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INTRODUCTION

The ductus arteriosus (DA) in the fetus diverts most of the deoxygenated blood returning from the
head, upper extremities and coronary sinus into the descending aorta, bypassing the pulmonary
circulation (1, 2). The DA in full-term newborns closes within 24 to 48 h after delivery to
facilitate the blood perfusion of lung tissues. However, DA often fails to close in preterm neonates.
Indeed, 70% of preterm infants delivered before 28 weeks of gestation require surgical closure
or pharmaceutical treatment (1). Patent DA (PDA) in preterm infants causes severe left-to-right
shunting. The overloaded pulmonary perfusion causes pulmonary edema, bronchopulmonary
dysplasia, pulmonary hypertension and other conditions such as hyperactive precordium and
cardiomegaly (3, 4). From a hemodynamic perspective, the high resistance in the pulmonary bed
and higher pressure in the pulmonary artery drive the blood flow through the DA into systemic
circulation during fetal life. After delivery, the pressure gradient between pulmonary and systemic
circulations reverses and exposes the pulmonary microvasculature to systemic blood pressure and
increased pulmonary blood flow from PDAs (1, 5).

As a conduit for blood flow, it is critical to determine the so-called “hemodynamically
significant” PDA (hsPDA), defined as the shunting of left-to-right blood flow that increases the
pulmonary blood flow and decreases the systemic blood due to the amount of blood running from
the descending aorta into the lung circulation (4), and imposes a threat to the survival of a preterm
infant (6). Multi-center clinical trials, e.g., that described in (6), and animal (sheep) models (7)
have investigated the hemodynamic implication of PDAs. The blood flow in DAs depends upon the
pressure gradient between the pulmonary and systemic circulations. In the sheep model, reversed
flow through the DA contributed up to 50% of total pulmonary blood flow at 30min after the onset
of pulmonary ventilation (7).

Underlying the hemodynamic phenomena in PDA and the pulmonary and systemic circulations
are the fundamental changes in PDA’s walls. In term infants, the smooth muscle layer of DA
develops ischemic hypoxia, which drives the cell death and inflammatory cascade, leading to the
remodeling of DA, and transforming the DA into a non-contractile ligament (8). In preterm
infants, there is no vulnerable region of the wall that is at risk for loss of vasa vasorum flow,
therefore the PDA is less likely to develop the severe degree of hypoxia that is necessary for ductus
remodeling (8).

HEMODYNAMICS IN THE PDA EXAMINED FROM
ECHOCARDIOGRAPHY

Echocardiography is the gold standard for the diagnosis of PDA (4, 5). Echocardiographic
assessments include measuring the ductal size, ductal flow patterns, peak systolic and end-diastolic
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flow velocities, and the presence of retrograde diastolic flow
(5, 9). The cut-off value for hsPDA is the ductal diameter ≥

1.5mm (4), which should be measured from 2D ultrasonic
imaging rather than color Doppler as the latter may overestimate
the ductal diameter (5). Besides the ductal diameter, the
flow direction and pulsatile flow pattern are also valuable for
assessing psPDA. Specifically, a pulsatile, non-restrictive left-
to-right Doppler pattern is most sensitive (93.5%) and specific
(100%) for predicting its development (5). Furthermore, several
other parameters, such as the left ventricular output, volume
and pressure, can be used as a surrogate for the degree of
shunting at the ductal level (5). In addition, parameters for
systemic hypo-perfusion e.g., the absent or retrograde diastolic
flow in the abdominal aorta (4), may also be measured from
echocardiography (5).

Pertinent to hemodynamic modeling of PDAs, contemporary
echocardiography can reveal the pressure gradient between the
systemic and pulmonary circulations (Figure 1B) (4), which is of
great value for providing boundary conditions for flow equations.

MODELING FOR THE HEMODYNAMICS IN
PDA

In silico models have been used to simulate multiple aspects of
the cardiovascular system. However, few have been developed for
the circulation transitions from fetuses to neonates. Even less is
the in silicomodels developed for PDAs. The PDA model in (10)
uses two semi-cylinders (representing the pulmonary artery and
aorta) joined by a plate (representing the DA), which is highly
simplified and idealistic in its geometry. For in silico models
to contribute to unraveling the key mechanisms underlying
PDA, thoughts must be placed on the intimate connections
between remodeling of the DA, the stimuli for vessel tone
regulation, and the hemodynamics in it. Toward that end, we
suggest a paradigm i.e., multiscale in silico modeling that closely
links the hemodynamics in PDA with vessel constituents and
vascular tones.

