
Research Article
IoT Workflow Scheduling Using Intelligent Arithmetic
Optimization Algorithm in Fog Computing

Mohamed Abd Elaziz ,1,2,3,4,5 Laith Abualigah ,6,7 Rehab Ali Ibrahim ,1

and Ibrahim Attiya 1,2

1Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
2Academy of Scientific Research and Technology (ASRT), 101 Qasr Al Aini St., Cairo PO Box 11516, Cairo, Egypt
3Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, UAE
4Faculty of Computer Science Engineering, Galala University, Suze 435611, Egypt
5School of Computer Science and Robotics, Tomsk Polytechnic University, Tomsk 634050, Russia
6Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
7School of Computer Sciences, Universiti Sains Malaysia, Gelugor, Pulau Pinang 11800, Malaysia

Correspondence should be addressed to Ibrahim Attiya; ibrahimateya@yahoo.com

Received 19 July 2021; Revised 28 October 2021; Accepted 29 November 2021; Published 24 December 2021

Academic Editor: Miaolei Zhou

Copyright © 2021 Mohamed Abd Elaziz et al.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Instead of the cloud, the Internet of things (IoT) activities are offloaded into fog computing to boost the quality of services (QoSs)
needed by many applications. However, the availability of continuous computing resources on fog computing servers is one of the
restrictions for IoT applications since transmitting the large amount of data generated using IoT devices would create network
traffic and cause an increase in computational overhead.)erefore, task scheduling is the main problem that needs to be solved
efficiently.)is study proposes an energy-aware model using an enhanced arithmetic optimization algorithm (AOA) method
called AOAM, which addresses fog computing’s job scheduling problem to maximize users’ QoSs by maximizing the makespan
measure. In the proposed AOAM, we enhanced the conventional AOA searchability using the marine predators algorithm (MPA)
search operators to address the diversity of the used solutions and local optimum problems.)e proposed AOAM is validated
using several parameters, including various clients, data centers, hosts, virtual machines, tasks, and standard evaluation measures,
including the energy and makespan.)e obtained results are compared with other state-of-the-art methods; it showed that
AOAM is promising and solved task scheduling effectively compared with the other comparative methods.

1. Introduction

)e Internet of things (IoT) has recently become an at-
tractive topic in network applications, which deal with
various connection-based Internet devices [1, 2]. In IoT,
popular intelligent tools, such as mobile devices, smart-
phones, pads, laptops, smart cars, and sensor nodes, are
increased by employing different items, such as sensors,
modern intelligent appliances, cameras, defense methods,
smart watches, robots, and transports [3]. IoT’s primary
purpose is to offer different applications and services, for
example, manufacturing, transportation, medical treatment,

transfer instrument, energy management, health care, and
industrialization.)ese IoT utilizations mainly generate an
enormous volume of data that necessitate being processed,
collected, stored, and analyzed to gain valuable reports to
accomplish the user’s demands and interests [4, 5].)e
massive number of IoT applications’ characteristics is pro-
liferating and demanding a high processing capability and
experience that even the standard smartest devices cannot
currently coordinate [6, 7].

Cloud environments are considered a powerful platform
to fortify and support IoT populations. Cloud computing
(CC) is the on-demand availability of network machine

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 9114113, 14 pages
https://doi.org/10.1155/2021/9114113

mailto:ibrahimateya@yahoo.com
https://orcid.org/0000-0002-7682-6269
https://orcid.org/0000-0002-2203-4549
https://orcid.org/0000-0002-4340-1934
https://orcid.org/0000-0003-3313-2299
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9114113

resources, particularly storage and computing capability,
without immediate effective control by the end user. CC is
commonly utilized to define data centers possible to various
users across the Internet [8]. Several limitations of modern
smart things, such as storage capacity, battery continuance,
network devices, home appliances, and treatment ability, can
be determined by finding the optimal condition demand and
executing specific jobs in strong computing ecosystems, such
as fog and cloud computing, while additionally giving easy
tasks for smart things to succeed. A recently distributed
computing environment, fog computing (FC), promotes IoT
ecosystems [9]. It is a heterogeneous computing paradigm
composed of machines named the fog nodes, which en-
courages applications, maintains meaningful data, and
distributes connection capacity. Recap fog computing is an
updated cloud computing version by distributing intelli-
gence devices based on exchangeable users [10, 11].)e
scheduling approach is employed to produce high and cost-
effectiveness over fog connections. Fog computing provides
less response time and fewer transportation difficulties in the
system [12], but this will produce additional difficulties for
task scheduling and resource allocation.)ese difficulties
need to be addressed.

