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Abstract 

Objective: We aimed to establish a novel sperm quality evaluation technology by measuring mitochondrial oxygen 
metabolism in human spermatozoa.

Results: Normozoospermic human sperm samples were used. After establishing the optimal parameters for meas-
uring the oxygen metabolism of human sperm cells using the extracellular flux analyzer, we measured the oxygen 
consumption rate (OCR) of human spermatozoa exposed to different storage temperatures. Although sperm motility 
was significantly lower at 4 °C when compared with sperm motility at 37 °C, there were no significant differences in 
sperm vitality and the OCR under both conditions. The present study established a methodology for human sperm 
quality evaluation using extracellular flux analysis technology. The OCR evaluation could be a reliable measurement 
tool for assessing human sperm quality.
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Introduction
In treating infertility, clinical assessment of sperm qual-
ity is an important issue for determining the appropriate 
treatment strategy. Semen quality is assessed conven-
tionally by volume, total sperm number, sperm concen-
tration, sperm motility and vitality [1]. Sperm motility 
is directly dependent on the available energy obtained 
through ATP hydrolysis, which is produced by mito-
chondria located in the sperm mid connecting piece [2]. 
Tourmente et al. used a mouse model to show that sperm 

with higher oxygen consumption/lactate excretion rate 
ratios were able to produce greater amounts of ATP and 
therefore achieve higher swimming velocities [3]. In their 
study, the mitochondrial metabolism was measured using 
the Extracellular Flux Analyzer™. The extracellular flux 
analysis assesses mitochondrial respiration and glycoly-
sis, as well as the ATP production rate of live cells [4, 5]. 
In this study, we established a reliable method for sperm 
quality evaluation by measuring oxygen metabolism in 
sperm mitochondria, and determined the optimal semen 
sample collection conditions by assessing the effects of 
storage temperature and duration on energy metabolism, 
sperm motility and vitality of human sperm.

Main text
Materials and methods
Study subject
Normozoospermic human sperms from healthy vol-
unteers were used. Three independent semen samples 
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collected before evaluating oxygen metabolism gave nor-
mal semen parameter ranges, including semen volume 
≥ 1.4 mL, sperm concentration ≥ 16 million/mL and total 
motility ≥ 42% (standard values according to the World 
Health Organization (WHO) laboratory manual) [1]. The 
volunteer had no medical history that indicated possible 
infertility, such as diabetes mellitus, sexually transmitted 
diseases, ejaculatory disorders, medically treated psycho-
logical illnesses or genetic diseases.

Human semen sample preparation
All semen samples were obtained by masturbation into a 
wide-mouth sterile plastic container in an isolated room 
just prior to conducting the experiments. All samples 
were analyzed within 1 h of collection. Sexual abstinence 
for 3  days was requested. Samples were diluted accord-
ing to the instructions of the WHO laboratory manual 
[1]. Sperm concentration, motility and sperm morphol-
ogy were analyzed by a Sperm Motility Analysis System 
(SMAS; version 1.0, Kaga Electronics, Tokyo, Japan) [6]. 
The percentage of motile spermatozoa was classified as 
progressively motile (WHO class A + B), non-progres-
sively motile (WHO class C) and immotile (WHO class 
D). Motile spermatozoa (WHO class A + B) were sepa-
rated by a density gradient system. A fresh semen sample 
was overlaid on 6.0 mL layers of the ISolate stock solu-
tion (Irvine Scientific, Santa Ana, CA, USA) in a coni-
cal centrifuge tube. Stirred the boundaries between the 
semen sample and ISolate stock solution using a pipette. 
The sample tube was then centrifuged at a low speed of 
400×g for 30  min. in room temperature. Highly mobile 
and morphologically normal cells that formed a pel-
let at the bottom of the sample tube were isolated by an 
additional centrifugation step at a low speed of 200×g 
for 10 min using the 1000 µL of Universal IVF Medium 
(ORIGIO Japan, Yokohama, Japan). After isolating highly 
active, normal sperm from lower quality sperm and other 
elements, these normal sperm were divided into two 
samples and incubated at 4 or 37 °C for 2 h.

