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ABSTRACT

PCR amplicon deep sequencing continues to trans-
form the investigation of genetic diversity in viral,
bacterial, and eukaryotic populations. In eukaryotic
populations such as Plasmodium falciparum infec-
tions, it is important to discriminate sequences dif-
fering by a single nucleotide polymorphism. In bacte-
rial populations, single-base resolution can provide
improved resolution towards species and strains.
Here, we introduce the SeekDeep suite built around
the qluster algorithm, which is capable of accurately
building de novo clusters representing true, biologi-
cal local haplotypes differing by just a single base. It
outperforms current software, particularly at low fre-
quencies and at low input read depths, whether re-
solving single-base differences or traditional OTUs.
SeekDeep is open source and works with all major
sequencing technologies, making it broadly useful in
a wide variety of applications of amplicon deep se-
quencing to extract accurate and maximal biologic
information.

INTRODUCTION

The development of targeted next-generation sequenc-
ing technologies has dramatically expanded research into
population-level genetic diversity, from the study of bac-
terial communities (1), intrahost variation in infections,
such as HIV and malaria (2–4), to heterogeneity in can-
cer tumors (5). In general, targeted amplicon deep sequenc-
ing utilizes areas of conserved sequence for amplification
primer placement, surrounding a region of interest contain-
ing known mutations or high sequence variability. Thou-
sands to millions of product molecules from the amplifi-
cation are then individually sequenced using current mas-

sively parallel techniques. To date, experimental and com-
putational techniques for deep sequencing have been driven
largely by microbiome 16S and targeted viral sequencing
where single-base resolution is not a necessity (2,6,7). While
initial microbiome work has focused on genus-level reso-
lution of 97% sequence identity, there is greater interest in
maximizing species and strain information in bacterial and
viral populations (8,9). In eukaryotic populations, such as
malaria strains, and for mutation detection, differentiation
at the single-nucleotide level resolution is a necessity (3,4).

The central bioinformatic challenge of all targeted deep
sequencing is to accurately resolve the true biologic differ-
ences that are obscured by the numerous errors introduced
during PCR amplification and sequencing. PCR errors in-
clude substitutions, insertions and deletions, as well as
chimeras formed by incomplete extension and subsequent
re-priming on a highly-similar (but non-identical) template
(Supplementary Figure S1). Sequencing error types and fre-
quencies tend to be platform specific, and are related to
either the sequencing polymerase or detection technology.
For instance, pyrosequencing-based technologies generate
numerous insertion-deletion (indel) errors, particularly in
homopolymers, since these technologies estimate the num-
ber of a particular nucleotide in succession based on the cu-
mulative fluorescent (454) or ion (Ion Torrent) signal. On
the other hand, Illumina technology mainly misidentifies
individual nucleotides, thus producing base-substitution er-
rors (10,11).

Numerous computational solutions have been developed
to correct for these errors including MetAmp(12), mini-
mum entropy decomposition (MED (13)), homopolymer
runs correction (Acacia (14)), clustering based on consis-
tency of inferred error models (DADA2 (15)), operational
taxonomic unit (OTU) clustering (UPARSE (16)), k-mer
correcting (KEC (17)), and many others (18,19). All of
these methods have advantages and disadvantages vis-a-vis
speed, sensitivity, specificity, flexibility, range of sequencing
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technologies, and types of errors corrected. In general, the
latest methods aim for greater resolution to allow better def-
inition of microbial populations. The ultimate goal is dis-
criminating sequences differing by a single base, which is
the quantum level of evolutionary change. Such resolution
will allow more detailed assessment of bacterial, viral, and
eukaryotic microbial populations particularly with longer
amplicons. Consistent single-base resolution is a particu-
lar necessity for studies of eukaryotic intra-species popu-
lations and for mutation detection. For example, in malaria
research, the sequence of a single amplicon is frequently
used to define strains within an infected individual, and
these sequences often differ by only a single base, repre-
sentative of a SNP within the larger parasite population. In
microbiome studies, single-base resolution of 16S amplicon
clustering extracts maximal information for downstream
analyses. Thus, we sought to develop new algorithms that
could consistently differentiate single-base differences in a
wide variety of conditions and applications including im-
proved accuracy and sensitivity of traditional operational
taxonomic units (OTUs).

Here, we present SeekDeep, an open-source software
suite for de novo (i.e reference free) analysis of amplicons
that is fast, sensitive, customizable, and is able to resolve se-
quences differing by only a single base, even at low frequen-
cies. At the center of SeekDeep is the algorithm qluster (for
quality clustering) that improves the correction of PCR and
sequencing errors in multiple key ways including base qual-
ity values and k-mer frequencies. SeekDeep also provides a
growing set of pre- and post-processing tools, including an
embedded web server to dynamically view results and an-
cillary data - particularly useful when working with large
datasets and numerous samples, a scenario which has be-
come common with targeted amplicon studies (3,4).

We compared SeekDeep to other recent best-in-class pro-
grams, DADA2 (15), MED (13) and UNOISE in USE-
ARCH (preprint https://doi.org/10.1101/081257), which
also aim for single-base resolution. All programs aim to
determine the local PCR amplicon haplotypes, herein re-
ferred to simply as haplotypes for brevity, that represent the
specific sequences (linked variation from the same chromo-
some) found in the biologic material prior to amplification.
We also compared OTU based clustering to commonly used
programs USEARCH (aka UCLUST/UPARSE) (16) and
to Swarm (20) which cannot resolve at the single-base level.
We focused our comparisons on programs that could work
with both Illumina and 454/Ion Torrent sequence and did
not compare to programs that only correct 454 and Ion Tor-
rent pyrosequencing errors like AmpliconNoise (6), Acacia
(14), and HECTOR (21) as we are interested in tools that
are broadly applicable in the field.

To ascertain the performance of these programs, we com-
pared results of in silico simulated datasets and in vitro
mixtures of isolated DNA representing mock infections of
both Plasmodium falciparum and bacterial communities.
The simulations focused on the quantitative accuracy of
discerning minor (low-abundance) haplotypes in terms of
how much they differ (1–13 bp equating to 99.6–95.6% sim-
ilarity) from a major (high-abundance) haplotype and how
much they differ from another minor haplotype unrelated
to all other haplotypes.