)e fog computing is organized over a three-layer
network as presented in Figure 1.)e top layer is the cloud
computing center region, typically covered by cloud com-
puting collecting, warehousing, and preparing a vast amount
of tasks.)e middle fog-adding part generally is covered by
fog nodes with particular computing energy and supports
portability.)e bottom layer is the IoT design region of
users, which typically involved smartphones, laptops, cars,
sensors, PC machines, etc. [13].

Task scheduling has an expanded distribution framework
in cloud computing. Still, many things affect job efficiencies,
such as varying loads and extreme usage of resources [14].
)is process creates a long latency and weights out over the
data center; therefore, the advent of FC is significant [15]. FC
task scheduling is the prevalent underlying issue of changing
the specifications and allocating resources [16].)ere are
several user specifications for IoT environments. Simulta-
neously, the FC device’s service quality is slightly better than
the cloud computing platform’s service quality.

Effectively designating tasks in FC and designating them
as per the users’ requirements to ensure optimal scheduling
are a big issue that needs to be handled.)e multitask
scheduling topic’s time complexity is known to be NP-hard
[1]; the literature has also recommended numerous intel-
ligence optimization techniques [17, 18]. Li et al. [19] ad-
vanced a new resource scheduling approach by integrating
the fuzzy clustering algorithm along with particle swarm
optimization to improve user satisfaction in fog environ-
ments. In [20], Nguyen et al. suggested an optimization
method for dealing with IoTdevices in FC systems to address
the work scheduling problem. To execute many tasks in the
cloud-fog networks, the suggested approach’s critical goal is
to achieve an optimum balance between time cost and work
arrangements. A novel workflow scheduling strategy focused
on utilizing an enhanced variant of the ant colony algorithm
in multiple processor ecosystems was proposed by Boveiri

et al. in [21]. A new advanced algorithmwas implemented by
Tong et al. in [22] by integrating the power of the neural
network and the Q-learning method, specifically the allo-
cation of Q-learning tasks. In cloud computing technology,
the suggested algorithm is aimed at solving IoT workflow
scheduling.

Yang et al. in [23] introduced a new task allocation
approach focused on utilizing the game technique to
maximize the efficiency of the Internet objects activities in
CC methods. A multi-objective optimization technique is
suggested in [13] to address the job scheduling in FC eco-
systems. In this analysis, a couple of principal variables are
determined: the output rate and the allocation of resources.
In [24], Mtshali et al. conducted a workflow scheduling
scheme according to a visualization approach to create a
helpful approach that can evaluate the optimum energy
damage in fog computation circumstances with a low delay.
A work scheduling method utilizing the moth-flame opti-
mizer to determine a collection of jobs for FC nodes was
proposed by Ghobaei-Arani et al. in [25].)is strategy
aimed to achieve QoS satisfaction by minimizing the overall
performance time of the tasks. A modern intelligent task
scheduling approach utilizing a gray wolf optimizer to ad-
dress CC challenges was suggested by Abualigah et al. in
[16].)is approach aimed to find the optimum cost of time
and resource distribution of the instrument’s question. Zeng
et al. in [26] proposed the job scheduling approach in FC
ecosystems to support secured devices.)e suggested ap-
proach has developed an optimized approach to schedule
tasks and manage the resources with reduced task execution
time to facilitate user operation.

Abdel-Basset et al. in [27] introduced a multi-objective
strategy to address the task scheduling for multiprocessor
systems using the adjusted sine-cosine optimizer.)e
proposed method optimizes the makespan and energy.)e
proposed method is analyzed with several common multi-
objective methods: it obtained superior results in most of the
test cases. Xueying Guo introduced a CC approach for
scheduling based on using multi-objective optimization
based on a self-defense mechanism [28]. Several factors are
taken in this research including least time, load balance, and
the cost function.)e empirical results revealed that the
proposed method enhanced the performance of the original
method and obtained better scheduling results compared
with other methods.

