ

�1

1�s1
s2 : ð7Þ

For information on other parameters in equations (4)-(6)

please refer to the Supplemental Material and our previous

publication [1].

passivea. In mechanically unloaded shortening, myo-

cytes contract against their own stiffness. We define pas-

sive tension Tp as

Tp ¼
passivea � ð1� epassiveb�ð1�kÞÞ k\1

passivea � ðepassiveb�ðk�1Þ � 1Þ k	 1

(
; ð8Þ

where k is the sarcomere stretch ratio. Exponential constant

passiveb ¼ 10 was fixed for simulations. Scaling factor

passivea was variable. Since for unloaded shortening we

solved equation Tp ¼ Ta, tension units could be canceled

out, and we set passivea ¼ 1 at Sa ¼ 2:5eþ 5lm�1.

SLslack. We made an assumption that residual forces

generated by XBs are minimal at diastole of unloaded

shortening in the control group and resting length could be

considered as the slack length SLslack of the sarcomeres.

Due to variability of SLslack in the experimental data, it was

included as one of the variable parameters of the model.

The original model has a fixed constant of the slack sar-

comere length 1:9lm. Instead of modifying the model, we

scaled output model length SL by the ratio of SLslack and

1:9lm. Thus, parameter SLslack did not need to be inferred

by the generative model, and the distribution of SLslack was

estimated directly from the data.

Global sensitivity analysis

We performed global sensitivity analysis to systematically

examine the influence of model input parameters on vari-

ous model-derived metrics. Mean Decrease Accuracy

(MDA) was used for estimation of sensitivity, as in our

previous study [38]. Briefly, sensitivity analysis via MDA

requires fitting a linear or non-linear regression model (e.g.,

linear regression model, random forest regression model,

etc.) between the input parameters and the model-derived

metric. Once trained, the model is fixed, and the perfor-

mance of the regression model (e.g., given by R2 score) is

re-evaluated on modified input datasets obtained by ran-

domly shuffling value entries of each of the parameters one

at a time. More details and results of the analysis are given

in the Supporting Material.

Parameter inference

A generative model was trained to fit a parametric family

of sarcomere models to observations from two groups of

myocytes. The generative model has a structure similar to

generative adversarial networks (GAN) [15]. Standard

GANs consists of two competing networks: the generator

and discriminator. The goal of training the generator net-

work is to transform samples from white noise to samples

from a target distribution. The discriminator, structured as

a classifier, is trained to distinguish between samples from

a true target distribution and samples produced by the

generator. In the Nash equilibrium between the generator

and the discriminator, the generator samples represent an

implicit density model of a target distribution. We exten-

ded standard GANs to a GAN with multiple discriminators

and incorporated the mechanistic model into the network

(Fig. 2). In the new setup, the generator is trained to pro-

duce samples from the distribution of mechanistic model

parameters such that the distribution of model outputs is

coherent with the target observations. Full details of the

GAN network shown in Fig. 2 are provided in the Sup-

porting Material.

A BFig. 1 Feature extraction and

parameters of calcium transient.

A An example of fitting (3)

(dotted green line) to the

sarcomere length trace (solid

green line) and extraction of

dSL, sSL, and TTP. B Calcium

transient in the model simulated

with Eq. (6)
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To incorporate the model into the GAN, the function

y ¼ MðxÞ should be given in a closed form and should be

differentiable. However, the model of sarcomere is in the

form of a system of ordinary differential equations (ODE).

Although, it is possible to incorporate ODE systems into

neural networks [9], integration of ODEs during GAN

training would be computationally expensive. Instead, we

incorporate a surrogate model of y ¼ MðxÞ into the GAN,

constructed by training a feed-forward neural network on

samples from the prior.

Results

Data recordings

The unloaded sarcomere shortening traces in the control

group (n = 24 cells) and OM group (n = 17 cells) are

plotted in Fig 3A. Contraction of myocytes in the OM

group (1 lM) are characterized by a longer duration of

contraction and a shift in the diastolic (resting length) of

the sarcomeres. The sarcomere length traces were fitted

with equation (3). The sSL, dSL and TTP features were

extracted for all myocytes. The distributions of the

extracted features for the control and OM groups were

approximated by multivariate Gaussians. Fig 3B shows the

estimated marginal distribution of these features. The

presence of OM resulted in an increase in mean TTP by

approximately 50 ms. The mean of the SL and dSL features

decreased by about 0.2 lm. The pairwise joint densities of

the features are shown in Fig 3C.