MATERIALS AND METHODS

Overview of the SeekDeep suite

SeekDeep is a software suite written in C++ centered
around de novo clustering providing rapid sample and in-
put sequence preprocessing, and postprocessing sample
and population summaries for further downstream anal-
ysis. SeekDeep can be utilized with most major sequenc-
ing technologies, including Ion Torrent, 454 and Illumina,
to swiftly analyze numerous samples and amplicons (Fig-
ure 1). SeekDeep provides start-to-finish workflow from
raw sequence files to population-level clustering and tabular
and graphical summaries. SeekDeep is freely available un-
der the GNU Lesser General Public License v3.0 and is ac-
tively developed on github (https://github.com/bailey-lab/
SeekDeep) while usage and details on the program can be
found at the SeekDeep website (http://baileylab.umassmed.
edu/SeekDeep/). SeekDeep has three main components, ex-
tractor, qluster and processClusters, that are central to gen-
erating clustering results, and an additional component,
popClusteringViewer, to aid in viewing and sharing the re-
sults.

extractor: de-multiplexing and read filtering

The subprogram extractor is generalized to process 454 and
Ion Torrent standard flowgram format (SFF) files and stan-
dard FASTQ files from any source. Extractor also demulti-
plexes samples and amplicons using a wide variety of bar-
code and primer schemes but can also operate on already
demultiplexed data (e.g. data that has been demultiplexed
by standard Illumina pipelines). Like most extraction pro-
grams, SeekDeep includes typical tools for initial filtering
based on read length, presence of primers, quality score
metrics and/or presence of ambiguous bases (i.e. Ns). Ex-
tractor first separates reads based on sample barcodes han-
dling a wide range of barcoding schemes that are commonly
employed. Next, multiple or a single pair of forward and
reverse primers are detected, demultiplexed and removed.
Filtering is then done on per base quality scores, and on ex-
pected read lengths which can be set per primer set. Also,
optional contamination filtering can be performed by sup-
plying the sequences of target regions whereby sequences
that differ drastically from these are removed.

See http://baileylab.umassmed.edu/SeekDeep/
extractor usage for full details on the options offered
by extractor.

qluster: rapid and accurate clustering based on quality

At the core of the SeekDeep package is the qluster algo-
rithm, which iteratively collapses amplicon reads based on
pairwise global alignments (Supplementary Figures S2 and
S3). It leverages sequencer-generated quality values to dis-
cern likely true differences from sequencing errors as well as
k-mer frequencies to filter out likely low abundance PCR er-
rors. Although SeekDeep can process multiple amplicons at
once, they are processed independently and haplotypes are
not built or phased across different amplicons. The cluster-
ing process is summarized below.

https://doi.org/10.1101/081257
https://github.com/bailey-lab/SeekDeep
http://baileylab.umassmed.edu/SeekDeep/
http://baileylab.umassmed.edu/SeekDeep/extractor_usage
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Figure 1. SeekDeep Overview. The depicted SeekDeep pipeline was designed to handle diverse experimental and computational workflows. In general,
input sequence data is organized as one or more groups of samples that can represent natural populations, different experimental conditions, or any other
defined classification. The pipeline is modular, allowing for substitute or additional processing at any step as well as access to the underlying data. The goal
of SeekDeep is to perform initial processing and clustering along with exploration of the results and quality control. Extraction is done by extractor to
demultiplex on sample barcodes (depicted here as colored squares at the beginning of sequences) and/or multiple primers if either are still present in input
data. Next, sequences are clustered at the sample level by qluster based on either presets for specific sequencing technologies or user defined parameters to
provide the requisite level of resolution (see Supplementary Figure S2 for how these errors are characterized). Finally the haplotypes generated by qluster
are analyzed by processClusters to take into account replicate comparisons (if available) and then compare sample haplotypes to generate population-level
haplotypes and statistics. Final results can be viewed with popClusteringViewer in an interactive HTML viewer. For more specific downstream analyses,
data can be outputted in multiple formats.
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First, reads lacking differences are collapsed into identi-
cal sequence clusters, which are then indexed for k-mers (de-
fault size 9). These initial identical clusters are then sorted
based on the associated number of reads. An iterative com-
parison process is then undertaken with successive rounds
of clustering allowing for an increasing number of differ-
ences to trigger the merger of two clusters. Majority-rule
consensus of the smallest clusters are pairwise aligned and
compared sequentially to the consensus of the largest clus-
ters to determine if they should be merged into one cluster
or remain as two separate clusters (Supplementary Figures
S2 and S3). Once the clusters have all been initially com-
pared and collapsed, if meeting threshold, the threshold for
collapse is stepwise-raised to allow for more divergence in a
subsequent iteration. At the end of each iteration majority-
rule consensus are generated to represent each of the clus-
ters. If consensus have changed due to the addition of new
sequences, the clusters are again compared at the same er-
ror thresholds before advancing to the next iteration. The
algorithm allows for flexibility not only in the number of
iterations, but also in the threshold number and type of dif-
ferences to collapse. Differences are classified as one-base
indels, two-base indels, greater than two-base indels, low-
quality mismatches, high-quality mismatches, and low k-
mer frequency mismatches. In this way, the clustering is sim-
ilar to operational taxonomic unit (OTU) percent identity
clustering, but instead of counting all differences equally we
are able to weigh the type and the quality of the difference
before determining whether to merge clusters––an impor-
tant feature for sequencing technology-aware clustering.