Hemodynamic models have been developed for the
cardiovascular system of fetuses. For example, van den
Wijingaard et al. designed a distributed model that consists of 13
arterial segments and nine vascular beds for the abnormal arterial
flows in fetuses (11). Myers and Capper used a transmission
line model to simulate the pulsatile arterial flow in the thoracic
aorta and other arteries in fetuses (12). However, neither study
included the DA and pulmonary artery in the arterial model.
Blood flow simulations have been performed at a single-vessel
level for the umbilical artery (13) and the ductus venosus (14).
In a fetal circulation model, the DA is designed as an electronic
component connecting the descending aorta and the pulmonary
artery (15). Similar treatment is used where the model for PDA
is based on PHYSBE and is modified in a way to include an
additional flow derived from the aorta toward lungs (16).

Concerning modeling techniques, the in silico blood flow
models mentioned above range from lumped parameter (or 0D)
models to the transmission line and 1D models where the vessel
geometry (length and diameter) is incorporated. If the purpose

of the simulation is to reproduce the velocity waveform observed
in echocardiography and the impedance of the vascular bed,
then a coupled 1D and lumped parameter model, e.g., of (17),
or coupled 1D and transmission line model, e.g., of (18) could
serve the purpose. On the other hand, if the modeling goal is
to investigate the detailed 3D flow patterns, e.g., the formation
of vortex and flow separations after constriction in PDA, and
the wall shear stress, then a 3D flow model should be applied
(19, 20). A recent model simulated the 3D flow in the PDA to
investigate the effects of the PDA on the flow features of the
modified Blalock-Taussig shunt (21). Another study investigated
the 3D flow in the PDA with respect to three typical pulmonary
artery (PA) dysplasia structures and different sizes of PDA (22).
Similarly, Hsia et al. developed amulti-dimensional model for the
Norwood operation with a right ventricle-to-pulmonary artery
shunt (23).

Hence, various modeling methods can be adopted for the
left-to-right flow in the PDA in preterm infants, depending on
the level of details required for the hemodynamics in the PDA.
Szpinda et al. found that the reversed flow in the PDA was less
than that expected from the pressure gradient (2). This is because
the constriction at the joint between the PDA and the aorta
introduces a higher pressure gradient according to the Bernoulli’s
equation (Figure 1A). Thus, the rapid flow at the constriction
suits a flow model of a higher dimension (3D or 1D), whereas
the resistance from the pulmonary bed can be lumped into a
0D model. For example, with a model that has a 3D simulation
for the aortic arch and the shunt, 0D models for pulmonary,
coronary, upper and lower body circulations imposed from the
inlet outlet or inlet boundaries at the pulmonary or systemic
circulation bed (22, 23).

While insights could be gained from the hemodynamics in
PDA and its impacts on the pulmonary and systemic circulations
from the above mentionedmodels, the closure of PDA is an event
associated with the remodeling of the arterial wall of the DA,
which none of the hemodynamic models address directly. To
that end a different category of models, i.e., for wall remodeling,
is required.

MULTISCALE MODELING FOR THE
VASCULAR EVOLUTION

The DA in term infants is closed within a few hours after birth,
because the increased arterial PaO2 and decreased circulating
prostaglandin allow the smooth muscle media of the ductus
to constrict (8). The constriction leads to ischemic hypoxia in
the inner muscle wall of the DA, which consequently develops
vascular endothelial growth factor that transform the ductus into
a non-contractile ligament (8). In preterm infants, the intrinsic
tone of the ductus is lower than that in full-term infants and
has less capacity to constrict (1). Low fetal systemic arterial
oxygen tension and circulating prostaglandin keep the lumen of
DA patent.

