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The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce
the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing
artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is
proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly
noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the
correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian
elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA
method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and
wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal
technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda (λ), root mean square
error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a
supplement to algorithms currently in use.

1. Introduction

EEG signal is widely used for exploring the human brain
activity and is preferred over other physiological signals
because they can be used to detect directly brain electrical
activity changes over spans of millisecond time, whereas
functional magnetic resonance imaging (fMRI) has time
resolutions in seconds or minutes. Usually, EEG signal
suffers from various motion artifacts generated at the cap-
turing time. There are two main sources of artifact in
neural signals other than the machine and environment.
These are the muscular and ocular activities of the indi-
vidual which generate low-amplitude, low-frequency elec-
trical pulses that fall in filter range of sensors and
recording equipment.

The EEG signal is contaminated by various artifacts as
electrocardiogram (ECG), electrooculogram (EOG), and
electromyogram (EMG). The EMG artifact is of more
interest as it is having higher amplitude, broad spectrum,
and variable topographical distribution than EEG signal [1].
The EMG artifacts have lower autocorrelation than EEG
signal due to its wide frequency spectrum. Moreover, these
artifacts resemble as temporal white noise. Therefore, artifact
rejection is a fundamental research topic and iswell researched
in [2]. The EEMD is a data-driven and noise-assisted
approach which is applied to remove motion artifacts from
single-channel EEG signal [3].

A component-based automated separator of artifacts is
required to linearly decompose the signals into source com-
ponents. The components give the individual nature of
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information, where artifact information combines into sepa-
rate sources and reconstruction of signals without these
sources are claimed as artifact-free information. The perfor-
mance of blind source separation (BSS) methods as indepen-
dent component analysis (ICA) and CCA for EEG signal eye
blink artifact removal is compared in [4] and concluded that
CCA is more accurate and faster than ICA. The CCA algo-
rithm performs better than ICA for muscle artifact removal
because these artifacts are generated due to movement of
body muscle group. Moreover, these artifacts do not repre-
sent stereotyped topography [5]. Anastasiadou et al. [6]
applied CCA algorithm to remove muscle artifact from
EEG signal. Moreover, artifact removal approach is
improved by applying WT after CCA algorithm for auto-
matic detection and removal of muscle artifact from EEG
signal [7]. The cascaded combination of EEMD and CCA
techniques is applied for single-channel EEG artifact removal
in [8, 9]. The single-channel EEG signal is converted into the
multidimensional signal by EEMD technique. In CCA, a
second-order statistics is applied to segregate the artifact
components from the input signal and its performance is
compared and presented better in comparison of existing
wavelet denoising and EEMD-ICA cascaded algorithms.
Chen et al. [10] have improved the filtering approach by
applying EEMD and MCCA (multiset CCA) to remove
EMG with more computational time. To remove ocular
artifacts automatically, the cascaded combination of CCA
and WT algorithms is proposed in [11] and demonstrated
that the proposed method removes artifacts significantly with
preserving neural activity of the original signal. Safieddine
et al. [12] suggested that EEMD algorithm outperforms
over other stochastic and deterministic artifact removal
approaches and WT algorithm performs well in the case
of less noisy data.

An efficient cascaded approach EEMD-CCA-SWT is
found successful for EEG motion artifact removal [13]. The
combination of EEMD, CCA, and SWT approaches has been
applied for effective suppression of the motion artifact from
EEG signal. This three-stage cascaded approach removes
the artifacts effectively with increased computational cost.
This computational complexity is reduced in this research
paper by developing an existing correlation-based algorithm
with Gaussian elimination (GE) and inserted at the cascade
of EEMD-SWT, leading to EEMD-GECCA-SWT which is
the combination of EEMD and an improved approach
GECCA (Gaussian elimination canonical correlation analy-
sis) with SWT. This increased computational cost is effec-
tively reduced due to applying GECCA approach in place
of CCA. The left matrix division applied in GECCA allows
better estimates for the matrix inversion; therefore, it
improves the SWT filtering efficiency and thus improves
the overall efficiency of the EEG motion artifact removal.

The paper organization is as the following. The artifact
removal methods are recalled in Section 2, and then the
proposed algorithm is discussed in Section 3. Details of
applied EEG dataset is given in Section 4; results obtained
by methods are presented, compared in tabular form, and
detailed discussed in Section 5. Finally, conclusion is in
Section 6.