Measurement of sperm vitality
After incubation under the two different conditions, 
sperm motility and vitality were assessed prior to extra-
cellular flux analysis of oxygen consumption. Sperm 
motility was assessed by SMAS and vitality was evalu-
ated by eosin-nigrosin staining. Ten microliters of each 
sample was mixed with staining solution and the sample 
placed onto a glass slide. Two hundred spermatozoa were 
examined using a phase contrasted microscope (Olym-
pus, CKX41). Unstained spermatozoa were counted as 
live cells, and the ratio of living spermatozoa was deter-
mined [7].

Extracellular flux analysis of human spermatozoa
Reagents used in this study are listed in Additional 
file  1: Table  S1. The XFp cell culture miniplates (Agi-
lent Technologies, Santa Clara, CA, USA) were coated 
with 0.25  mg/mL concanavalin A (Sigma, St. Louis, 
MO, USA; 25  µL per well) for 30  min at room tem-
perature, washed thrice with water, and dried for 1  h. 
Motile spermatozoa were suspended in modified 
Tyrode’s (mT) solution (131.89  mM NaCl, 2.68  mM 
KCl, 0.49 mM MgCl, 0.36 mM NaHPO, 1.8 mM CaCl) 
[3, 8] supplemented with 2 mg/mL bovine serum albu-
min (BSA), 5 mM glucose, 1 mM sodium pyruvate, and 
2 mM glutamine. Cell suspensions prepared in XF Dul-
becco’s Modified Eagle’s Medium (XF DMEM, Agilent 
Technologies) were used for comparison. Sperm cells 
were seeded onto the coated culture plates at a density 
of 1 ×  106 sperm/well. The plates were then centrifuged 
at 300g for 1  min and cell adhesion to the bottom of 
the well was confirmed using a microscope (Olympus, 
CKX41).

The XF Cell Mito Stress Test was carried out accord-
ing to the manufacturer’s instructions. Briefly, the sen-
sor cartridge for the flux analyzer was hydrated at 37 °C 
in a non-CO2 incubator one day before the experiment. 
The injection port A on the sensor cartridge was loaded 
with oligomycin (a complex V inhibitor, final concentra-
tion 1 μM), FCCP was loaded into port B, and rotenone/
antimycin A (inhibitors of complexes I and III, final con-
centration 0.5  μM each) were loaded into port C. Dur-
ing sensor calibration, cells were incubated at 37  °C in 
180 μl of assay medium (XF DMEM or mT solution) in 
the non-CO2 incubator [9]. The oxygen consumption 
rate (OCR) and extracellular acidification rate (ECAR) of 
human sperm were measured using the XFp Extracellular 
Flux Analyzer™ (Agilent Technologies) with 1  min-mix 
and 2  min-measure cycles. Three measurements were 
recorded for each step. (Additional file 2: Figure S1)

The OCR under the two conditions of sperm storage 
was determined to assess differences in human sperm 
mitochondrial energy metabolism. The collected same 
semen sample was divided into two groups and incu-
bated for 2 h at either 4  °C or 37 °C before extracellular 
flux analysis. A flow chart of the extracellular flux anal-
ysis of human spermatozoa is presented in Additional 
file 3: Figure S2.

Statistical analysis
The experiment was repeated three times in tripli-
cate. Data are expressed as the mean ± standard error 
(SE) and analyzed using the two ways analysis of vari-
ance (ANOVA). A p value of < 0.05 was considered 
to be statistically significant. Statistical analyses were 
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performed with SPSS Statistics version 21.0 (IBM 
Corp., Armonk, NY, USA).