Mechano-transduction plays an important role in the closure
of DA: the wall shear stress acts on endothelial cells (ECs),
triggering a cascade of intracellular events (24, 25). In addition,
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FIGURE 1 | Patent ductus arteriosus (PDA) in preterm infants: (A) the left-to-right or reversed flow in PDA after birth. Note the constriction where the DA joins aorta

introduces high pressure gradient according to the Bernoulli’s equation; (B) echocardiography of PDA also reveals the pressure gradient between systemic and

pulmonary circulations that aids hemodynamic modeling (4); (C) in silico models may be developed for the remodeling of different layers of the DA; (D) a typical

pharmacokinetics model where blood flow rates are used to derive the drug amount in an organ. PA, pulmonary artery; Ao, Aorta; EC, endothelial cell.

shear stress induced by transmural interstitial flow acts on
the arterial media layer (Figure 1C) and induces prostaglandin
production (26). In the in vitro smooth muscle cell gel model of
(26), the production of prostaglandin E1 was enhanced with a 1
dyne/cm2 shear stress, but not by a 0.15 dyne/cm2 shear stress at
any time.

The modeling framework for arterial remodeling has been
proposed in several works (27, 28). For example, in such a model
for aneurysms where the arterial wall remodels to accommodate
complex arterial flows, the medial wall degradation is driven
by an inflammatory response, followed by the changes in the
distribution of collagen fibers. From mathematical modeling’s
perspective, the fibroblast-mediated collagen growth is governed
by a system of ordinary differential equations to regulate the
Transforming Growth Factor (TGF)-β, a key promoter of matrix
deposition (28). However, efforts are required to assess whether
these models are applicable to PDA and its closure.

DISCUSSION AND CONCLUSION

The unique anatomical structure of the DA is a “double-
edged-sword”. While it results in cardiac decompensation and
pulmonary distress syndrome, it may also provide the only life-
sustaining conduit to preserve pulmonary or systemic blood flow
(3). While many preterm infants receive surgical procedures or

pharmaceutical treatments for closing PDAs, it is still under
debate whether a more invasive approach (e.g., surgeries) should
be adopted, or a more conservative approach (e.g., machine
taking) be adopted PDA be left alone.

Given the challenges in designing clinical or experimental
protocols, in silicomodels are of great value to the studies ofmany
subtle phenomena of PDAs. For example, the ductus in preterm
infants is more sensitive to the vasodilating effects of nitric oxide
and prostaglandin than full-term infants (1). In silico models
could therefore be developed to check whether the arterial
constituents and blood flow contribute to this phenomenon. This
requires a multiscale approach where several in silico models are
linked: the flow in the PDA is solved through a 0D-1D model,
whereby the results are supplied to an arterial wall model of
PDA for its modeling. The former model occurs at the vessel
(millimeter) level, while the latter model occurs at cellular (e.g.,
collagen, micrometer) level.

An in-depth understanding of the underlying vascular
physiology will also aid drug development for PDA. One example
is that the drug for PDA, indomethacin, reduces renal, mesenteric
and cerebral blood flows due to its role as the inhibitor
of vasodilators, e.g., prostaglandin. Renal and cerebral flows
occur in organ-level scales, while drug molecules access celluar
membrane receptors at nanometer scales (3). A flow-limited
pharmacokinetics model requires the data of blood flow rate to
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induce the amount of drug distributed to the organ (Figure 1D).
Therefore, thoughts could be placed on coupling the blood flow
arriving at the PDA with the pharmacodynamics effect of the
drug, and the remodeling of the DA wall that spans tissue, cell
and molecule levels (29). The circulation of prostaglandin and its
signaling for the smooth muscle of the PDA provides an excellent
example for such a multiscale model. These events are at the
very core of the pathophysiology and clinical treatment of PDAs,
where the application of in silicomodels is yet to be tested.

Multiscale and multi-modality modeling is a promising
research direction in PDA and other arterial diseases in neonates
and infants. With such a strategy, biomechanical simulations are
connected with imaging and histological studies of the arterial
wall. A class of mechano-biological models for growth and
remodeling of the arterial wall and their intimate interaction
with hemodynamics, cell activity, and arterial wall mechanics are
described in (30). Specifically, in the work of (20), the three-
dimensional flow simulations for a subject-specific carotid artery
are compared with the endarterectomy specimen’s histological
maps, which could provide clues for cellular level models

linking to the wall shear stress (WSS) that triggers arterial
plaque. A roadmap for addressing the technical challenges for
incorporating the proposed growth and remodeling into existing
hemodynamic simulators are discussed in (29, 30).

In conclusion, we have provided a light literature review of
the pathophysiology of PDA, and some in silico models used for
blood flow and arterial wall modeling. We stress that a multiscale
paradigm needs to be adopted when developing future in silico
models for PDA and its treatment.
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