2. Artifact Removal Methods

2.1. Ensemble Empirical Mode Decomposition. The EEMD
algorithm decomposes a signal into a number of intrinsic
mode functions (IMFs) through an iterative method termed
as sifting [12]. At first level, the IMF1 is the mean of upper
and lower envelop of original EEG signal X t . Then residual
signal is obtained by subtracting IMF1 from X t . This
process is iterated till stopping criterion is fulfilled (residual
signal energy content is close to zero). The remaining
residual signal is

Pn t = Pn−1 t − IMFn t , 1

where Pn t = X t
Finally, the signal is reconstructed by adding all IMFs and

residual signal as

X t = Pn t + 〠
N

i=1
IMFi t 2

2.2. Gaussian Elimination Canonical Correlation Analysis
(GECCA). The standard existing CCA algorithm starts with
an assumption that X n and Y n are two sets of random
variables [4]. X n is the input vector of matrix and Y n is
defined as temporally correlated by 2-D valid convolution
operator from X n vectors using the linear convolution mask
1 0 1 as

Y n = conv2 X, 1 0 1 3

Merging both input vectors as

Z = X Y 4

If ρ is the maximum canonical correlation, Cxx, Cyy are
auto covariances of vectorsX andY , respectively, andCxy and
Cyx are the cross covariance between vectors X and Y . The
various possible correlationmatrixes are

Cxx = C 1 sx, 1 sx + β∗ eye sx , 5

where sx is the size of the X, sy is the size of the Y , β is the
predefined small residual constant which is set to 10−8 in this
paper which is used by standard CCA method [2], and eye is
the identity matrix with diagonal terms as 1 and all other
terms are zero. The termβ∗ eye sx is used in order to set
and maintain the initial nonzero value of the covariance
matrix Cxx. The small value of β does not affect the covari-
ance matrix values much.

Cxy = C 1 sx, sx + 1 sx + sy ,
Cyx = Cxy′,
Cyy = C sx + 1 sx + sy, sx + 1 sx + sy + ç∗ eye sy ,

Cyy−1 = inv Cyy

6

Two different canonical solutions are obtained from Z by
calculating the covariance as
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C = cov Z ′ 7

This is equivalent to two linear equations in X and Y
vector directions, respectively, as

p n = a∗X n ,
q n = b∗Y n , 8

where a and b are weight vectors and p n and q n are canon-
ical variates correspondent to X n and Y n , respectively.

The maximum correlation between variables a and b are
calculated as [8]

max ρ =
aTCxyb

aTCxxa bTCyyb
9

Now, the demixing matrixW is calculated by simplifying
(9) as

ρ2a = inv Cxx ∗Cxy∗ inv Cyy ∗Cyx∗ a, 10

ρ2b = inv Cxx ∗ Cxy ∗ inv Cyy ∗Cyx∗ b, 11

where ρ2 is calculated by obtaining Eigen values (k) of (10)
and (11) and further, a and b variables are equal to Eigen
vectors for the greatest value of k (Eigen value).

These weight vectors a and b are replaced in (8) to calcu-
late canonical variates p n and q n . Moreover, the demixing
matrix W can be calculated by inverse of estimated weight
vector W = a−1 . Finally, the source S n is estimated by
applying W and p n or q n as

S n =W′ p n 12

Thus, it is observed that standard CCA algorithm uses
the matrix inverse operation to solve the linear equations
by obtaining the maximum value of ρ2 for determining the
demixing matrix W.

In this research paper, a fast and efficient modified CCA
algorithm is proposed which uses the backslash or left matrix
division operator for solving the linear (10) and (11) to calcu-
late Eigen values. This backslash operator is fast and efficient
than the inverse operator. The remaining algorithm is similar
to the CCA approach. Let us define the linear (10) as

G = ρ2 = inv Cxx ∗Cxy ∗ inv Cyy ∗Cyx, 13

G = ρ2 = A∗B, 14

where

A = inv Cxx ∗Cxy = Cxx
−1 ∗Cxy , 15

B = inv Cyy ∗Cyx = Cyy
−1 ∗Cyx 16

The parameters A and B from linear (15) and (16) are
defined as

A∗Cxx = Cxy,
B∗Cyy = Cyx

17

Standard CCA method uses matrix inverse to obtain the
value of A and B. In this paper, the left matrix division is
proposed to solve these linear (15) and (16).