For clustering iterations, there are default collapse thresh-
old profiles for 454, Ion Torrent, and Illumina, or a custom
file can be supplied. The custom input parameter file al-
lows the expert user to balance sensitivity, specificity, and
speed for specific applications. The default profiles were
used for all analyses in this paper. For a 454/Ion Torrent
dataset, our standard error profile limits initial collapsing to
sequences differing by single-base indels, given that the pre-
dominant errors in these datasets are small indels caused
by homopolymer misestimation. On an Illumina dataset,
which is unlikely to have erroneous single-base indels but
more likely to have base miscalls, the default profile does not
collapse on indels but allows more low quality mismatches.
This framework makes the qluster algorithm highly exten-
sible and adaptable to changing error profiles in updated
or novel sequencing platforms. In terms of applications, the
ability to collapse to an exact number of differences allows
for biologic questions to be concretely addressed. For ex-
ample, settings could allow 2–3 mismatches when sequenc-
ing viruses like HIV to collapse the viral clouds, or settings
could be used to not allow a single high quality difference
when searching for point mutations in the domain of a gene
associated with drug resistance.

Differentiating mismatches with quality. The quality of any
mismatch is determined by assessing the quality scores of
the two mismatching bases in the pairwise alignment be-
tween clusters and the quality of the neighboring bases in
the region (22). A primary quality and a neighboring qual-
ity is calculated. For a mismatch to be considered high qual-
ity, it must exceed the set thresholds for both of these qual-

ity values. The number of neighboring bases included can
be changed; the default value is 2, which includes two bases
upstream and downstream for a total of four neighboring
bases examined. If a mismatch is determined to be a high
quality error, its k-mer frequency is also checked to deter-
mine if the mismatch is in a low frequency k-mer. To cal-
culate this, the mismatched base is centered in odd number
length k-mer (defaulting to 9). Next, the previously indexed
k-mers are checked to determine if mismatched centered k-
mer has a low frequency––either as user defined or as a per-
centage of total reads. The k-mer cutoff defaults to 1 read,
so if the k-mer occurs only once in the sample read set it is
counted as a low frequency error. The k-mer position within
the sequence can also be taken into account and helps to
improve the filtering when repeats are present.

Homopolymer indel weighting for 454 and Ion Torrent. In
the Ion Torrent and 454 technologies, the most common er-
rors are indels in homopolymers. Thus, for homopolymers,
indels are weighted to count less than other indels rather
than separately categorizing them. Weighting incorporates
the length by taking the size of the indel and dividing by
the average size of both homopolymer runs. For example,
a single-base indel found in a homopolymer of four bases
(meaning one read has four bases and the other has three
bases), the indel weight will be counted as 1/3.5 instead of
1.

Chimera detection. After clustering, the resultant haplo-
types can be examined for likely chimeras that may have
resulted from PCR (Supplementary Figure S1B). If repli-
cates are available, then potential chimeras not appearing
in all replicates will be removed. However, chimeras are of-
ten reproducible (23) which requires additional checks. This
is accomplished by pairwise comparison of all the putative
haplotypes from qluster checking to see if any cluster could
be the result of a composite of two other clusters, which
is similar to other approaches (6,15). Since, by definition,
parental haplotypes contributing to a cluster must preex-
ist for a chimera to form from them, we normally require
that the parents are of equal or greater abundance relative
to the potential chimera. By default, chimeras are called
when both parents are at least 2-fold greater in abundance
(user definable). This is a conservative approach to mini-
mize false discovery that prioritizes removal of artifactual
chimeras at the cost of potentially excluding low abundance
biologic recombinants, but for most applications chimeras
tend to be more numerous. To minimize the loss of true
biologic haplotypes in population analyses, we have imple-
mented an option in our population clustering to check if a
cluster marked as possibly chimeric appears in another sam-
ple as one of the dominant haplotypes. If such a sample is
found, the haplotype in question is, in that sample, unlikely
to be chimeric since ideally a chimera would have two par-
ents greater in abundance than itself. In this case, the puta-
tive chimera can be recovered in the original sample where
it was at low-abundance. It is important to note that this
step may not recover all true haplotypes as they might never
appear at a high abundance in another sample. Also, a low-
level chimera could be reinstated as a true haplotype. As
there is no optimal solution for defining chimeras, we rec-
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ommend every effort should be made during the PCR step
to decrease likelihood of chimera formation. Also, chimera
removal should be carefully considered and tuned, prefer-
ably with adequate controls, for the specific biology and ex-
periment conditions. Again, these are options and during
the sample and population clustering step it is possible to
keep all putative chimeras for further analysis or to apply
other chimera detection methods.

OTU clustering. SeekDeep also offers classical OTU clus-
tering, which is slightly modified to be calculated by tak-
ing into account only errors not characterized as low k-mer
frequency or low quality mismatches and optionally weigh-
ing indels in homopolymers less when analyzing 454 and
Ion Torrent data. In this way, the percent identity calculated
takes into account only likely biological differences between
sequences.

See http://baileylab.umassmed.edu/SeekDeep/
qluster usage for full qluster usage information.

processClusters: replicate and population comparisons

The qluster algorithm removes sequencing error and low
level PCR error, but rare high-abundance errors due to
polymerase errors in early rounds of PCR amplification
are not easily discriminated. Therefore, when available, the
SeekDeep pipeline uses PCR replicates (independent par-
allel amplifications of biologic sample aliquots) to identify
and remove such errors – as early PCR errors should occur
only in a single replicate, while biologic differences should
occur faithfully in all samples. To compare replicates, the
clustering results from each PCR are pooled and clustered
again using the qluster algorithm. After this cross-replicate
clustering, a replicate number cutoff is applied, which de-
faults to the number of replicates used; for example, if three
replicates were analyzed, the default would require all three
replicates contain a given haplotype. Though PCR repli-
cates are recommended they are not required for SeekDeep
to run.

Additionally, a cutoff for the fraction of total reads within
the cluster can also be given for comparison; if the average
fraction of a new cluster is not above the cutoff, the new
cluster is removed. This cutoff defaults to 0.005 (0.5%), a
generally conservative cutoff to minimize false haplotypes
for the vast majority of experimental conditions, but can be
set to more appropriate levels. For chimera filtering, if the
majority of a cluster is made up of reads marked as possi-
bly chimeric, it is also marked as chimeric and is removed
by default. Final relative abundances for haplotypes are re-
calculated after cutoffs have been applied and when repli-
cates are available the final abundances of a haplotype is cal-
culated by averaging the abundances across the replicates.