)e general results of the task scheduling in the fog
computing domain still need further investigation to obtain
better results from the given studies. However, the latest
developments can be better in regard to energy loss and
makespan measures.)us, we found a potential direction to
investigate workflow scheduling in FC further. In the lit-
erature, it is also clear that the most suitable methods that
have been successfully used in this domain are the modified
and improved optimization methods. As observed, a new
advanced approach using the improved technique is needed
to solve the scheduling problems.)e need of finding a new
method to solve various task scheduling problems has be-
come very important as this time the demands of the IoT
applications in cloud computing become more and more.

2 Computational Intelligence and Neuroscience

In the same context, arithmetic optimization algorithm
(AOA) is an evolutionary metaheuristic technique pro-
posed by Abualigah et al. in [29]. Evolutionary algorithms
proved their ability to address various real-world engi-
neering problems [30], which motivated us to conduct this
research using the recently introduced evolutionary opti-
mization method (i.e., AOA). AOA employs the distri-
bution behavior of the leading arithmetic operators in
mathematical science, including multiplication (M), divi-
sion (D), subtraction (S), and addition (A).)is algorithm
was recently successfully employed to address various
complicated optimization problems, such as classical
benchmark functions, advanced CEC2005 benchmark
functions, and real-world engineering design problems.
However, the performance of AOA still requires more
improvement, especially during the exploitation phase.
)is motivated us to enhance the ability of AOA and apply
it to real-world problems. In this research, an intelligent
IoT application workflow scheduling method is proposed
based on the use of the AOA in FC ecosystems, called
AOAM.)e suggested method improved the conventional
AOA using effective and powerful operators from the MPA
[31]. In general, MPA is a metaheuristic technique pro-
posed to solve various engineering problems. It is inspired
by the general foraging approach, namely Levy distribution
and Brownian movements in ocean predators and optimal
defiance rate method in biological communication between
predator and prey.

AOA and MPA operatives’ advantages are linked to
achieve a robust method to tackle the task scheduling
problems efficiently.)e proposed approach seeks to op-
timize the total energy consumption and makespan time

values experimented in this study to test IoT devices’ QoS
specifications. Comprehensive experiments with different
datasets and task sizes validate the proposed AOAM per-
formance.)e achieved results demonstrate that the sug-
gested AOAM gets more excellent results in almost all
analysis scenarios. It is a powerful and promising task
scheduling approach compared with other well-known
comparative methods reported before.

)e main improvements of this study are listed as
follows:

(i) An intelligent hybrid workflow scheduling ap-
proach is proposed to utilize the arithmetic opti-
mization algorithm (AOA) for IoTdevice utilization
in fog computing environments

(ii) We analyzed IoT devices’ QoS demands in terms of
total energy consumption and makespan measures

(iii) We assessed the effectiveness of the developed
AOAM system in terms of several different stan-
dard evaluation criteria by providing compre-
hensive experiments with different task utilization
scenarios

)is study’s structure is rendered as follows: Section 2
presents the problem formulation and fitness function used
to handle the task scheduling problem. Traditional arith-
metic optimization algorithm and MPA are discussed in
Section 3.)e suggested IoT task scheduling using the
enhanced optimization of AOA is given in Section 4. In
Section 5, the experimental results and discussion are
provided. In Section 6, we concluded the successes and
proposed future work.

Cloud

Fog Fog Fog

End devices

Figure 1: Fog computing structure.

Computational Intelligence and Neuroscience 3

2. Model and Problem Description

)is part explains the system design and the communication
among various elements involved in the task scheduling
phase of the suggested system.)e task scheduling problem
is then formulated.

2.1. System Model.)is study assumes that the fog broker
built in the fog layer is the main component of the suggested
framework.)e fog broker consists of three primary parts:
task receiver, cloud-fog information duty, and task scheduler
(TS).)e task receiver gets all task demands obtained from
IoT things and subscribers.)is component manages the
IoT tasks’ characteristics and service requirements and then
transmits them to the task scheduler.)e cloud-fog infor-
mation service gathers and monitors status reports of the
resources possible. Also, it gives the computing nodes’ status
with the TS to better prepare proper schedule decisions.)e
TS deals with task scheduling by assigning the task requests
to the relevant computing nodes following the task char-
acteristics and the available resources’ capabilities. Finally,
handling the task applications is collected and returned to
the fog mediator, which forwards them to the corresponding
customers.