The left division operator as Cxx\Cxy can be defined as a
matrix division of Cxx into Cxy, which is equal to the solu-
tion of inv Cxx ∗Cxy. If Cxx is an N-by-N matrix and Cxy
is a column vector withN components or a matrix containing
several such columns, then A∗Cxx = Cxy equation can be
defined in terms of left division operator as A = Cxx\Cxy.

The similar solution can be defined for the matrix B. The
solution of (15) and (16) can be written as

A = Cxx\Cxy, 18

B = Cyy\Cyx 19

Equations (18) and (19) suggest that the role of inverse
operation is avoided to obtain the value of parameters A
and B. This will simplify the equation and thus computation
time too.

2.2.1. The Justification of Left Division Operator Employed
in GECCA. In order to prove left division operator, the
numerator and denominator are multiplied by numerator
transposed as

A = CxxT ∗Cxx\CxxT ∗Cxy,
B = CyyT ∗Cyy\CyyT ∗Cyx

20

By shuffling the order of operator by using Gaussian
elimination concept,

A = CxxT ∗ Cxx∗CxxT \Cxy, 21

B = CyyT ∗ Cyy∗CyyT \Cyx, 22

since Cxx and Cyy are N-by-N symmetric matrix and Cxy
and Cyx are column vectors with N components or a matrix
with several such columns.

Since Cxx∗CxxT = Cyy∗CyyT = 1, therefore, (21) and
(22) can be written as

A = CxxT ∗ 1 \Cxy, 23

B = CyyT ∗ 1 \Cyx 24

For symmetric and square matrix, CxxT = Cxx and
CyyT = Cyy

Then (23) and (24) are simplified as

A = Cxx\Cxy, 25

B = Cyy\Cyx 26

Replacing the values of A and B from (25) and (26) to
(14), the solution of G is obtained as

G = Cxx\Cxy ∗ Cyy\Cyx 27

The value of G is obtained without inverse operation by
just applying left division operator. This solution not only
saves the computation time but also increases the efficiency
of the CCA method with minimizing the error. The obtained
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G = ρ2 is the Eigen value with k in descending order, that is,
k1 > k2 > kn; a and b are the Eigen vector for the greatest value
of k.

Then the CCA component p n = p1, p2,…, pn are
obtained by placing the vector X n in (8), and sources are
expected by using the weighted demixing matrix from X by
using (12).

If A is a M ×N matrix with M ≤N and B is a column
vector with M components, or a matrix with several such
columns, then X = A\B is the solution in the least squares
sense to the under or over determined system of equations
A∗X = B. The effective rank K of A is determined from the
QR decomposition with pivoting. The solution X is com-
puted which has at most K nonzero components per column.

2.2.2. Benefits of GECCA over CCA Algorithm. The advantage
of GECCA Algorithm over CCA are as follows:

(1) The operation of CCA algorithm depends on the
inverse operation to find the demixing matrix. If the
input matrix is not a square matrix, then this CCA
algorithm fails. However, left division operator-
based GECCA algorithm provides a solution if input
matrix is not square.

(2) The CCA algorithm involves the inverse of the matrix
for their operation. The inverse operation is compu-
tationally complex and time-consuming. However,
proposed GECCA algorithm is faster than CCA for
obtaining the correlation-based source separation
by employing left division operator in place of inverse
operation.

(3) The proposed GECCA algorithm employs left divi-
sion operator. This operator allows better estimates
of the matrix inversion. These efficiently estimated
coefficients once applied to SWT filter improve the
SWT filtering efficiency thus improving the overall
efficiency of the motion artifact removal algorithm.

(4) The CCA algorithm operation is not consistent in
each situation. This issue can be overcome by the
proposed GECCA algorithm.

The above discussed efficient and fast correlation-based
algorithm applied with WT algorithm is discussed in the
subsequent section.