Parameter inference

The generative model was trained with a uniform prior on

model parameters with ranges Caamp: [0.5, 2], Cadiast:

[0.05, 0.4], s2: [20, 140], nA: [2, 20], A50: [0.4, 1.5], and

passivea: [0.05, 7]. After training, 10,000 xc and xd samples

were run through the model to obtain yc and yd. As shown

Fig 4, the generative model was able to reproduce the

distribution of features present in the experimental data.

Densities of inferred parameters xc and xd are shown in

Fig 5. The marginal distribution for each parameter and the

correlation matrices for both xc and xd (Fig 5B lower-left

and upper-right triangles, respectively) are shown to

characterize the inferred parameter distributions. OM

decreases the mean of the Hill coefficient nA and slightly

increases A50 in the dependency between a fraction of thin

Fig. 2 Generative network for model parameter inference. The

generator network is trained to transform random variables Z1, Z2, and
Z3 with base Gaussian distributions to random variables with densities

qXc ;gðxc;gÞ and qXd ;gðxd;gÞ as approximations of qXc
ðxcÞ and qXd

ðxdÞ.
The generator factorizes density by using 3 networks G1, G2, and G3.

The network G1 is responsible for parameters x1 that do not change

under the drug action. G2 is responsible for parameters that are

affected by the drug x2;c and generates their values for the control

group. G3 is the same as G2, but for the group under action of the

drug. The conditional dependence of x2;d and x2;c on x1 in (2) is

implemented by the input of samples from the base distribution Z1 for
G1 to both G2 and G3. Parameters are pushed through the model

y ¼ MðxÞ to obtain qYc ;gðyc;gÞ and qYd ;gðyd;gÞ as approximations of

qYc ðycÞ and qYd ðydÞ. Discriminators D1, D2 separates samples xc;g and
xd;g from samples of the prior distribution of the parameters (uniform

in our case). D3 and D4 are discriminators for model outputs
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filament sites accessible for myosin heads and a fraction of

TnC with bound calcium. In the sarcomere model,

decreasing nA indirectly reduces the Hill coefficient of the

F-Ca relationship, as we demonstrate below, while A50

affects calcium sensitivity.

The strongest correlation between parameters of the

model is observed between nA and A50 (Fig 5B). In general,

there are two reasons why these inferred parameters might

correlate. First, a strong correlation could result between

two redundant parameters when both parameters have a

similar effect on the model output. Second, the correlation

could result from coupling between parameters of a

specific physical process. In our case, nA and A50 have

different effects on the dynamics of sarcomere contraction,

and therefore their coupling explains the correlation.

Encouragingly, the correlations between most other

parameters are weak, as the generative model captures the

independence of different mechanisms underlying the

myocyte contraction.

Simulations of isosarcometric (F–Ca)
and isometric curves

Next, we examined if the effect of OM, represented in the

generative model by variation and correlation in the

parameters nA and A50, was sufficient to capture not only

the unloaded shortening data but also other in vitro tests of

OM’s effects previously reported in the literature

[19, 36, 49]. We took the means of the inferred model

parameters for control and OM groups and used these to

simulate the isosarcometric and isometric curves.

In the isosarcometric contraction protocol, intracellular

calcium concentration is kept constant at different levels in

skinned preparations held at constant length and steady

state force F generated by a cell is registered to build the F-

A

B

C

Fig. 3 Raw length traces and feature density estimation. A Traces of

unloaded shortening recorded from isolated myocytes in the control

group (black solid lines) and in the group with OM (green solid lines).

B Plot of estimated marginal distributions of the time-to-peak (TTP),
resting/diastolic sarcomere length (dSL) and the sarcomere length at

the peak of shortening (sSL) features approximated via multivariate

Gaussian fit to the data. C. Estimated joint density distribution of the

features in the presence (black contours) and absence of OM (green

contours). The solid circles in C indicate the experimental data points
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Ca relationship. The F-Ca curve is usually fit with a Hill

equation to quantify calcium sensitivity,

F ¼ Cah

Cah þ Cah50
; ð9Þ

and here we use notation Ca for calcium concentration, h

for the Hill coefficient, and calcium sensitivity as Ca50 that

denote calcium concentration at the half of the maximal F.

In Fig 6A, the concentration of calcium is expressed as the

negative log (pCa ¼ �logðCaÞ). F-Ca curves for two

parameter sets taken as an average of parameters for the

control and OM groups are shown in Fig 6A. The Hill

coefficient h decreases from 8.15 in the control to 4.99 in

the OM group. Ca50 decreases from 2:06lM to 1:25lM.