2.2. Problem Description. In this section, we introduce the
mathematical description of the task scheduling problem.
Consider there are n independent tasks
(T � T1, T2, T3, . . . , Tn􏼈 􏼉) that are received by the fog me-
diator to be passed through the CC and FC environments.
)ese tasks have properties such as input/output file size,
memory requirement, and task length (millions of in-
structions (MI)). In addition, assume that the system of
cloud-fog contains a set of m computing nodes (CN) that
consists of mcloud and mFog nodes (i.e., CN � mcloud ∪mFog).
Each CNj, j � 1, 2, . . . , m holds its characteristics such as
storage capacity, memory size, network bandwidth, and
CPU processing rate (millions of instructions per second
(MIPS)).

)erefore, the expected computing time of Tk, k � 1, 2,

. . . , n requests on CNj, j � 1, 2, . . . , m is given by ECT and
the task scheduler used it to determine the suitable schedule
decision [32]. In general, the ECT of the task Tk on CNj is
represented by ECTk,j and computed using the following
equation:

ECTk,j �
TLk

Pj

. (1)

In equation (1), Pj denotes the processing speed of CNj

and TLk denotes the length of task Tk.)e makespan (MK)
computed for a schedule X is given as follows:

MK(X) � max
j∈1,2,...,m

􏽘

n

k�1
ECTk,j. (2)

)e energy consumption of the server represents nearly
60% of its active state.)e energy consumption of CNj is
represented by the energy consumed in its idle and active

states. Also, the idle time of each CNj is denoted by its
execution time subtracted from its makespan. So, the energy
consumption of CNj (in terms of Joules) can be formulated
as follows:

E CNj􏼐 􏼑 � Etj × bj + MK − Etj􏼐 􏼑 × aj􏼐 􏼑 × Pj, (3)

bj � 10−8
× P

2
j , (4)

aj � 0.6 × bj. (5)

In equation (3), Etj and MK represent the total execution
time and makespan of CNj. bj denotes the consumed energy
in the active state for CNj.)e total energy consumption
(Toteng) in cloud-fog environment can be calculated as follows:

Toteng � 􏽘
m

j�1
E CNj􏼐 􏼑. (6)

2.3. Fitness Function. In this portion, the formulation of the
fitness function used to determine the solution’s quality for
the task scheduling problem is given. Our objective is to
optimize the makespan and total energy consumption since
both have major influence on the overall performance of the
fog system.)is problem is considered a bi-objective
problem, and the fitness function can be formalized as
follows:

Fit � η × Toteng +(1 − η) × MK, (7)

where η denotes the balance parameter between the two
factors of the fitness function. Hence, our task scheduling
objective is to minimize Fit. In general, the weighted sum
approach is used to solve the current bi-objective optimi-
zation problem (i.e., makespan and total energy con-
sumption).)is approach has high ability to determine a
single unique solution for the tested problem. Followed
[33, 34], the minimization of equation (7) is always Pareto
optimal.

3. Algorithm Background

3.1. Arithmetic Optimization Algorithm (AOA). Within this
section, the mathematical inspiration of arithmetic opti-
mization algorithm (AOA) [29] as metaheuristic techniques
is introduced. In general, AOA emulates the function of the
basic arithmetic operators (i.e., subtraction S, addition (A),
division (D), and multiplication (M)).

AOA starts with building the initial candidate solutions
(X), which consists of N solutions, as given in

X �

x1,1 · · · x1,j x1,n−1 x1,n

x2,1 · · · x2,j · · · x2,n

⋮ ⋮ ⋮ ⋮ ⋮

xN−1,1 · · · xN−1,j · · · xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n

⎡⎢⎢⎢⎣

⎤⎥⎥⎥⎦

, (8)

4 Computational Intelligence and Neuroscience

where n represents each solution’s dimension, and then,
AOA computes the fitness value of Xi, i � 1, 2 . . . , N and
finds the best solution Xb.)en, the solutions (X) are
updated according to either the exploitation phase or the
exploration phase, and this is determined based on the value
of the math optimizer accelerated (MOA) function for-
mulated as follows:

MOA(t) � MinM + t ×
MaxM − MinM

tmax
􏼠 􏼡, (9)

where t denotes the current iteration, and MaxM and MinM

refer to the accelerated function’s maximum and minimum
values, respectively.