2.3. Wavelet Transform (WT). The artifacts available in the
EEG signal are suppressed with cascaded approach of
EEMD and GECCA. Although, some brain actions may be
disturbed due to high-frequency sensor noise and low-pass
and high-pass filter components. As these noise signal fre-
quencies will get overlap with the brain signals, then con-
ventional filtering technique cannot be utilized and thus
this WT is applied to take away unwanted noises from
EEG signal [12].

The most frequently applied wavelet transform is discrete
wavelet transform (DWT). In the case of EEG artifact
removal, preserving neural information of the signal is deter-
minant. Thus, some latest research shows that stationary

wavelet transform (SWT) is a powerful tool to remove arti-
facts of the signal with preserving the neural information of
original EEG signal [14].

SWT algorithm is translation invariant, so no down-
sampling of the data is involved. Translation-invariance is
achieved by removing the down- and upsamplers as in
the DWT and upsampling the filter coefficients by a factor
of 2 j−1 at the jth level of the algorithm. SWT is preferred
as it removes unpredictable behavior and noise randomness
in the EEG signal due to the motion artifacts remaining
after two-stage filtering of EEG signals. Therefore, EEG
signal gets smoothened over the length with containing
all their fundamental properties. Finally, proposed algo-
rithm based on discussed algorithm is discussed in the
next section.

3. Proposed Algorithm

The proposed artifact removal algorithm is as follows:

(1) Define the reference EEG data from the multichannel
data set for correlation match.

(2) The input artifact EEG channel is passed through
EEMD to decompose with 3 ensembles to convert
single-channel EEG into multichannel EEG data.

(3) Generated IMFs are passed to GECCA algorithm for
source separation.

(4) The GECCA output contains traces of artifacts in the
form of randomness and noise. Thus, the output of
GECCA is applied further to SWT algorithm for
effective artifact removal. The decomposition through
SWT is performed on the frequency domain of the
signal with Rigrsure thresholding.

(5) Pearson’s correlation coefficient is used for artifact
recognition and their suppression and finally recon-
structed to find the artifact-free signal.

(6) Parametric evolution is carried out based on SNR and
correlation improvement. The correlation is carried
out with respect to reference original EEG data
initially defined.

(7) The parametric evaluation of the proposed method is
done with existing motion artifact removal methods.

4. EEG Signal Data Set

The EEG data is a multichannel data considered from stan-
dard MIT scalp data set with 24 channels recorded with dif-
ferent electrodes. This dataset is available on PhysioNet. The
data is taken for 10 seconds and with 2560 samples/signals.
Sampling frequency is taken as 256Hz, and sampling interval
is of 0.00390625 sec. These data samples are reduced to 16
channels to satisfy the international standard of 10–20 chan-
nels. Figure 1 shows the first 16 channels of EEG data set
available online with chb01_01_edfm.mat available at Physi-
oNet provided by Shoeb [15]. It is observed from Figure 1
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that each channel is recorded with different electrode having
different motion characteristics.

In Figure 1(a), the channels 1, 5, 9, and 13 correspond to
the eye blinks as shown by negative high peaks (scale of 1000
and 2000). This was displayed and referenced by Shoeb [15].
These channels (1, 5, 9, and 13) have maximum motion
or artifacts since they have higher standard deviation
172.0907, 175.417, 136.129, and 170.467, respectively. In this
paper, channel numbers 4, 7, and 11 have the least artifact
effects (only with scale of 200) out of the 16 channel EEG
signal, this can be quantitatively justified by their lowest
mean value and standard deviation (on division by 10 scale)
as shown in Figure 1(b). The channel 7 in Figure 1(a) has the
smallest standard deviation (=4,364,903) and the smallest

absolute mean value (=0.228125) as shown in Figure 1(b)
which justifies the minimum motion artifacts. Thus, the
channel number 7 is used as a reference signal for
correlation-based artifact removal. This reference signal is
termed as original signal in the paper.

Figure 2 compares the original or reference EEG data
(channel number 7) with blue color and artifactual signals
(channel number 5) with red color. The channel 5 is shown
here for the comparison because it has maximum standard
deviation of 175.417 with maximum peak variations with
eye blink. It is observed from Figure 2 that raw EEG data
may suffer from either muscular motion artifact (shown
under green rectangle) or eye blink artifact (shown under
yellow rectangle) or both of them. The eye blink artifact
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Figure 1: (a) Multichannel EEG data set containing the muscular and eye blink motions. (b) Statistical properties of EEG channels.
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may cause amplitude increase about 10 times greater than the
original EEG data. The EOG artifact overlaps with EEG sig-
nal in impulsive form, while muscular motions cause random
broad spectrum amplitude variations. Nature of the reference
EEG data with and without artifacts is clearly shown in
Figures 2(b) and 2(c).

