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A flexible all-solid-state supercapacitor is fabricated by building a layer of porous and

conductive nanonetwork on the surface of KCu7S4 nanowires supported on the carbon

fiber fabric, where the porous and conductive nanonetwork is assembled by graphite

nanoparticles. This porous graphite layer plays a key role in providing ion diffusion

channels to access the KCu7S4 through the pores for electrochemical reactions and

forming electron transport pathways from the graphite network to the electronic collector

of the carbon fiber fabric. This flexible supercapacitor exhibits excellent electrochemical

performance with high specific capacitance of 408 F g−1 at a current density of 0.5 A g−1

and high energy density of 36 Wh kg−1 at a power density of 201W kg−1. Moreover,

it is cost-effective, easy to scale up and environmentally friendly with high flexibility. Our

investigation demonstrates that such a porous and conductive nanonetwork could be

used to improve the charge storage efficiency for a wide range of electrode materials.

Keywords: flexible, porous, graphite nanonetwork, KCu7S4 nanowires, supercapacitor

INTRODUCTION

Nowadays, it is a great challenge to develop supercapacitors (SCs) with flexibility, lightweight
and high electrochemical performance. In general, the quality of the SCs strongly depends on
the design of an appropriate configuration and the innovation of electrode materials (Niu et al.,
2013). For the traditional electrodes in SCs, carbonaceous materials (activated carbon, graphite,
carbon nanotubes, and graphene) can offer very high power density and excellent cycling ability
(Niu et al., 2017; Du et al., 2018; Liu et al., 2018). However, the energy density of carbon-based
materials is still too low to meet the requirement for SCs in practical applications (Lu et al., 2014;
Guan et al., 2015; Wang et al., 2016; Xia et al., 2017; Dai et al., 2018). Compared with carbon-based
SCs, transition-metal oxides/sulfides have attracted particular attention since they could offer much
higher energy density by Faradaic reactions (Augustyn et al., 2014; Simon et al., 2014; Dai et al.,
2017; Qu et al., 2017; Xu et al., 2017; Zhang et al., 2018a). However, they usually suffer from low
electrical conductivity, poor rate performance and limited cycling stability (Liu et al., 2010; Xia
et al., 2014; Dai et al., 2016a; Jiang et al., 2018). To overcome the accumulation of produced charges
on the surface of pseudo-capacitor material which could not successfully reach electron collector,
the design of hybrid structure electrodes is an efficient way for SCs with excellent electrochemical
performance (Chang et al., 2012; Qu et al., 2018a,b; Zhang et al., 2018b; Zheng et al., 2018a).

Recently, transition-metal oxides are emerging as promising electrode materials for energy
storage devices, such as RuO2, MnO2, NiO, Fe2O3, WO3, V2O5 (Xue et al., 2011; Dang et al.,
2018; Zheng et al., 2018b). Among them, manganese oxides have been widely studied as electrode
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materials for SCs due to their high theoretical capacitance, low-
cost, environmentally friendliness and natural abundance. The
α-MnO2 is constructed fromdouble chains of octahedral [MnO6]
structure with 2× 2 and 1× 1 tunnels, which is beneficial for Li+

transportation (Park et al., 2007; Reddy et al., 2009). However, its
actual capability is often much lower than the theoretical value
owing to its low electronic conductivity. Besides, it also displays
poor capacity retention and large volume change during Li+

insertion/extraction (Wang et al., 2014a). Similar to the crystal
structure of α-MnO2, the KCu7S4 has one-dimensional double
tunnels along c axis, which is composed of a three-dimensional
Cu-S framework that contains pseudo-one-dimensional channels
in which K ions reside in the channels (Hwu et al., 1998;
Dai et al., 2013, 2014a). Compared with a-MnO2, the KCu7S4
exhibits greater conductivity and capacity retention, which is
one of the most promising electrode materials for energy storage
(Dai et al., 2013, 2014a; Guo et al., 2016). Moreover, the
KCu7S4 has significant advantages, such as large surface area,
low-cost, easy synthesis, and environmentally friendliness. To
improve the performance, many researchers have focused on
the surface modification of the micro/nano electrode materials,
such as Au nanoparticles coated WO3−x NWs (Lu et al., 2012),
graphene quantum dots coated VO2 arrays (Chao et al., 2015),
CNTs decorated MoO3 (Yang et al., 2014a). It is an effective
way to enhance the electrical conductivity of the electrode
materials, which improves the ion diffusion kinetics and electron
transport by coating of nanostructured conductive layer. Herein,
we design a porous and conductive nanonetwork by coating
graphite nanoparticles on the surface of KCu7S4 nanowires,