In addition to replicate processing and applying final cut-
offs, processClusters can also assess the haplotypes across
samples to provide population-level statistics. Once each
sample has been processed, information is then collated
across biologic samples within the defined population for
each haplotype.

popClusteringViewer: viewing and manipulating final results

A web server has been added to the SeekDeep suite to aid in
the visualization and exploration of final results; this can be
very helpful with large sample sets. The viewer is interactive
and allows rapid exploration of final consensus sequences
and the population haplotypes. It can also be used to ex-
tract subsets of the data. The viewer can easily be run on an
individual’s computer and can also be broadcast over the
internet to provide persistent access to additional individu-
als.

See http://baileylab.umassmed.edu/SeekDeep/
popClusteringViewer usage for full usage information.

Performance studies

To validate performance of the SeekDeep pipeline, we used
two types of data. The first was simulated 454 and Illu-
mina datasets. The second was actual PCR-amplified and
sequenced (by Ion Torrent, 454 and Illumina) control mix-
tures of DNA from strains of several different pathogens
to create mock mixed infections, which were collected from
several previous studies and work in our own lab. We also
used available mock bacterial communities. See below for a
detailed description of these datasets.

Simulated datasets. The 454 and Illumina simulated
datasets were created to test theoretical limits of detec-
tion for SeekDeep and other popular programs. The 454
datasets were simulated with 454sim (10) and Illumina
datasets were created with ART (11). While a specific Ion
Torrent simulator could not be found, the 454 simulator
should provide results representative of Ion Torrent pyrose-
quencing given their similarities. An in-house program was
used to generate the PCR error by simulating the rounds of
PCR where a PCR error that occurred in an earlier round
would appear at higher abundance than latter round errors,
a feature not available in other PCR simulators. The pro-
gram takes a starting DNA template amount, PCR error
rate, a fasta file with relative abundances for reference hap-
lotypes to simulate, and the number of rounds to simulate.
For these simulations we used 2000 copies of starting DNA
template, a PCR error rate of 3.5e–6 (representative of high-
fidelity polymerases) and 30 rounds of PCR. Given the com-
plexity of their formation, chimeras were not simulated.

Two mock haplotype mixtures were simulated to generate
multiple test conditions:

• Mock haplotype mixture 1 (minor versus major): This mix-
ture tests the ability of programs to discriminate minor
haplotypes at various levels of divergence and abundance
from a major abundant haplotype (Supplementary Fig-
ure S4A); thereby assessing the likelihood of minor hap-
lotypes being collapsed into the major as probable error.
Specifically, we simulated seven different haplotypes with
increasing base mismatches (decreasing % identity) of 1
(99.7%), 2 (99.4%), 3 (99.1%), 4 (98.8%), 6 (98.2%), 8
(97.6%) and 13 (96.1%) from the major haplotype, with
no shared mismatches between minor haplotypes to cre-
ate distances always greater to other minor haplotypes
than to the major haplotype, e.g. the minor haplotype

http://baileylab.umassmed.edu/SeekDeep/qluster_usage
http://baileylab.umassmed.edu/SeekDeep/popClusteringViewer_usage
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with one mismatch and the minor haplotype with 2 mis-
matches from the major haplotype are three mismatches
away from each other. The relative abundance of the mi-
nor haplotypes were simulated at 10%, 5%, 2%, 1%, 0.5%,
0.25%, 0.1% and 0.05% (Supplementary Figure S4B).

• Mock haplotype mixture 2 (minor versus minor pairs with
varying differences): This mixture examined the effect of
divergence between minor haplotype pairs unrelated to
the major haplotype (Supplementary Figure S4C). For
this, we simulated 15 different haplotypes, making one
major abundant haplotype and 14 minor haplotypes.
Each minor haplotype was paired with another closely
related minor haplotype, and each haplotype in the pair
differed by at least 15 mismatches from the other pairs or
to the major haplotype. Pairs had a range of base mis-
matches (% identity) consisting of 1 (99.7%), 2 (99.4%), 3
(99.1%), 4 (98.8%), 6 (98.2%), 8 (97.6%) and 13 (96.1%)
nucleotides. The relative abundances of the minor haplo-
types were simulated at 5%, 2%, 1%, 0.5%, 0.25%, 0.1%
and 0.05% with the rest composed of the major haplo-
type. (Supplementary Figure S4D).

For each mixture and minor haplotype abundance above,
we generated simulated datasets with two replicate PCRs
with 2,000–10,000 reads incrementing by 2000 and at 50 000
reads (to test the extremes of coverage) for a total of six dif-
ferent read depths (equivalent throughout to nonredundant
read or stitched-read coverage across the amplicon––or
equivalently per base). Each of these conditions was sim-
ulated 10 times and the results were averaged to get the best
estimate of program performance.

Known control mixture datasets. Five different experimen-
tal in vitro control mixtures were analyzed spanning the
common sequencing technologies; 454, Ion Torrent and Il-
lumina (Table 1). This included data from a eukaryotic
parasite (Plasmodium falciparum) and a mock microbiome.
Specifically these were:

• Plasmodium falciparum control mixtures, 454 and Ion
Torrent: Plasmodium falciparum control mixtures from
our labs were sequenced on Ion Torrent and 454 (Ta-
ble 1). These pools contained three different amplicons:
thrombospondin-related anonymous protein (TRAP)
(Supplementary Figure S5), apical membrane antigen 1
(AMA1) (Supplementary Figure S6), and circumsporo-
zoite protein (CSP) (Supplementary Figure S7). The
AMA1 and TRAP samples had the same mixture of five
strains: 40% K1, 30% 7G8, 15% Dd2, 10% RO33 and 5%
V1/S and the CSP region had a mixture of 40% K1, 30%
7G8, 20% DD2 and 10% RO33 (Supplementary Figures
S5 and S7).