The eye blink artifact may cause amplitude increase
about 10 times greater than the original EEG data.
The EOG artifact overlaps with EEG signal in impulsive
form, while muscular motions cause random broad spec-
trum amplitude variations. In this paper, the muscular
motion artifact signals (as in channel 5) are naturally
generated at the time of EEG data capturing with elec-
trodes. Therefore, for the sake of clarity, the enhanced
version of reference and artifact signal is shown in
Figures 2(b) and 2(c).

5. Result and Discussion

The novel GECCA artifact removal approach is evaluated
on artifactual EEG channel number 5 and compared with
CCA algorithm. Comparison of the EEG artifact removal
methods for channel number 5 using CCA and GECCA
along with DWT is shown in Figure 3. The EEG signal
channel number 7 is considered as pure EEG signal. The
comparison of the green and yellow boxes in Figures 3(a)

and 3(b) suggests that blind source separation- (BSS-) based
proposed GECCA method removes the motion artifacts
significantly better than the existing CCA-based method.
Green rectangles are correspondent to CCA, and yellow
rectangles are correspondent to GECCA. It is observed that
the eye blink peaks with GECCA-DWT are minimized to half
that of the eye blink peaks with CCA-DWT (of the order of
±200 is reduced to around ±100) as mentioned in fourth
row of Figure 3. Moreover, the pattern of the second blink
is also much similar to the reference EEG signal after
GECCA-DWT.

The SWT algorithm is more proficient for artifact
removal of neural EEG signal in comparison to DWT algo-
rithm; consequently, the efficacy of proposed BSS approach
(GECCA) is also evaluated with SWT and compared with
CCA-based approaches. Figure 4 provides the comparison
of the EEG artifact removal methods using CCA and GECCA
along with SWT filtering. The artifact removal approaches
are applied on channel number 5, and performance is com-
pared with reference channel 7 EEG signal. The comparison
of the respective green and yellow boxes in Figures 4(a) and
4(b) suggests that the proposed GECCA method removes
the motion artifacts significantly better than the existing
CCA-based method. In addition, the vigilant observation
and comparison of the respective green rectangles in
Figure 4(a) and yellow rectangles in Figure 4(b) suggests that
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Figure 2: (a) Comparison of referenced channel 7 and artifact channel 5 for first 10 seconds. (b) Enhanced reference data channel 7.
(c) Artifact channel 5 for 3-4 seconds respective to yellow rectangle.
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GECCA with SWT removes the eye blink effect better than
CCA-SWT. It is observed that the eye blink peaks with
GECCA-SWT are minimized to half that of the eye blink
peaks with CCA-SWT (of the order of ±200 is reduced to
around ±100) as mentioned in the fourth row of Figure 4.
This could be quantitatively even better clear in the next
sections with evaluation parametric comparison encapsu-
lated in Table 1.

The 8 reconstructed signals after SWT-smoothened
approach are compared for CCA and GECCA as shown
in Figure 5. It is observed that GECCA method not only
preserves the information but also provides better and fast
estimates. This is concluded by comparing the 2nd and 4th
frequency bands as shown in Figures 5(c) and 5(d).

Moreover, the proposed artifact removal method
(EEMD-GECCA-SWT) outputs are compared for three

distinct EEG channel data, namely, Ch 9, Ch 4, and Ch 14, as
presented in Figure 6. In Figure 6, blue color presents the orig-
inal artifactual signal, whereas red color signal represents the
filtered output by the proposed approach. It is demonstrated
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Figure 4: Comparisons of EEG artifact removal methods (a) with CCA and SWT and (b) with GECCA and SWT.

Table 1: Parametric comparison of the artifact removal methods
with CCA and GECCA.