FIGURE 1 | Schematic diagram of preparing of GN/KCu7S4 nanowires and the fabrication of flexible GN/KCu7S4/CFF SC.

which not only ensures the multichannel diffusion of electrolyte
ions insert the KCu7S4 material, but also improves the electron
transportation. It is no doubt that this porous and conductive
nanonetwork structure will attract more attention in the design
of the electrodes for SCs.

Currently, the fabricated electrodes based on KCu7S4
materials are too rigid and bulky, which could not meet
the practical requirements for flexible and wearable electronic
devices (Dai et al., 2014b, 2015). Therefore, the exploration
of flexible, lightweight, or even wearable SCs based on the
KCu7S4 materials will be interesting work. Recently, carbon
fiber fabric (CFF) attracts many people’s interest because of
its unique characteristics, such as low corrosion resistance,
low thermal expansion coefficient and excellent flexibility.
Moreover, all-solid-state supercapacitors based on CFF can be
easily bent or twisted, which could meet the requirements
for flexible and wearable electronic devices (Yuan et al.,
2012).

In this work, we report a highly flexible all-solid-state SC based
on a layer of porous and conductive graphite nanonetwork coated
on the surface of KCu7S4 nanowires, which is supported on
a carbon fiber fabric (GN/KCu7S4/CFF). The GN/KCu7S4/CFF
SC exhibits great electrochemical performance with the highest
specific capacitance of 408 F g−1 and the highest energy density
of 36 Wh kg−1 at a power density of 201W kg−1. The enhanced
capacity attributed to the porous and conductive nanonetwork
on the surface of the KCu7S4 nanowires, which provides rich
ion diffusion channels to access the KCu7S4, and shortens the
electron transmission paths through the graphite network to
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the electronic collector of CFF. This work demonstrates that
the porous and highly conductive graphite nanonetwork could
be used to improve the charge storage for a wide range of
electrode materials, revealing a promising application in the
flexible energy-storage devices.

EXPERIMENTAL SECTION

Preparation of GN/KCu7S4/CFF Electrode
Carbon fiber fabric (Shanghai Lishuo Composite Material
Technology Company) and the graphite ink (from Hero,
Shanghai Ink Factory in China) were used as purchased. First, 1
mmol of CuCl2·2H2O, 2.5 mmol of S, and 53 mmol of KOHwere
dissolved in deionized water (10mL) in the Teflon containers,
followed by addition of 2mL of hydrazine monohydrate. Then
the mixed solution was retained at 150◦C for 12 h. After
cooled down to room temperature, the product was rinsed with
ultrapure water, and dried under vacuum at 60◦C overnight. The
GN/KCu7S4/CFF was made as follows: 100mg of as-prepared
KCu7S4 nanowires was first dispersed in ultrapure water (10mL).
Then the graphite ink was dropped into the KCu7S4 solution (the
ratio of ink to water is 1:10) under magnetic stirring for 24 h
at 95◦C. Finally, the mixture was filtered on the CFF to obtain
the GN/KCu7S4/CFF, where free nanoparticles were removed
through the pores of the CFF. The product was put into oven for
2 h at 60◦C for drying.

Fabrication of All-Solid-State
Supercapacitor
The separator (Whatman 8µm filter paper) covered with a
layer of PVA-LiCl gel as a solid electrolyte on both sides and,
sandwiched between the two pieces of the GN/KCu7S4/CFF
electrodes to form a two electrode device. The detailed fabrication
process of the electrode was reported in our previous work (Javed
et al., 2015). Here, the mass loading on the carbon fiber fabric is
about 2mg cm−2 and the working area of each electrode is 4 cm
× 1.5 cm.