Thus, the model qualitatively captures one of the key

features of OM action. Indeed, the decrease of F-Ca slope

and increase in calcium sensitivity was consistently

reported in multiple publications [19, 36]. Changes in F-Ca

also explain the shorter diastolic length of the sarcomeres

in the OM group during unloaded shortening experiments.

The simulations indicate that the level of diastolic intra-

cellular calcium is sufficient to activate filaments and

produce the residual force. In Fig. 6B (solid lines), we

show results from simulating unloaded shortening with

average parameters for each cell group, then setting

Cadiast ¼ 0 and repeating the simulations (Fig 6B dashed

lines). A decrease in end-diastolic length due to OM action

does not appear in the simulations with zero diastolic cal-

cium levels. The unloaded shortening simulations also

nicely captured a distinctive feature of OM action, which is

that the shortening velocities of sarcomeres do not change

in presence of the drug. This feature also appears in sim-

ulations of contraction of the whole ventricle that are

presented in the Supplemental Material.

Figure 6C shows simulated force traces for the two

parameter sets taken as an average of parameters for the

control and OM groups under isometric conditions (i.e.

fixed sarcomere lengths at 10% stretch and transient

increases in Ca). The simulation results show that OM

significantly increases the time from peak contraction to

50% relaxation as observed experimentally in force

responses measured in human engineering myocardium

under increasing concentrations of OM [49]. The diastolic

calcium levels can alter the OM induced increase in time

from peak contraction to 50% relaxation as show in

Fig. 6C.

Fig. 4 Features generated by populations of models. Top row. Plot of
marginal distributions produced by the generative model (solid lines)

against real data (dashed lines) for the time to peak (TTP), diastolic
sarcomere length (dSL) and the sarcomere length at the peak of

shortening (sSL) in control (black lines) and OM (green lines) groups.

Bottom row. Joint density distributions of the observed features in

control (black contours) and OM (green contours) groups. Points are

produced by the generative model
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Discussion

Multi-modal data is typically gathered across different

phases of drug-development. Mechanistic models serve as

tools for analysis and interpretation of experimental data,

to guide therapeutic design and gain improved under-

standing of mechanisms of action of the drug. A critical

step towards application of mechanistic models for sup-

porting drug design and clinical studies is identification of

model parameters that provide model outputs consistent

with the data. Biological data always presents itself with

inherent variability. It is surprisingly common to handle

this variability by simply averaging the characteristics/

features derived from the data then finding a single set of

model parameters in the model-based analysis. Even

without variability, non-invertibility of the models creates

uncertainty, and finding a single set of parameters is

insufficient for proper analysis. In this study, we have

addressed these limitations by developing new methods

and applying them to analysis of in vitro experiments with

A

B

Fig. 5 Distribution of model

parameters from the generative

model. A Plot of marginal

distributions of model

parameters produced by the

generative model in the control

(black) and OM (green) groups.

B Correlation matrix of model

parameters. Lower triangle of

the matrix is correlation

coefficients of parameters for

myocytes in the control group,

upper triangle for OM group
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a cardiac inotrope. Two groups of isolated myocytes were

compared in experiments with unloaded shortening, the

control group and the group of cells under the action of

Omecamtiv Mecarbil. The main novelty of the study is an

application of a novel generative model for parameter

inference based on Generative Adversarial Networks. We

also provided a model-based interpretation of experimental

findings.

Populations of models

The populations of models approach allows deterministic

biophysical models to capture and explain the inherent

variability present in biological data. The approach allows

for identification of not only the best model (i.e., parameter

set) but a population of parameter sets with a distribution

that results in model outputs consistent with the data.

Population-based modeling has gained increasing traction

over the last decade in the fields of cardiac, neuroscience

and quantitative systems pharmacology modeling

[10, 21, 31, 34, 41, 43, 46, 47, 51]. To handle non-linearity

among complex multiscale models, a recent study has

proposed a general heuristic framework that uses a com-

bination of sequential Monte Carlo (SMC) methods and a

simulated annealing-type algorithm for constructing pop-

ulations of models [23]. These current methods, however,

have been limited to finding a distribution of model

parameters for a single group. Even in scenarios in which

data is available for treated and untreated groups, virtual

population construction and parameter inference are car-

ried out independently for each group [23]. Inferring

parameters by treating groups independently imposes

minimal constraints and ignores available prior knowledge

about the underlying biophysics. For example, in the cur-

rent work, we knew that OM directly targets contractile

proteins and does not alter myocyte calcium dynamics or

its stiffness.