• Plasmodium falciparum control mixtures, Illumina MiSeq:
Additionally, twenty-eight different regions, including
vaccine candidates and drug resistance genes, were PCR
amplified and sequenced with 2 × 250 paired-end Illu-
mina MiSeq from a control mixture of P. falciparum (Ta-
ble 1). The mixture consisted of the following strains
and relative abundances; 3D7 (∼79%), HB3 (∼7%), 7G8
(∼7%) and DD2 (∼7%). These targets included multiple
probes in important vaccine candidate regions in AMA1,

CSP and merozoite surface protein 1 (MSP1). Also
known drug resistance or associated loci were targeted
including apicoplast ribosomal protein S10 (ARPS10),
multidrug resistance protein 1 (MDR1), multidrug resis-
tance protein 2 (MDR2), kelch13 (K13), protein phos-
phatase (PPH), cytochrome b (CYTB), dihydrofolate
reductase thymidylate synthase (DHFR-TS), and dihy-
dropteroate synthase (DHPS) (Supplementary Figure
S8).

• Mock Microbiome: Previous mock microbiome datasets
by Salipante et al. were analyzed consisting of Illumina
paired-end sequencing of the V1 region of the 16S cod-
ing region with three PCR replicates (24). This mock mi-
crobiome mixture contains 20 species, but due to highly
similar copies within each species the number of expected
haplotypes at one-base resolution for the V1 region is 47.
Twenty of these haplotypes are only one base pair differ-
ent from another haplotype. The 3 PCR replicates were
deeply sequenced with approximately 800 000 reads each.
To analyze data at more commonly assessed read depths
(3,4,25) the replicates were downsampled to depths be-
tween 2000 and 20 000 increasing by intervals of 2000.
Each read depth was sampled 10 times each for all three
PCR replicates which generated a total of 300 different
randomly sampled datasets.

• Epstein-Barr Virus (EBV) and Human immunodeficiency
virus type 1 (HIV) controls: To provide a broader set of
biologic examples, we also examined available viral con-
trols of amplicon sequencing consisting of a previous
mock HIV mixture (26) and a mock EBV mixture from
our lab. The HIV dataset had five strains mixed together;
89.6 (10%), HXB2 (14%), YU2 (16%), NL4-3 (24%) and
JR-CSF (36%). The mixture was sequenced five different
times, two of the replicates were chosen and due to the
great depth (>600 000) were each downsampled to 10 000
reads 10 times each for a total of 20 randomly sampled
datasets. The EBV dataset was mixtures of an EBV type
1 strain and an EBV type 2 strain with frequencies rang-
ing from 1% to 90% and a monoclonal sample of the type
1 strain. See Table 1 for more details.
MED (version 2.1), DADA2 (version 1.0.3), UNOISE

(USEARCH version 9.2), and SeekDeep (version 2.4.0)
were each run on the datasets with default or recommended
parameters (See Additional file 2 for details). The program
ShoRAH (18) (version 1.1.0) was used on the viral datasets
to represent a standard program for viral analysis. DADA2
and UNOISE have their own chimera detection program;
MED and ShoRAH do not have a chimera-detection util-
ity, so our own chimera detection was applied to the final
results produced by MED and ShoRAH to make the re-
sults comparable. Each program has a different output for-
mat from which the consensus sequences and relative abun-
dances of final clusters were extracted. The expected abun-
dance of pooled species for each dataset was determined by
aligning raw reads to reference sequences for that dataset.
This calculation was performed because mock mixtures are
manually produced in the lab, making the targeted mixture
frequencies approximate. Common sources of experimen-
tal error arise by pipetting inaccuracy and imperfect am-
plification of the initial low abundance template leading to
the introduction of random noise during the early rounds
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of PCR. Final clustering results were compared to the ex-
pected reference sequences and to determine which refer-
ences were identified. For the paired-end Illumina data, se-
quences were stitched together with the program FLASH
v1.2.11 (27).

To evaluate performance of each program we determined
the number of expected haplotypes recovered––especially
one-off haplotypes - and how well their abundances were
predicted. We also determined the number and abundances
of false haplotypes created. Recovery was calculated as the
number of haplotypes exactly matching expected haplo-
types divided by the total number of haplotypes expected.
The haplotype recovery for MED, DADA2, and UNOISE
was calculated based on each replicate separately, while
SeekDeep’s haplotype recovery was calculated if it found
the expected haplotype in both replicates for a sample, as
this is its default. Thus, SeekDeep’s haplotype recovery is
conservative relative to the other programs given that a hap-
lotype must be present in both replicates to be counted as
recovered.

All analyses and program comparisons were run on an
Ubuntu 14.04 server with 64 2.4-GHz AMD processor
cores and 512 gigabytes (GB) of RAM to allow paralleliza-
tion of all simulations and in vitro datasets. For SeekDeep,
all analyses presented could also be run individually on a
laptop, a Macbook Pro with 16GB of RAM and a 4-core
2.4 GHz Intel i7 processor.