Characterization and the Electrochemical
Measurements
The morphology, chemical composition, and the structure
of the products were observed by X-ray diffraction (XRD)
analysis (XRD, PA National X′ Pert Pro with Cu Kα radiation).
The microstructure and morphology of NC nanomaterials
were characterized using field emission scanning electron
microscopy (Zeiss, sigma300) and high-resolution transmission
electron microscopy (HRTEM, JEOL, JEM-2100) with energy
dispersive X-ray spectrometry (EDS). The nitrogen adsorption-
desorption isotherm measurement of the sample was performed
using a ASAP2420-4MP. The specific surface area was
obtained by the Brunauer-Emmett-Teller (BET) method.
The electrochemical measurement was conducted with an

FIGURE 2 | (A) XRD patterns of KCu7S4 and GN/KCu7S4 samples. (B) The nitrogen adsorption-desorption isotherms of as-prepared KCu7S4 and GN/KCu7S4
samples. (C) XPS spectra of as-prepared KCu7S4 sample, and (D) Cu 2p XPS spectra of as-prepared KCu7S4 sample.
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electrochemical workstation (CHI 760D). X-ray photoelectron
spectrometer (XPS) analysis was performed on an ESCA Lab
MKII using Mg Ka as the exciting source.

RESULTS AND DISCUSSION

Figure 1 shows the schematic diagram of preparing of
GN/KCu7S4 nanowires and the fabrication of flexible
GN/KCu7S4/CFF SC, respectively. The X-ray diffraction of
KCu7S4 and GN/KCu7S4 nanowires indicate that the samples
are well crystallized (Figure 2A). All the diffraction peaks can
be unambiguously assigned to tetragonal KCu7S4 structure.
To understand the porosity and surface area of as-prepared
samples, N2 adsorption-desorption isotherms of KCu7S4 and
GN/KCu7S4 conducted at 77.350K were investigated and are
displayed in Figure 2B. Through BET analysis, the surface areas
of KCu7S4 and GN/KCu7S4 samples were identified as 1 m2g−1

and 18.6 m2g−1, respectively. To identify the chemical states
of Cu element in the samples, the XPS survey spectrum of the
KCu7S4 nanowires and high-resolution XPS spectrum of Cu 2p
were also conducted (Figures 2C,D). It consists of two binding
energy of Cu 2p3/2 and Cu 2p1/2 peaks at 932.3 and 952.2 eV,
respectively, which are in agreement with the previous reports
(Colleen and McShane, 2012; Wang et al., 2013). Scanning
electron microscopy (SEM) images of as-prepared KCu7S4 and
GN/KCu7S4 samples are shown in Figure 3, Figure S1. The

KCu7S4 nanowires have a diameter of 200–500 nm and length
up to 110µm. The enlarged image (Figure 3b) of GN/KCu7S4
nanowires clearly indicates that the KCu7S4 nanowires were
coated with graphite nanoparticles with high homogeneity. For
further confirmation, the EDS of a single GN/KCu7S4 nanowire
is presented in Figure 3c, revealing the main compositions of
C, K, Cu, and S. This good composite nanostructure was also
further confirmed by transmission electron microscopy (TEM)
analysis, as shown in Figures 3d,e. In order to explore the
composition of the graphite ink and GN/KCu7S4, we also carried
out a Raman test and the results are presented in Figure 3f,
Figure S2. The G and D peaks are clearly observed at 1355 cm−1

(attributed to the disordered carbonaceous component) and
1585 cm−1 (attributed to the ordered graphitic component),
respectively, which exhibits that the active component in
graphite ink is mainly graphitic carbon (Cai et al., 2012; Dai
et al., 2014c). The peak at 472 cm−1 corresponds to the KCu7S4
(Figure S2). Moreover, the TEM-EDX elemental mapping of the
GN/KCu7S4 reveals a relatively uniform distribution of K, Cu, S,
and C elements over the nanowire, which indicates the KCu7S4
nanowires were well wrapped by the graphite nanoparticles.
Owing to the strong adhesion of the graphite nanoparticles
bounded together to form a porous nanonetwork structure
on the surface of the KCu7S4 nanowires, the nanonetwork
can provide efficient ion diffusion multichannels to access
the KCu7S4 and shorten the electron transport pathways to

FIGURE 3 | (a) SEM image of the KCu7S4 nanowires. (b) SEM images of the GN/KCu7S4 nanowires. (c) EDS of a single GN/KCu7S4 nanowire. (d) TEM images of

the GN/KCu7S4 nanowires and (e) graphite nanoparticle. (f) Raman spectrum of the graphite ink. (g) TEM-EDX mapping images of GN/KCu7S4 nanowire.
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FIGURE 4 | (A) CV curves of bare CFF, KCu7S4 /CFF and GN/KCu7S4/CFF SCs at a scan rate of 100 mV/s. (B) CV curves of the GN/KCu7S4/CFF SC at different

scan rates. (C) Galvanostatic charge-discharge curves of the GN/KCu7S4/CFF SC at various current densities. (D) Specific capacitances of the KCu7S4 /CFF and

GN/KCu7S4/CFF SCs at different current densities.

the electronic collector of CFF (Fu et al., 2012; Dai et al.,
2016b).