In the exploration phase, the updating process is
performed using the division (D) or multiplication (M)
operators. Followed [29], these operators are used to ex-
plore the search space to discover the infeasible region.)e
mathematical formulation of updating each solution
(Xi, i � 1, 2, . . . , N) in the current population X, based on
the current best solution Xb at iteration t, is given as
follows:

Xi,j(t + 1) �

Xb,j

(MOP + ε)
× Dmj + LBj􏼐 􏼑, if r2< 0.5,

Xb,j × MOP × Dmj + LBj􏼐 􏼑, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

In equation (10), Dmj � Dj × μUBj and LBj are
boundaries of search space at jth dimension.
Dj � (UBj − LBj), and ε is very small number to avoid
division by zero. μ � 0.5 refers to a control parameter value,
whereas MOP denotes the probability of the math optimizer,
which is formulated as follows:

MOP(t) � 1 −
t
1/α

tmax1/α
. (11)

In equation (11), tmax signifies the maximum number of
iterations. α � 5 is a dynamic parameter used to specify the
precision of exploitation search method.

Moreover, in the exploitation phase, the addition (A)
and subtraction (S) are used to update the solutions (X)
inside the discovered feasible region.)e formulation of this
updating process is given as follows:

Xi,j(t + 1) �
Xb,j − MOP × Dj × μ + LBj􏼐 􏼑, r3< 0.5,

Xb,j + MOP × Dj × μ + LBj􏼐 􏼑, otherwise.

⎧⎪⎨

⎪⎩

(12)

In equation (12), r3 ∈ [0, 1] refers to a random number
applied to control the process of using either the subtraction
operator or the addition operator.

)ereafter, the updating process of the solutions is re-
peated until reaching the stop conditions and then returning
the best solution Xb.)e details of AOA are outlined in
Algorithm 1.

3.2.Marine PredatorsAlgorithm.)is section introduces the
steps of the marine predators algorithm (MPA) [31]. In
general, MPA emulates the behavior of predators to catch
the prey.)e first step in MPA is to produce a set of N

solutions X using the following equation:

X � LB + rand ×(UB − LB), (13)

where rand ∈ [0, 1] denotes a random number. LB and UB
are the limit boundaries of search space [35].)en, the Elite
matrix is constructed as formulated in the following
equation:

Elite �

X
1
11 X

1
12 . . . X

1
1 d

X
1
21 X

1
22 . . . X

1
2 d

.

X
1
n1 X

1
n2 . . . X

1
n d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

)e process of updating the solutions is performed
through three stages [36], and the details of these stages are
given as follows:

(1) In the first stage, the prey is faster than the predator.
So, the predator still moves without stopping and
this happens during the first third of the optimiza-
tion period.)e mathematical formulation of
updating the position of prey is given as follows:

Si � RB × Elitei − RB × Xi(􏼁, i � 1, 2, . . . , N, (15)

Xi � Xi + P × R × Si, P � 0.5. (16)

In equation (16), R ∈ [0, 1] denotes a random
number and RB represents a Brownian motion value.

(2) In the second stage, it is considered that the prey and
the predator have the same velocity.)is happens
during the middle interval of the period.)e
predator and prey’s movement is simulated using the
Brownian technique and the Levy flight technique,
respectively. Within this stage, X is divided into
halves; the first half is updated using the following
equations:

Xi � Xi + P × R × Si, (17)

Si � RL × Elitei − RL × Xi(􏼁, i � 1, 2, . . . , N. (18)

In equation (17), RL denotes the value generated
using Levy distribution. Meanwhile, the second half
of X is updated using the following equation:

Xi � Elitei + P × CF × Si, (19)

CF � 1 −
t

tmax
􏼠 􏼡

2t/tmax()

, (20)

Si � RB × RB × Elitei − Xi(􏼁, i � 1, 2, . . . , N, (21)

Computational Intelligence and Neuroscience 5

where t and tmax are the present and maximum
number of iterations, respectively.