In the early stages of analysis, we attempted to use

existing methods from populations of models based on the

theoretical inferential framework proposed by Poole and

Raftery [42]. However, due to limitations of these existing

methods, we found it difficult to utilize some of the prior

biophysical knowledge such as that the treatment modu-

lates only a subset of model parameters. Therefore, we

developed the new GANs-based generative model, which

can handle complex simulation scenarios and incorporate

prior biophysical knowledge in different forms. Similar to

graphical models, this generative model incorporates dif-

ferent prior information by factorization of distribution

densities that are produced after modifying a structure of

the GAN generator. The new generative model also allows

fitting of multiple marginal distributions (e.g, qYcðycÞ and

qYdðydÞ) in cases when pairwise data (e.g, joint distribution

qYc;Ydðyc; ydÞ) for cells in control and drug conditions are

not available. Moreover, we have shown previously [39]

that even for standard scenarios, the proposed GAN

architectures can replace standard Bayesian inference

methods [6, 42] and thereby allow construction of popu-

lations of deterministic and non-deterministic models

coherent to the data for a single population. Standard

conditional GANs could also be used for parameter infer-

ence, providing the advantage of amortized inference and

its computationally fast parameter sampling [39]. Chal-

lenges in the adoption of GANs include unreliable training

outcomes due to problems such as mode collapse, which

several approaches have aimed to resolve [58]. A limitation

in our use of GANs derives from the requirement that the

mechanistic model must be differentiable for calculation

and backpropagation of gradients in a Deep Learning

architecture. However, mechanistic simulators often solve

differential equations numerically, and therefore cannot be

incorporated directly. Our solution was to use a differen-

tiable surrogate model in place of the mechanistic simu-

lation (see Methods). However, this approach can introduce

A B C

Fig. 6 Effects of OM on isosarcometric and isometric curves and
link with diastolic length of unloaded shortening. A F–Ca

relationship for model with mean parameters for control (black) and

OM group (green). B Unloaded contraction for the same mean

parameters as in A for Cadiast ¼ 0:2lM (solid lines) and Cadiast ¼ 0

(dashed lines). C Isometric contraction for the same mean parameters

as in A for Cadiast ¼ 0:2lM (solid lines) and Cadiast ¼ 0 (dashed

lines)
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bias if the target region of interest is under-sampled during

training. To alleviate bias, active learning in simulation

based inference studies [26] performs sequential refinement

of conditional density model training data to iteratively

improve the surrogate model.

Model-based interpretation of OM action

OM is known to induce a positive inotropic effect by

selectively targeting cardiac myosin proteins without

inducing alterations in the cytosolic calcium transient

[16, 27]. Previous studies have also revealed that OM has

little effect on the myocyte electrophysiological properties

except at supratherapeutic concentrations [13, 16, 53].

Hence, we considered the scenario wherein the action of

OM is captured by only a subset of model parameters. The

parameters of the calcium transients (Caamp;Cadiast; s2) and
slack length (SLslack) and stiffness of cell (passivea) were

assumed to be subject to cell-to-cell variability, while at the

same time having the same distributions between the

control and drug cells groups.

In sarcomeres, attachment of myosin heads to a thin

filament is triggered by binding of calcium to troponin.

Due to complex physical properties of tropomyosin chains,

which open active sites on actin monomers for myosin

heads in response to calcium binding, the relationship

between the fraction of accessible active sites and con-

centration of calcium-TnC is nonlinear and affected by

multiple factors, simulated in many modeling studies (e.g.,

[22, 33]). In our model, we represent this relationship as the

Hill equation (5) and hypothesized that the effect of OM

could be expressed by altering the parameters nA and A50 of

the Hill equation. Indeed, we successfully reproduced

several key features of OM action that are apparent in

experiments. First, OM has minimal effect on unloaded

shortening velocity (Fig. 6B). This a distinct feature of OM

action and is especially evident in comparisons of OM with

other compounds that increase the amplitude of the calcium

transient, such as isoproterenol [27]. Second, OM increases

sensitivity to calcium at low calcium concentrations and

decreases the Hill coefficient of the F–Ca relationship

(Fig. 6A), as reported consistently across experiments

[19, 28, 36, 52]. This effect is translated to the whole

ventricles, as OM increases ejection time without signifi-

cant changes in dP=dtmax (see the Supplemental Material).

Moreover, we also observed that OM significantly increa-

ses the time from peak contraction to 50% relaxation in

isometric tests (Fig. 6C) as observed experimentally [49].