RESULTS

Simulation studies

First we compared the performance of SeekDeep to the
other programs on the two types of simulated mixtures:
mixtures where minor haplotypes are closely related to a
major haplotype which was at a much greater abundance
(Supplementary Figure S4A and B), and mixtures where a
minor haplotype was closely related to another minor hap-
lotype at the same abundance (Supplementary Figure S4C
and D). For all simulations, SeekDeep matched or outper-
formed MED, DADA2 and UNOISE in recovery of all hap-
lotypes, especially one-off haplotypes (Figure 2). SeekDeep
showed improved haplotype recovery compared to other
methods, which was accentuated as read depth, divergence
and abundance of haplotypes decreased (Figure 2, Supple-
mentary Figures S9–S11). Together these factors combined
to show marked differences in haplotype recovery for low-
abundance haplotypes differing by a single-base (i.e. one
off from the closest sequence) assessed with low numbers
of reads (Figure 2). SeekDeep was also better able to esti-
mate the expected abundance of haplotypes, demonstrated
by a lower root mean squared error (RMSE) (Supplemen-
tary Figures S12 and 13) compared to all programs. The
MED algorithm appears to have trouble as a haplotype’s
abundance increases, which could be due to the fact that
it was developed specifically for microbiome data where
the abundance of each haplotype usually does not exceed
more than 10%. Though SeekDeep creates more false hap-
lotypes than DADA2 and UNOISE, the abundance of the
false haplotypes is generally much lower than 0.1% while
DADA2, MED, and UNOISE were shown, especially for
454, to create false haplotypes greater than 1%, with most
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Figure 2. Haplotype recovery of simulated minor haplotypes differing by a single base. (A) Recovery of the haplotype differing by a single-base from a
major haplotype in the mixture described by Supplementary Figure S4A and B. (B) Recovery of the two minor haplotypes that are one-off from each
other described in the mixture described by Supplementary Figure S4C and D. For both panels, the y-axis represents the percent of simulations in which
the haplotype differing by a single-base was detected and the x-axis represents the simulated expected abundance of the minor haplotype. Data is broken
down by read depth (rows) and sequencing technology (columns), and bars are colored by program. Grey boxes at low-abundances represent combinations
where the depth is not sufficient for reads to be observed for the minor haplotypes. For each minor haplotype abundance, there are 20 simulations from
which DADA2, MED and UNOISE haplotype recovery was calculated as a percent of simulations in which the minor haplotype was detected. To best
emulate real world situations in which a user would use SeekDeep to analyze replicates, we used paired simulations with the requirement that SeekDeep
detect haplotypes in both simulations.
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falling between 0.1% and 1% (Supplementary Figure S14).
While DADA2 minimizes the number of false haplotypes
(Supplementary Figure S14), it also loses sensitivity partic-
ularly with lower read depth input (Figure 2, Supplemen-
tary Figure S10). Overall, SeekDeep shows greater consis-
tency at lower thresholds providing unbiased detection in
the face of variable haplotype abundance and input read
depths.

In vitro control mixtures

Plasmodium 454 and Ion Torrent pyrosequencing. Next we
evaluated the performance of haplotype detection for P.
falciparum lab strains for TRAP, AMA1 and CSP genes
on both 454 and Ion Torrent by creating mock mixtures
in the lab that were PCR amplified and then sequenced.
This provides important insight into factors that may not
be captured in the simulated sequence. For these in vitro
mixtures, both SeekDeep and MED were able to achieve
100% haplotype recovery across all samples while UNOISE
had 92% and DADA2 had 83% haplotype recovery (Fig-
ure 3A). Missed haplotypes usually represented the col-
lapse of low-abundance highly similar haplotypes. In part,
it also appeared that haplotype recovery for UNOISE and
DADA2 were hampered by indel errors especially in ho-
mopolymers which are difficult to overcome in Ion Torrent
and 454 data. This is a known issue as UNOISE’s web-
site states that UNOISE does not work well on Ion Tor-
rent and 454 data (http://www.drive5.com/usearch/manual/
faq unoise not illumina.html). All programs had apprecia-
ble false haplotypes (Figure 3C), and, while DADA2 had
the lowest number of false haplotypes, when they did oc-
cur they often had appreciable frequencies even exceeding
10%. Only SeekDeep limited the occurrence of false hap-
lotypes to low abundances (≤0.5%). Replicates again aided
all programs but dramatically reduced the number of false
haplotypes for SeekDeep. SeekDeep again showed the most
accurate abundance estimates (Figure 3B). Notably MED,
while demonstrating 100% haplotype recovery, consistently
underestimated abundances due to the numerous false hap-
lotypes at appreciable frequencies (Figure 3C).

Plasmodium Illumina MiSeq. We also evaluated a mock
mixture of P. falciparum across 23 loci that represent im-
portant markers of drug resistant or regions of diverse vari-
ation. These amplicons were PCR amplified and sequenced
on Illumina MiSeq 2 × 250 paired end. SeekDeep and MED
were able to achieve 100% haplotype recovery of all 23 tar-
gets while DADA2 and UNOISE both failed to detect nine
out of the 88 total haplotypes. Five haplotypes were missed
in common by both programs (Figure 4 and Supplementary
Figure S15). The haplotypes that UNOISE and DADA2
failed to detect where either related to another haplotype
by a single nucleotide or 1 large indel (∼10 nucleotides)
and ranged in abundance from 4 to 20%. SeekDeep demon-
strated a minimal number of false haplotypes on par with
UNOISE (Figure 4C). Unlike UNOISE and the other pro-
grams which report false haplotypes at abundances that can
exceed 10%, SeekDeep’s false haplotypes were all less than
0.8% abundance. Again SeekDeep showed the highest ac-
curacy in terms of predicting the abundance (Figure 4B).

Mock microbiome. We also tested SeekDeep on a mock
microbiome dataset previously described in Salipante et al.
(24), which had been amplified and sequenced in triplicate
on the Illumina platform. It contained 47 distinct 16S copies
(Supplementary Table S5). MED and SeekDeep were able
to recover 100% of all expected haplotypes in all datasets,
while DADA2 missed one haplotype. For all three replicates
of this dataset, DADA2 missed the L. monocytogenes.2 hap-
lotype, which had an expected abundance of 0.8% and is one
nucleotide different from the L. monocytogenes.5 haplotype
which had an expected abundance of 1.5%. UNOISE also
missed L. monocytogenes.2 in one replicate and in all three
replicates missed B. vulgatus.3 (0.035%), B. cereus.4 (0.33%)
and B. cereus.1 (0.36%), haplotypes, which all differ by one
nucleotide from another haplotype.

Downsampled mock microbiome. Because the mock mi-
crobiome dataset previously described in Salipante et al.
(24) was sequenced to a great depth (>600 000 reads), we
randomly downsampled the dataset to lower read depths
(2000–20 000) to test detection at levels of sequencing more
commonly employed in experiments. For the downsam-
pled mock microbiome dataset from Salipante et al. (24),
SeekDeep outperformed DADA2, MED, and UNOISE in
haplotype recovery of the twenty-three one-off haplotypes
(out of 47 total haplotypes in the dataset). The highest rel-
ative abundance of missed one-off haplotypes was ∼3% for
DADA2 and MED, 2% for UNOISE, but only 0.25% for
SeekDeep (Supplementary Figure S16). Again, SeekDeep
does well using fewer input reads in estimating the expected
abundance of the known haplotypes with a lower RMSE
(Supplementary Figure S17).