The electrochemical performance of the supercapacitors based
on the KCu7S4/CFF and GN/KCu7S4/CFF are characterized by
using cyclic voltammetry (CV), galvanostatic charge-discharge
(GCD) cycling and electrochemical impedance spectroscopy
(EIS), respectively. Figure 4A shows the CV curves of the bare
CFF, KCu7S4, and /GN/KCu7S4/CFF based SCs at a constant
scan rate of 100m V/s. It is note that the GN/KCu7S4/CFF SC
shows a higher capacitance behavior as compared with others.
Figure 4B exhibits the CV curves of the GN/KCu7S4/CFF SC
at different scan rates in potential windows from 0 to 0.8V.
All the CV curves exhibit an approximate shape with slight
variations, even at a scan rate of 100m V/s, revealing the good
capacitive behavior of the GN/KCu7S4/CFF electrodes. The CV
curves of KCu7S4 SC at different scan rates were also collected
and is shown in Figure S3A. The galvanostatic charge-discharge
curves of the GN/KCu7S4/CFF SC at various current densities
in potential windows from 0 to 0.8V (Figure 4C) exhibit good
linear and almost symmetrical voltage-time profiles with small
IR drops, indicating high output power of the GN/KCu7S4/CFF
SC. The corresponding galvanostatic charge-discharge curves
of the KCu7S4/CFF SC at various current densities are shown
in Figure S3B. The specific capacitances of KCu7S4/CFF and
GN/KCu7S4/CFF SCs were calculated by the mass loading of
KCu7S4 and GN/KCu7S4 NWs on the CFFs, respectively, and
the results are shown in Figure 4D. The maximum specific

capacitance of 408 F g−1 at a current density of 0.5 A g−1 for
the GN/KCu7S4/CFF SC was calculated, which is two times
higher than that of KCu7S4/CFF SC (167 F g−1). The enhanced
electrochemical performance of the GN/KCu7S4/CFF electrodes
benefits from the following facts. First, the nanonetwork
assembled by the graphite nanoparticles on the surface of
KCu7S4 nanowires improves the conductivity of the KCu7S4
nanowires, which greatly increases the electron transmission
rate. Secondly, these nanoparticles aggregated together to form a
porous structure on the surface of the KCu7S4 nanowires, which
provides rich channels for ions to access to electroactive sites
for fast and reversible redox reactions (Guan et al., 2015). The
specific capacitance of the GN/KCu7S4/CFF SC in this work is
higher than that of the previously reported for the hybrid SCs,
such as 80.8 F g−1 at 0.5 A g−1 for the GNS/αMWCNT@PDAA
SC (Sun et al., 2015), 56 F g−1 at 0.58A g−1 for the MSCS-
O SC (Kim et al., 2015), 156 F g−1 at 0.5 A g−1 for the PG-
paper SC (Shu et al., 2015), and 189 F g−1 at 0.5 A g−1 for the
FeMnO3/RGO SC (Li et al., 2014). These results indicate that
the electrochemical performance of the KCu7S4 nanowires is
improved by the successful coating of the graphite nanoparticles
and this method can also be applied for other metal sulfides.

The EIS is measured in the frequency from 100 kHz to
1Hz, and the Nyquist impedance plots of the KCu7S4/CFF
and GN/KCu7S4/CFF SCs are shown in Figure S4A. In the
high frequency range, the intercepts of the Nyquist curves
on the real axis are about 2.43� and 2.18� for the
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FIGURE 5 | (a) Ragone plots of the prepared KCu7S4 /CFF and GN/KCu7S4/CFF SCs. (b) CV curves of the GN/KCu7S4/CFF SC at different curvatures of 0o, 45o,

90o, and 180o. (c) Optical photograph of 12 commercialized LEDs lighted by three GN/KCu7S4/CFF SCs connected in series. (d) Cycling life of the GN/KCu7S4/CFF

SC.