(3) In the third stage, it is considered that the predator
has velocity faster than the velocity of the prey, and
this occurred during the last third of the optimiza-
tion period.)e mathematical formulation of
updating the solution is given in the following
equation:

Xi � Elitei + P × CF × Si, (22)

Si � RL × RL × Elitei − Xi(􏼁, i � 1, 2, . . . , N. (23)

Followed [31], the eddy formation and fish aggregating
devices (FADS) can change the behavior of the predators,
and MPA formulated this as in the following equation:

Xi �
Xi + CF[LB + R ×(UB − LB)] × U, r5 < FAD,

Xi +[FAD(1 − r) + r] Xr1 − Xr2(􏼁, r5 > FAD.
􏼨

(24)

In equation (24), U refers to a binary vector, FAD � 0.2;
r, r1, and r2 are random values in [0, 1].

In addition, a marine has a memory that supports its
ability to remember its previous position. So, this behavior is
added to the MPA by comparing the current position with
its previous one.)e full steps of MPA are given in
Algorithm 2.

4. The Proposed Task Scheduler

Within this section, the main steps of the developed task
scheduler method are introduced as in Figure 2.)is pro-
posed method depends on improving the arithmetic opti-
mization algorithm (AOA) behavior using the advantages of

MPA.)e main target of using MPA is to enhance the local
searching ability of AOA.)is leads to avoid attraction to
local points and increase the convergence speed.

)e first step of the developed task scheduler method,
named AOAM, is to construct the initial population X,
which contains N solutions.)en, the fitness value (Fiti) is
calculated and the best solution (Xb) is determined.
)ereafter, the solutions X inside the current population
are updated using AOA and MPA operators.)is process
of updating solutions is repeated until the terminal con-
ditions are satisfied and return Xb.)e description of the
developed method is given in the following sections with
more details.

4.1. Initial Phase. In this phase, the initial population X is
constructed using the following equation:

Xij � floor LBij + rand × UBij − LBij􏼐 􏼑􏼐 􏼑, j � 1, 2, . . . , n.

(25)

In equation (25), rand ∈ [0, 1] is a random number. LB
and UB refer to the limitations of the search space, and it
is set to 1, and NM denotes the number of computing
nodes.)e dimension of Xi is set to NT, representing the
number of tasks. floor(·) is applied to convert the actual
values to discrete values.)is is suitable for this kind of
discrete optimization problem, such as task scheduling
problems.

4.2. Updating Stage. In this phase, AOAM determines the
quality of each solution by computing its fitness value (Fiti)
that is given in equation (7), followed by determining the
smallest fitness value and its corresponding solution, which
represents the best solution Xb.)e next step is to adopt the
current population X using AOA and MPA operators as
given in the following equation:

Initialize the parameters N, alpha, and μ.
Generate initial solutions (Xi, i � 1, . . . , N.)
while t≤ tmax do
Compute Fitness value (FF) for each Xi.
Determine the best solution Xb.
Update MOA using equation (9) and MOP using equation (11).
for (i � 1 to N) do
for (j � 1 to Dim) do

Update the random numbers r1, r2, and r3.
if r1>MOA then
Update Xi using equation (10).

else
Update Xi using equation (12).

end if
end for

end for
t� t+ 1

end while
Return (Xb).

ALGORITHM 1: Steps of AOA.

6 Computational Intelligence and Neuroscience

Determine the parameters

Start

Set the initial value for solution X

Compute fitness value for Xi and find Xb

Update Xi using AOA Update Xi using MPA

If rand ≥ 0.5?

No

Yes

Return Xb

End

Yes

No

Fo
r e

ac
h
X i

Yes

No

If mod (t, 20) = 0
& rand > 0.5

If t ≤ tmax

t = t + 1

Figure 2: Developed AOAM.

(1) Determine the value of parameters such as number of solutions N, dimension of each solution n (i.e., number tasks), and
number of computing nodes m.

(2) while Stop conditions are not met do
(3) Calculate fitness for each solution Xi, i � 1, 2, . . . , N and construct the Elite matrix (as in equation (14)).
(4) if t< tmax/3 then
(5) Using equation (15) to update Xi.
(6) else if tmax/3< t< 2∗ tmax/3< then
(7) for (i � 1, . . . , N/2) do
(8) Using equation (17) to update Xi.
(9) end for
(10) for (i � N/2 + 1, . . . , N) do
(11) Using equation (19) to update Xi.
(12) end for
(13) else if t> 2∗ tmax/3 then
(14) Using equation (22) to update Xi.
(15) end if
(16) Update the memory and Elite.
(17) Using equation (24) to update Xi based on the value of FADs.
(18) t � t + 1.
(19) Return Xb.
(20) end while

ALGORITHM 2: Steps of MPA.