Results
Establishing a method for measuring oxygen consumption 
by human spermatozoa
For measurement of oxygen consumption by human 
spermatozoa, the assay plates were treated with the 
candidate coating materials (i.e., concanavalin A, poly-
D-lysine, and Cell-Tak adhesive) to immobilize sperm 
cells on the bottom well. Concanavalin A was selected 
as the primary option for sperm immobilization as it 
provided enhanced cell attachment as compared with 
the other commonly used coating reagents (Additional 
file 4: Figure S3). Next, we optimized the composition 
of assay media suitable for measuring mitochondrial 
respiration in human sperm. The XF Cell Mito Stress 
Test was performed with sperm cells plated either in 
DMEM-based media or mT solution. The changes in 
OCR in response to the modulators of cellular res-
piration were minimal when assayed in XF DMEM 
(Fig.  1a). Replacing the media with the mT solu-
tion significantly improved the results with a greater 
dynamic range for OCR values (Fig.  1b). Based on 
these observations, the mT solution was selected as a 
preferred medium for extracellular flux analysis using 
human sperm rather than the general DMEM.

Optimization of the FCCP concentration
In the XF Mito Stress Test, the addition of FCCP, a potent 
uncoupler of mitochondrial oxidative phosphorylation, 
allows an estimate of the maximal respiratory capacity 
of mitochondria. Three doses (i.e., 0.5, 1.0 and 2.0  µM) 
of FCCP were tested to determine optimal concentra-
tion that can achieve maximal stimulation of OCR. The 
injection of FCCP at a dose of 0.5 µM yielded the highest 
OCR, and the value decreased at higher concentrations 
of FCCP (Additional file 5: Figure S4). Thus, 0.5 µM was 
chosen as the optimal concentration of FCCP for human 
sperm and used for further analysis.

The impact of storage conditions on sperm motility 
and mitochondrial respiration
Two storage conditions were examined following iso-
lation and collection of motile sperm: (i) incubation 
at 4  °C for 2  h and (ii) incubation at 37  °C for 2  h. 
Although no significant difference in sperm vital-
ity was observed under both conditions (81.4% vs. 
86.5%; p = 0.14), sperm motility of sperm incubated at 
4  °C was lower than sperm incubated in 37  °C (61.5% 
vs. 82.5%; p = 0.031) (Table  1). The OCR under both 
conditions clearly increased upon addition of 0.5  µM 
FCCP with a maximum respiration rate of > 30 pmol/
min reached. The OCR decreased after the addi-
tion of antimycin A/rotenone, indicating that respi-
ration capacity was not exhausted during the storage 
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Fig. 1 Optimization of the medium composition by assessing the OCR of human sperm mitochondria. The extracellular flux analysis was 
performed with sperm cells plated in (a) DMEM-based media or (b) mT solution
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(Fig. 2a). No significant difference in basal respiration, 
maximal respiration or spare respiratory capacity of 
human sperm under the two conditions was observed 
(Fig. 2b–d). The basal ECAR values, indicative of glyc-
olytic activity, were comparable between the two stor-
age conditions (Fig. 2a).

Discussion
This study established extracellular flux analysis of oxy-
gen consumption by human spermatozoa using the 
Extracellular Flux Analyzer™. Using this novel sperm 
quality assessment method, we showed that sperm motil-
ity of semen stored at low temperature (4 °C) for 2 h was 
significantly lower when compared with sperm motil-
ity of semen stored at a higher temperature (37  °C). In 
contrast, no difference in the OCR was observed. These 
results showed that mitochondrial respiration by highly 
active, normal human spermatozoa was maintained 
under both storage conditions. In addition, no difference 
in sperm vitality was observed under both conditions.