KCu7S4/CFF and GN/KCu7S4/CFF SCs, respectively, indicating
better conductivity after coating the graphite nanoparticles. A
smaller arc is observed for the GN/KCu7S4/CFF SC, which
demonstrates an enhanced ion accessibility of the GN/KCu7S4
nanowires compared with that of KCu7S4 nanowires, due to
the highly porous network structure. The Nyquist plots show
almost a vertical line in the low frequency, indicating an excellent
capacitive behavior of SC. To obtain more detailed information,
the dependence of the phase angle on the frequency for the
KCu7S4/CFF andGN/KCu7S4/CFF SCs are shown in Figure S4B.
The relaxation time τ0(τ0=1/f0 ) evaluated from the frequency at
45◦ impedance phase angle is 0.09 s for the GN/KCu7S4/CFF,
which is shorter than that of the KCu7S4/CFF (0.14 s), revealing
larger power response of the GN/KCu7S4/CFF SC (Liu et al.,
2015).

Energy density (E) and power density (P) are two important
parameters for evaluating the electrochemical performance of
SCs (Lu et al., 2012). The energy density viruses the average
power density is calculated from the charge-discharge curves
(Figure 5a), which are estimated according to the following
equations (Dai et al., 2014c).

E =
CV2

2M
(1)

P =
E

t
(2)

where C, M, V, and t are the total capacitance of the device,
effective mass of the electrode, voltage and the discharge time,
respectively. The highest energy density of the GN/KCu7S4/CFF
SC is 36 Wh kg−1 at a power density of 201W kg−1, which
is higher than that of KCu7S4/CFF SC with the energy density
of 14 Wh kg−1 at a power density of 190W kg−1. The
maximum energy density of the GN/KCu7S4/CFF SC is higher
than those previously reported, such as 6.3 Wh kg−1 for
the WL-MnO2 SC (Yang et al., 2014b), 17 Wh kg−1 for the
MnFe2O4/graphene/polyaniline SC (Sankar and Selvan, 2015),
12.3 Wh kg−1 for the MnO2@KCu7S4 hybrid SC (Wang et al.,
2014c), 22 Wh kg−1 for the CoOH//VN SC (Wang et al., 2014b),
and 1.46Wh kg−1 for the Al-doped α-MnO2 SC (Hu et al., 2015).

For efficient energy storage devices, flexible, lightweight,
and portable electronic devices are desired in practical
applications. Figure 5b displays the high flexibility of as-
prepared GN/KCu7S4/CFF SC, and it can be folded and
twisted without destroying its physical structure. Moreover, the
CV curves of the GN/KCu7S4/CFF SC hardly change under
different bending angles, indicating its good flexibility. For
practical applications, it is necessary to connect SCs in series
and/or in parallel to increase the operating voltage and/or
current in some situations (Yuan et al., 2013). Figure 5c shows
three GN/KCu7S4/CFF SCs connected in series can light 12
commercial light-emitting diodes (LEDs) for about 5min
after charging at 12A g−1 for 50 s (for detailed information,
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see Supporting Information). The excellent properties of the
flexible GN/KCu7S4/CFF SC reveal a potential application in
superior storage devices. In addition, the GN/KCu7S4/CFF SC
exhibits a long-term cycling stability between 0 and 0.8V at a
current density of 2A g−1 and keeps 90% of its initial capacitance
after 5,000 cycles (Figure 5d), revealing its good cycling life.

CONCLUSION

In summary, we have successfully designed a porous and highly
conductive nanonetwork structure electrode by coating graphite
nanoparticles on the surface of the KCu7S4 nanowires. Such
a porous nanonetwork not only facilitates the diffusion of the
electrolyte ions into the pseudocapacitive material, but also
improved the electron transmission, which greatly enhance the
charge storage efficiency. Moreover, a highly flexible all-solid-
state hybrid SC based on the GN/KCu7S4 nanowires is fabricated,
which shows excellent electrochemical properties, including the
high specific capacitance (408 F g−1), high energy density (36
Wh kg−1 ), and good cyclic stability. All the results indicate
that such porous and highly conductive nanonetwork forming
on nanostructured pseudocapacitive materials could improve the
charge storage efficiency of supercapacitors.
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