One possible interpretation of OM induced increase in

calcium sensitivity and reduced Hill coefficient in our

simulations is that OM prolongs the strong-bound state of

XBs in agreement with previous experimental findings

[25, 27, 28]. Strong-bound XBs can interact with tropo-

myosin to keep it in the open state in the absence of bound

calcium resulting in thin filament activation, represented by

the effect we captured by modifying parameters nA and A50

of (5) in our phenomenological mean-field model. Further

testing of this interpretation requires constructing and

testing stochastic models of thin filament activation.

Recently, a simple two-state stochastic model of thin fila-

ment activation was employed by Woody et al. [59] to

support the experimental hypothesis of OM induced pro-

longed attachment of myosin heads to activate thin fila-

ments. Their model [59] reproduced the observed changes

in sensitivity and maximum force reported in [36], but does

not capture the decrease in the Hill-coefficient of the F-Ca

curve. Our group has put significant effort into developing,

analyzing and testing new and existing stochastic models to

reproduce the evading effect (results not shown). Our ini-

tial analysis suggests that altering XB-XB cooperativity in

such stochastic models either has no effect on the Hill-

coefficient or has the opposite effect (i.e., an increase in

Hill-coefficient with increased calcium sensitivity) to the

one observed experimentally. Further analysis with

stochastic models is needed to clarify this matter.

Alternatively it is possible that the effect of OM is not

due to cooperative XB-XB interaction through tropomyo-

sin but due to other modulatory effects of OM on XBs that

directly increase the probability of XB binding at previ-

ously unfavorable tropomyosin configurations. Indirect

evidence that supports this explanation comes from

experiments with mutations in cardiac tropomyosin pro-

teins. Unlike OM, tropomyosin mutations alter the proba-

bilities of myosin binding to actin by affecting the

tropomyosin properties rather than affecting myosin. The

functional effect of the tropomyosin mutations on the F–Ca

relationship, however, is similar to OM induced effects.

Increases in calcium sensitivity with simultaneous reduc-

tion in Hill coefficient have been reported in experiments

with tropomyosin mutations [4, 24, 48]. Our interpretation

of the model findings leads to the hypothesis that OM

directly modifies the interaction between myosin heads and

tropomyosin, thus increasing the probability that myosin

heads attach to active sites that were previously inacces-

sible in closed states of tropomyosin. This hypothesis could

be tested by examining OM induced effects in myocardial

preparations with mutant tropomyosin.

There are other possible key contributors regulating OM

action that we did not consider in the model. Cardiac

myosin-binding protein C (cMyBPC), which is known to

directly interact with myosin, can play a key role in reg-

ulating the inotropic effect of OM, as shown recently [29].

At submaximal calcium levels, OM-mediated force

enhancements were significantly diminished in myocardial

preparations with nonphosphorylatable cMyBPC. OM
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induced recruitment of myosin from the SRX state, as

suggested in [19], can result in increased calcium sensi-

tivity and enhanced force generation at low calcium levels.

Moreover, cMyBPC can play a role in regulating OM

induced recruitment of myosin from the SRX state, as it

has also been shown to specifically disrupt myosin in the

SRX state [32]. Stochastic models with explicit SRX state

or mean-field models as in [8], which consider myosin in

different ‘‘ON’’ and ‘‘OFF’’ states (SRX), need to be ana-

lyzed in order to better understand the possible effects of

OM on the myosin SRX state.

In closing, our method using GANs for parameter esti-

mation could be further applied to enhanced models, such

as those proposed with stochastic mechanisms, whose aim

is to further elucidate tests of our hypothesis and estimate

uncertainties due to ambiguity in model parameters. These

models would then capture the observed effects and

reproduce experimental observations, as our mean field

model has when coupled with GANs. We also note that

these results for OM could not have been achieved using

standard methods such as MCMC, which would have only

allowed sampling parameters independently from the two

groups and resulted in different distributions of parameters,

including different distributions of the fixed parameters

depending on the order of sequential sampling. We there-

fore propose that the use of our approach is currently the

only path to solving a broad family of problems including

the one solved here. Finally, we note that the statistical

model in this paper is based on a Deep Learning solution,

i.e., GANs, and that a more general formulation [39] could

be extended to other statistical models for explicit or

implicit density estimation. Such advanced tools for

parameter inference have the potential to enable rapid

adoption of in silico trials across a wide variety of appli-

cations because of their powerful treatment of prior infor-

mation in different populations.

Supplementary Information The online version of this

articlecontains supplementary material available https://doi.org/10.

1007/s10928-021-09787-4.
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