Algorithm With DWT filtering With SWT filtering

Parameters
EEMD-
CCA

EEMD-
GECCA

EEMD-
CCA

EEMD-
GECCA

MSE 69.3283 51.2272 70.2484 50.1366

Correlation
improvement

0.0019 0.0666 0.0103 0.0654

Lambda 66.8838 86.0016 66.2544 87.2759

DSNR 17.7248 29.0387 17.2621 30.2080
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Figure 3: Comparisons of EEG artifact removal methods (a) with CCA and DWT and (b) with GECCA and DWT.
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that proposed method of GECCA removes the eye blink
artifacts and motion artifacts significantly.

In order to evaluate the performance of the proposed
method, parametric evaluation is carried out as shown in
Table 1. The performance of artifact removal methods is car-
ried out for CCA and GECCAmethods along with DWT and
SWT filtering methods. It is observed that proposed method
EEMD-GECCA-SWT reduces the mean square error (MSE)
by around 15.81% and improves the DSNR performance sig-
nificantly. Moreover, the higher lambda (λ) value indicates
the improved filtering performance [8]. Table 1 shows that
GECCA-based artifact removal methods attain improved
lambda (λ) value. The vigilant observation of results on
Table 1 also presents better correlation improvement of
GECCA when compared to CCA, both for DWT and
SWT. The backslash operator provides better estimation
efficiency. Thus, Gaussian elimination-based approach pro-
vides improved correlation by using backslash operation
which is more efficient than the matrix inverse method.

The proposed method evaluation is also carried out with
the receiver operation characteristic (ROC) curve parameters
as shown in Table 2. The positive predictive value (PPV), neg-
ative predictive value (NPV), sensitivity (Sen), and specificity
(Spe) are calculated by true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) [16] as follows:

Sen = TP
TP + FN

, 28

Spe =
TN

TN + FP
, 29

PPV =
TP

TP + FP
,   30

NPV =
TN

TN + FN
31

The true positive (TP) indicates that the sample is
identified as an artifact when it was actually an artifact.
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Figure 5: Reconstructed IMFs after (a) CCA-SWT, (b) GECCA-SWT, and (c) comparison of CCA and GECCA for the 2nd and 4th
reconstructed EEMD (IMFs).
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False positive (FP) presents that the sample is identified as an
artifact but actually it was not. The false negative (FN) is an
indicator for the absence of artifact; however, the artifact
was present in the sample. Moreover, true negative (TN)
indicates the absence of the artifact when the artifact was
actually not present.

This ROC curve is a comparison plot between true posi-
tive rate or sensitivity and false positive rate (1− specificity)
[16] for accurate detection of artifact from EEG signal as
shown in Figure 7.

Figure 7(a) shows comparison of CCA and GECCA
approaches based on DWT. Blue and red color horizontal
line indicates the sensitivity of EEMD-CCA-DWT and
EEMD-GECCA-DWT artifact removal methods, respec-
tively. The sensitivity or true artifact detection rate for
CCA-based approach is 0.39961, whereas GECCA-based
approach presents improved and fast response with
increased value of 0.45156. However, Figure 7(b) shows
SWT-based approach comparison for CCA and GECCA
algorithm with the same blue and red color code. Both
approaches present almost similar sensitivity 0.43438 and
0.43789, respectively, as shown in Table 2. Although,
GECCA-based approach performs better than CCA artifact
removal algorithm. Moreover, the sensitivity is associated

with accuracy of the algorithm too. All the ROC parameters
as sensitivity, specificity, PPV, and NPV as mentioned
above in (28), (29), (30), and (31) are calculated for EEG
signal channel number 5 and tabulated for effective com-
parison of CCA and GECCA-based approaches as shown
in Table 2. It is observed that GECCA-based approach
shows improved sensitivity and thus better accuracy than
CCA-based approaches with both DWT and SWT filtering.
Moreover, specificity, PPV, and NPV also improve by
GECCA-based methods.

In addition, the efficiency of GECCA-based artifact
removal approach is also evaluated by considering ROC
parameters for most artifact contaminated channel numbers
(1, 3, 5, 6, 9, and 14) from Figure 1. Table 3 encapsulates all
the ROC parameters for filtering approach based on CCA
and GECCA. It is observed from Table 3 that GECCA-
based methods show improved accuracy in comparison to
CCA-based method except channel 1. Similarly, specificity,
PPV, and NPV parameters are also improved for most of
the channel which presents the success of GECCA-based
artifact removal approach.