Viral strain mixtures. To further ensure that SeekDeep
works across a breadth of experiments and organisms, we
examined control mixtures of viral strains. All programs
performed well with respect to recall for both the EBV (Sup-
plementary Figure S18) and HIV (Supplementary Figure
S19) mixtures, which was not unexpected as these mixed
strain haplotypes all differed by more than a single base. Im-
portantly, SeekDeep’s specificity compared well. All other
programs other than SeekDeep created false haplotypes
>1% in the EBV dataset with the highest for each program
being 2% for UNOISE, 17% for MED, 22% for DADA2,
19% for ShoRAH and 0.65% for SeekDeep which was
mitigate but not completely removed with replicates (1%
for UNOISE, 16% for MED,14% for DADA2, 16% for
ShoRAH and 0.46% for SeekDeep). Programs performed
better on the HIV dataset and though SeekDeep had a large
number of false haplotypes all of them fell below the rec-
ommended cut off of 0.5% with the highest being at 0.35%.
This high amount of apparent false haplotypes at low fre-
quency was probably representative of both increased bi-
ologic variation due to HIV replication by error-prone re-
verse transcriptase as well as the elevated 65 rounds of PCR
amplification prior to sequencing.

Chimera detection

For these in vitro control mixtures, chimera formation and
abundance was highly variable depending upon the experi-
ment. The Illumina P. falciparum dataset only demonstrated

http://www.drive5.com/usearch/manual/faq_unoise_not_illumina.html
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Figure 3. In vitro Ion Torrent and 454 mixtures performance. (A) The mean haplotype recovery for in vitro pyrosequencing samples with bars showing
standard error. (B) Predicted abundance (y-axis) estimated by the various programs is plotted against the expected abundance (x-axis). Deviation from the
line of identity represents the error and is summarized by the correlation coefficient. (C) False haplotypes are shown on a jitterplot to demonstrate their
relative abundances and numbers (see Supplementary Table S3 for exact counts). Results are shown per program and also by the effect of utilizing or not
utilizing replicates (haplotypes are only accepted if they appear in both replicates).

3 chimeras across all 28 amplicions. The IonTorrent con-
trols demonstrated significant numbers of low abundance
chimeras. Across the seven samples there were a total of 186
false haplotypes of which 83% (155) were chimeras. These
IonTorrent false haplotypes generally showed higher abun-
dances relative to other false haplotypes and were highly-
reproducible abundances across replicates (R2 = 0.81–0.99;
Supplementary Figure S20). The differences in chimera for-
mation between datasets most likely originates from differ-
ences in the amount of input template and PCR conditions
as well as potentially the library preparation which involves
PCR. The mock microbiome showed minimal chimera for-
mation likely due to the decreased sequence relatedness and
greater amounts of starting template. Overall, the variabil-
ity in chimera occurrence rates along with their high-degree
of reproducibility within replicates emphasizes the need to
carefully consider the experimental conditions and the uti-
lization of experimental controls to determine the need and
optimal settings for chimera detection.

Traditional microbiome OTU analysis

In addition to providing single-base resolution between se-
quences, SeekDeep was designed to also allow users to de-
fine the needed level of resolution by setting either the num-
ber of bases or percent identity to create operational taxo-
nomic units (OTUs). We therefore compared SeekDeep to
older commonly used programs offering OTU level resolu-

tion that can operate on multiple platforms. In comparison
to USEARCH (i.e. UCLUST), Seekdeep showed both bet-
ter accuracy and precision clustering at 97% OTUs (Sup-
plementary Figure S21). Also, USEARCH at times mis-
constructs the OTUs, returning a consensus sequence that
is not one of the actual input haplotypes (Supplementary
Figure S21B). SeekDeep routinely returns the major haplo-
type within an OTU. We also compared to SWARM col-
lapsing on 1-base differences––the most sensitive setting
for SWARM (Supplementary Figure S22). Again SeekDeep
demonstrated better haplotype recovery and fewer false
haplotypes. Thus, SeekDeep provides more optimized OTU
definition, which again is more robust to varying read
depth.

Performance

Algorithm speed can be an important factor in terms of
practicality, and SeekDeep compares favorably with other
programs. While UNOISE is the fastest algorithm (Supple-
mentary Figure S23), this speed comes at a cost (Figure 2).
The proprietary algorithm in UNOISE works by collaps-
ing one-off errors if the ratio of abundance between two se-
quences is at a certain threshold, which precludes UNOISE
from detecting new haplotypes that differ by only one nu-
cleotide from the major haplotype in the population. This
aspect can be problematic when screening for cancer mu-
tations or pathogen drug resistance. Also UNOISE recom-
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Figure 4. In vitro Illumina P. falciparum performance. (A) The mean haplotype recovery for P. falciparum in vitro Illumina datasets with bars showing
standard error. (B) Predicted abundance (y-axis) estimated by the various programs plotted against the expected abundance (x-axis). Deviation from the
line of identity represents the error and is summarized by the correlation coefficient. (C) False haplotypes are shown on a jitterplot to demonstrate their
relative abundances and numbers (see Supplementary Table S4 for exact counts). No replicates were available for this dataset.

mends not using singlet sequences, decreasing haplotype re-
covery at lower read depths. This, in part, contributes to its
speed (Supplementary Figure S23) but decreases haplotype
recovery. Apart from UNOISE, SeekDeep is comparable in
speed to DADA2 and MED (Supplementary Figure S23).
In fact, for the mock microbiome data set (24), which had
∼800 000 for each of three replicates, the run times for the
programs were 2 h and 41 min for SeekDeep, 2 h and 40 min
for DADA2 and 1 h and 58 min for MED on standard hard-
ware as found in a personal computer. Given runtimes are
comparable, the built-in general pipelines for sample pro-
cessing make SeekDeep a potentially less-time consuming
option for the general user looking to process numerous
samples and multiple amplicons per sample.