Computational Intelligence and Neuroscience 7

Xi(t + 1) �
updateXi usingAOA if rand≥ 0.5,

updateXi usingMPA if rand< 0.5,
􏼨 (26)

where rand ∈ [0, 1] is a random number used to switch
between AOA and MPA operators.

Finally, the stop conditions are checked, and when they
are satisfied, the steps of the updating phase are stopped and
the best solution Xb is returned.)e pseudo-code of the
AOAM is given in Algorithm 3.

4.3. Computational Complexity Analysis.)is subsection
provides the time complexity analysis of the aforementioned
three algorithms. Assume N be the population size (number
of solutions), M is the number of iterations, and L is the
number of parameters (dimension).)e computational
complexity of AOA is O(N × (M × L + 1)) [29].)e
computational complexity of MPA is O(M × (N × L +

Cof ∗N)) [31], where Cof signifies the objective function
cost. According to the steps of the proposed AOAM algo-
rithm, the time complexity of population initialization (step
2 of the algorithm) is O(N) and the time complexity of
updating solutions (steps 4 − 11 of the algorithm) is
O(N × M).)erefore, the overall time complexity of
AOAM is O(N + N × M), that is, O(N × M).

5. Experimental Studies

)is section offers a detailed experimental performance
evaluation of the contributions suggested in this study. In
particular, the simulation settings and datasets are intro-
duced in Section 5.1.)e performance metrics are described
in Section 5.2. Finally, the experimental results along with
discussions are provided in Section 5.3.

5.1. Experimental Settings. All the experiments are con-
ducted using MATLAB R2018a on a Dell PC configured
with an Intel Core i5 CPU of 2.40 GHz frequency, 4GB
RAM, and Windows 10 operating system. We remark the
MATLAB simulator’s widespread adoption for evaluating
the schemes published in the literature [37–39].)e
cloud-fog framework in our tests consists of fog nodes that
have small processing power. However, they are closer to
the IoT devices and have a minimal delay. On the other
hand, cloud nodes can quickly execute IoT tasks, but they
need a long time to embrace them.)e FC ecosystem
contains two data centers, 4 hostess machines, and 20 VMs
of various arrangements in all of the tests.

Consequently, the suggested algorithms should manage
the equilibrium between fog and cloud nodes to enhance
system performance. Table 1 lists the attributes of the hosts
and VMs. As represented in Table 1, the most inactive and
active VM processing capacities are 1000 and 5000 MIPS,
respectively.

In our experiments, both synthetic and natural work-
loads are mainly involved.)e real workloads are generated
from the “Parallel Workload Archives” that consist of
HPC2N and NASA Ames iPSC/860.)ese workload ar-
chives are made available to the research community in the

standardized workload format (SWF) [40].)e NASA iPSC
log comprises about 42,264 tasks, while the HPC2N com-
prises about 527,371 tasks. On the other hand, the synthetic
workload consists of 1500 tasks with lengths ranging from
2,000 to 56,000 MI generated from a uniform distribution.
)e specification of the synthetic workload is listed in
Table 2.

5.2. Evaluation Metrics. In this article, our objective is to
guarantee lower energy consumption with a better make-
span. We measured the overall energy consumption and
makespan for assessing the efficiency of the AOAM against
other peer algorithms. In the following, we present those two
performance metrics.

)e makespan is defined as the completion time of the
last accomplished task. A minimum makespan implies ef-
ficient mapping of user tasks to CNs. Makespan is computed
on the basis of equation (2).

)e total energy consumption is defined as the energy
consumed by the physical resources (which involves all
cloud and fog nodes). For a practical system, the energy
consumption of the CNs should be minimal.)e total
energy is calculated as specified in equation (6).

5.3. Results and Discussion. For comparative analysis, five
state-of-the-art algorithms, including the standard AOA
[29], Manta ray foraging optimization (MRFO) algorithm
[41], marine predators algorithm (MPA) [31], Chimp op-
timization algorithm (CHOA) [42], Salp swarm algorithm
(SSA) [43], and AEOSSA [10], are chosen as peer algorithms
in this study. Table 3 lists the parameter settings for all peer
algorithms. Each algorithmwas independently performed 30
times on each test instance to achieve more accurate esti-
mates of our results. To ensure a fair comparison, the
population size for each algorithm is set to 100. Moreover, η
is set to 0.7 since our main concern is to reduce energy
consumption.)e parameters of each algorithm are based
on its original implementation.