Sperm mitochondrial activity plays an important 
role in ensuring normal sperm function and energy 
homeostasis by oxidative phosphorylation and ATP 
synthase [2], and sperm motility is directly depend-
ent on available energy provided by ATP hydrolysis 
[2]. Ruiz-Pesini et  al. showed that the mitochondrial 
membrane potential and OCR are positively associ-
ated with ATP content, the proportion of motile sperm 
and sperm velocity [2]. Therefore, determining the 
relationship between sperm mitochondrial function 

Table 1 Characteristics of semen samples

Data represent the mean values of three samples before and after 2 h of 
incubation at the indicated temperature

Original semen sample

Semen volume, mL 2.8

Sperm cell concentration, ×  106 81.3

Total sperm motility, % 68.6

Relative abundance, % WHO A, B 62.2

WHO C 6.34

WHO D 31.4

Temperature

After 2 h of incubation 4 °C 37 °C

Sperm vitality, % 81.4 86.5

Sperm motility, % 62.8 81.2
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Fig. 2 Metabolic analysis of human sperm. The motile human sperm OCR under different conditions (i.e., incubated at 4 or 37 °C for 2 h) was 
analyzed by the Extracellular Flux Analyzer™. a The XF Cell Mito Stress Test to monitor changes in OCR and ECAR in response to the metabolic 
modulators. b Basal respiration. c Maximal respiration. d Spare respiratory capacity
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and sperm quality is important for assessing the qual-
ity of human sperm. Sperm with higher motility have 
a higher fertilization rate during micro-insemination 
[10], whereas mitochondrial DNA deletion is associ-
ated with reduced motility and DNA fragmentation of 
sperm [11, 12].

Previously, Tourmente et al. showed that mice sperm 
produced more ATP and swam faster when they had a 
high respiration/glycolysis ratio and a high reliance on 
respiration. This previous study also showed that the 
usage ratio of ATP production pathways defines sperm 
motility in mice, and revealed the utility of extracel-
lular flux analysis for examining oxygen consumption 
and extracellular acidification of spermatozoa [3]. 
In this study, we focused on using extracellular flux 
analysis to validate those previously reported observa-
tions in humans. Thus, our report is a seminal study 
examining sperm quality in relation to mitochondrial 
metabolism.

Extracellular flux analysis of human spermatozoa 
showed that there was no significant difference in 
the OCR at the two temperatures examined. Thus, 
although a decrease in sperm motility was observed at 
low temperature (4 °C), the sperm mitochondrial OCR 
was maintained over the temperature range (4–37 °C) 
and storage period (≤ 2  h) examined. These results 
indicated that mitochondrial ATP synthase activity is 
maintained at low temperatures for a minimum of 2 h. 
Sperm spare respiratory capacity was approximately 
three times higher than basal respiration (Fig.  2d), 
which revealed that there is considerable spare capac-
ity in human sperm oxygen consumption.

The WHO laboratory manual for the examination 
and processing of human semen recommends the fol-
lowing for semen sample collection: (i) the sample 
should be collected after a minimum of 2  days and a 
maximum of 7 days of sexual abstinence; (ii) the man 
should deliver the sample to the laboratory within 1 h 
of collection, and (iii) the specimen container should 
be kept at ambient temperature, i.e., between 20 and 
37  °C [1]. These recommendations should ensure 
sperm quality. This recommendation is acceptable 
based on our assessment of the sperm mitochondrial 
OCR.

Our study indicate that the quality of the sperm 
should not be assessed immediately after taking deliv-
ery of the semen sample from the patient but after 
incubating the sample at 37  °C for at least 30  min to 
ensure an accurate reading of normal mitochondrial 
function. In assessing human sperm quality of infertile 
couples, the approach to prepare sperm samples used 
in this study is recommended.

Conclusion
This study established a human sperm quality evalua-
tion technology using oxygen metabolism in mitochon-
dria and showed that the OCR was maintained over the 
temperature range of 4–37 °C for a duration of 2 h. In 
addition to conventional functional indicators such as 
motility and survival rate, this novel technology can 
be potentially developed into a novel quantitative and 
objective evaluation method of sperm quality.

Limitations
The limitations of this study include a small number 
of semen samples, analysis of a single participant with 
only normal sperm quality according to the WHO 2021 
criteria and the examination of only motile sperm. 
Despite these limitations, we have established a novel 
human sperm quality evaluation technology using oxy-
gen metabolism in mitochondria of human sperm.
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