The use of the left matrix division operator in the GECCA
algorithms executes faster than the inverse matrix method
used in CCA algorithm. Therefore, the proposed GECCA

Artifactual signal
Signal filtered with EEMD-GECCA
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Figure 6: Artifact removal consequences with the proposed (EEMD-GECCA-SWT) method.

Table 2: Comparison of the ROC parameters with CCA and GECCA for channel 5.

Algorithm DWT filtering with SWT filtering with
Parameters EEMD_CCA EEMD_GECCA EEMD_CCA EEMD_GECCA

Sensitivity 0.39961 0.45156 0.43438 0.43789

Specificity 0.74062 0.78477 0.65469 0.82656

Accuracy 57.0117% 61.8164% 54.4531% 63.2227%

PPV 60.6402% 67.7211% 55.7114% 71.6294%

NPV 55.2287% 58.8632% 53.6492% 59.5218%
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method is faster than the CCA.Moreover, left matrix division
allowsbetter estimates of thematrix inversionwhich improves
the SWT filtering efficiency thus improves the overall effi-
ciency of the Pearson’s correlation-based artifact removal.

This execution or computation speed is evaluated by
elapsed time. The elapsed time comparison of DWT and
SWT is shown in Figure 8(a) suggesting that SWT is faster
than DWT. Figure 8(b) compares the elapsed time for

GECCA and CCA with SWT. This presents that GECCA
with SWT algorithm computation time is faster than CCA
with SWT approach.

Figure 8(a) suggests that SWT is faster than DWT
approach for artifact removal. Thus, SWT elapsed time is
evaluated with CCA and GECCA approaches and concluded
that GECCA approach with SWT is faster and efficient for
EEG artifact removal.
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Figure 7: ROC plot comparison for CCA and GECCA (a) based on DWT and (b) based on SWT.

Table 3: Comparison of ROC parameters for 6 different EEG channels for proposed method.

Method ↓ Parameters in % Ch 1 Ch 3 Ch 5 Ch 6 Ch 9 Ch 14

With GECCA

Accuracy 57.3047 59.4141 63.2227 65.3125 63.0859 63.5352

PPV 57.18 57.0674 71.6294 75.0319 71.9241 59.802

NPV 55.3368 64.0936 59.5218 61.0298 59.3263 71.8612

With CCA

Accuracy 57.6953 58.8672 54.4531 60.2734 62.2461 61.2109

PPV 56.0578 62.6251 55.7114 64.7422 69.3399 58.2566

NPV 60.546 56.8332 53.6492 57.8837 58.9597 67.4574

Elapsed time with DWT
Elapsed time with SWT

48%
52%

(a) Elapsed time comparison for DWT and

SWT

59%

41%

Elapsed time with CCA SWT
Elapsed time with GECCA SWT

(b) Elapsed time comparison for CCA and

GECCA with SWT

Figure 8: (a) Elapsed time comparison for DWT and SWT approach and (b) elapsed time comparison for proposed GECCA method with
CCA method.
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6. Conclusion

The measurement and processing of EEG signal result in the
probability of signal contamination prominently through
motion artifacts which can obstruct the important features
and information quality existing in the original EEG signal.
To diagnose the human neurological diseases like epilepsy,
tumors, and problems associated with trauma [15], these
artifacts must be properly pruned assuring that there is no
loss of the main attributes of EEG signals. Thus, a novel algo-
rithm GECCA is introduced in cascade with EEMD and
SWT for fast and effective suppression of motion artifacts
from single-channel EEG signal. The proposed GECCA
method uses backslash operation to solve the linear equa-
tions. This improves the computation efficiency of the
methods. The application of SWT instead of DWT improves
the SNR performance of the method and faster than the
DWT method too. However, the proposed algorithm may
give over smoothening if not properly designed. The pro-
posed method based on GECCA is 18% faster than the con-
ventional CCA. The various evaluation parameters as del
signal to noise ratio (DSNR), lambda (λ), root mean square
error (RMSE), and ROC parameters are employed to com-
pare the performance of the proposed artifact removal
algorithm. The ROC parameter comparison suggested that
the improved accuracy is attained with GECCA algorithm
except for Ch 1. The optimum evaluation result shows the
success of proposed motion artifact removal method.
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