DISCUSSION

With newer sequencing technologies increasing our ability
to probe a wide variety of biologic samples, the ability to
bioinformatically discern the full extent of sequence diver-
sity, even if only a single-base difference, is key to answer-
ing many important questions. Though all programs tested
are able to detect one-off haplotypes, SeekDeep is the only
one consistently able detect these haplotypes at lower fre-
quencies and at lower input read depths for all technologies
(Figure 2, Supplementary Figures S9–S11, S16). SeekDeep
performs well across a diverse set of simulations and in vitro
control data sets and provides a more favorable balance be-
tween haplotype recovery and false haplotypes such that

missed haplotypes and false calls are limited to the low-
est frequencies, usually below 0.25%. In fact, when apply-
ing 0.25% as a lower threshold, SeekDeep has near per-
fect haplotype recovery and precision (Supplementary Fig-
ure S24). We apply a slightly higher cutoff of 0.5% as the
default in processClusters, the final processing step, ensur-
ing high confidence in the called haplotypes. Essentially,
SeekDeep provides the ability to confidently detect haplo-
types across variable read depths regardless of haplotype
abundance, similarity or platform, a feature which is crucial
for maximizing experimental information and minimizing
biases. Minimizing bias is important for downstream anal-
yses such as time series that generally presume random de-
viations (28,29).

SeekDeep showed important differences in terms of hap-
lotype recovery and false haplotype creation compared to
other programs. While DADA2 creates a smaller number
of false haplotypes than SeekDeep, this comes at the cost
of missing low-abundance one-off haplotypes. Also, when
DADA2 does create a false haplotype it is generally at a
higher abundance than SeekDeep (Figures 3 and 4, Sup-
plementary Figure S14). DADA2 did not compare well at
lower read depths where haplotype recovery suffered re-
markably. Thus, for users of DADA2 it may be impor-
tant to ensure that all samples have deep read depth to
minimize biases. MED has good haplotype recovery but
also creates numerous false haplotypes, particularly high-
abundance haplotypes in samples with low diversity (Fig-
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ures 3 and 4, Supplementary Figure S14). SeekDeep’s bal-
ance between haplotype recovery and false haplotypes at
very low-abundances was by design. For subsequent aggre-
gate or longitudinal analyses across samples, low-level noise
in individual samples can often be better controlled across
the entire sample set. However, missing haplotypes or false
calls at appreciable levels are more difficult to compensate
for and can be a source of significant bias.

Importantly SeekDeep is extremely robust to sequence
quality or types of sequence variation. SeekDeep directly
utilizes the actual base quality of each sequencing read.
Thus, it is robust to sequences that are outliers with ex-
tremely poor quality. Unlike both MED and DADA2 that
require that input sequences be the same exact length,
SeekDeep can handle variable length input given it per-
forms optimal global alignments, and thus is adept at an-
alyzing sequences with insertions or deletions. Variable
length inputs are very common among Ion Torrent and 454
sequencing data.

Users can further optimize SeekDeep for more advanced
applications. It can flexibly cluster based on insert size, al-
lowing for the detection of biologically relevant insertions
such as nucleotide triplets consistent with an amino acid
change while filtering out homopolymer or smaller indels
that are particularly common in some sequencing platforms
such as IonTorrent. With SeekDeep, users can set the spe-
cific number of each type of alignment differences (indels
and/or SNPs) upon which to collapse clusters, enabling
concrete tuning for the specific biologic questions. For in-
stance, this allows a user to collapse haplotypes that differ
by one base, two bases, or traditional analyses collapsing to
97% or 99% OTUs and detect more divergent lower abun-
dance variants that may be only represented by a few se-
quences in a sample.

SeekDeep offers robust and flexible pre- and post-
clustering tools and workflows for rapidly preprocessing
numerous samples by demultiplexing barcodes, identifying
and removing primers, trimming, and cleaning sequence to
user specifications. After clustering, the tool set helps eval-
uate the sequence and perform initial data evaluation with
key sample and population statistics. SeekDeep has built-
in support for a number of steps including (i) scanning for
contamination, which is especially helpful, for example, in
Plasmodium datasets which can often be contaminated with
human DNA due to low relative amount of parasite DNA,
(ii) built-in support for incorporating replicate comparison
and (iii) support for analysis of multiple amplicon targets
at once. It also supports chimera detection and removal
akin to other programs which should be carefully consid-
ered and tuned based on experimental conditions, controls
and the biologic question of interest. SeekDeep also pro-
vides a dynamically interactive HTML viewer, which makes
it easy to explore differences between strains and has sup-
port for viewing results on subgroups in large sample sets
when given group metadata.

Overall, SeekDeep expands the potential for de novo am-
plicon clustering––particularly given its improved haplo-
type recovery at lower read depths for haplotypes differ-
ing by one base. This is crucial for projects that seek to
detect and quantify minority haplotypes that may be rep-
resented by a single SNP. Such projects are becoming in-

creasingly common in the oncology and infectious disease
fields. For example, when using marker regions to differenti-
ate bacterial strains, or when monitoring for pathogen drug-
resistance mutations, these sequences often only differ from
the wild type by a single base (30). Accurately quantifying
these low-abundance and genetically similar strains in these
cases is key.

In summary, SeekDeep can be widely applied to all forms
of amplicon deep sequencing to improve the haplotype re-
covery of highly-similar sequences while minimizing false
haplotypes across a broad range of relative frequencies,
read depths and platforms. This should allow users to max-
imize information extraction while minimizing biases in
their downstream analyses and conclusions. In addition, the
full SeekDeep suite of tools for pre- and post-processing will
speed clustering optimization and provide high-quality and
interpretable haplotype data for further analysis.

AVAILABILITY

Source code for the current stable release of SeekDeep can
be found at https://github.com/bailey-lab/SeekDeep and
full usage and tutorials can be found at the SeekDeep
website. For full install information see http://baileylab.
umassmed.edu/SeekDeep/installingSeekDeep.

The in vitro data can be found via their original pub-
lications. The simulation raw data and the P. falciparum
Illumina MiSeq data can be found at http://baileylab.
umassmed.edu/data/SeekDeepPaperData.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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