To study the performance behavior of the proposed
AOAM algorithm, we plotted curves for the average fitness
values obtained by AOAM and other comparison algorithms
(MRFO, MPA, AOA, AEOSSA, SSA, and CHOA) for a
different number of tasks, as shown in Figures 3–5.)e
curves visualize the average fitness values generated by the
algorithms for different datasets and task sizes.)e number
of tasks is shown along the x-axis. At the same time, the value
of the fitness function is represented along the y-axis. Note
that the fitness value is impacted by 70% of the total energy
consumption value plus 30% of the value of the makespan.

)e curve of the synthetic workload is illustrated in
Figure 3.)e figure shows that the AOAM algorithm suc-
ceeded in obtaining lower fitness values compared with
other methods when tasks vary between 300 and 1500.
Similarly, the curve of fitness values for NASA Ames iPSC
dataset depicted in Figure 4 establishes the better perfor-
mance of the AOAM algorithm as compared to other
comparison algorithms. Moreover, AOAM has succeeded in
attaining lower fitness values than other scheduling

8 Computational Intelligence and Neuroscience

approaches for the HPC2N actual workload, while the tasks
vary from 1000 to 5000, as seen in Figure 5.)e curves
present that combining the MPA method with the AOA
boosts its ability to find near-optimal solutions.

Figures 6–8 present the average makespan results ob-
tained by the AOAM, AOA, MRFO, AEOSSA, MPA, SSA,
and CHOA for the synthetic and real datasets with different
task sizes. From Figure 6, we see that the AOAM is sig-
nificantly better than the other peer algorithms on all of the
synthetic instances considered. Similarly, from Figure 7, we
can see that the AOAM performs significantly better than all
of the other peer algorithms across all NASA Ames iPSC
instances. Moreover, we can see from Figure 8 that the
AOAM is substantially better compared with other five peer
methods over all the HPC2N scenarios. Finally, the figures’
results indicate that AOAM generates the best makespan
among all six peer algorithms for all the tested instances.

)e comparison of the total energy consumption be-
tween AOAM, AOA, AEOSSA, MRFO, MPA, SSA, and
CHOA using both synthetic and real workload traces is
shown in Figures 9–11. Figure 9 shows that the proposed
AOAM algorithm attains the lowest energy consumption
compared with the original AOA and other peer algorithms
for the synthetic dataset. Similarly, Figure 10 shows that the
proposed algorithm, AOAM, achieves the lowest energy
consumption compared with the other peer algorithms
when the NASA Ames iPSC workload is considered. Fur-
thermore, Figure 11 illustrates that the AOAM provides the
lowest energy consumption in contrast to other peer algo-
rithms when the HPC2N workload is taken into account. In
a nutshell, the comparison results reveal that AOAM gen-
erates a better energy consumption than all other peer al-
gorithms for all task sizes and datasets.

5.4. StatisticalResults. To assess whether there are significant
improvements in the results obtained by the developed
method and other methods, a nonparametric test named the
Friedman test is used.)is test provides a P value that

(1) Input: list of CNs (m), list of IoT tasks (n), size of population (N), and number of iterations (tmax).
(2) Construct the initial population (X) using equation (25).
(3) Set t � 1.
(4) while t< � tmax do
(5) Calculate the fitness value (Fiti) for Xi.
(6) Determine Xb that has the smallest Fitb.
(7) for i � 1: N do
(8) Update Xi based on equation (26).
(9) end for
(10) t � t + 1.
(11) end while
(12) Return Xb.

ALGORITHM 3: AOAM scheduler.

Table 1: Characteristics of experimental parameters.

Cloud Entity Parameter Value
Datacenter No. of data centers 2
Client No. of clients 100–200

Host

No. of hosts 4
Storage capacity 2 TB

RAM 20GB
Bandwidth capacity 10Gb/s

Policy type Time shared

VM

No. of VMs 20
CPU power 1000–5000 MIPS

RAM 2GB
Storage 10GB

Bandwidth capacity 1Gb/s
No. of CPUs 1

Table 2: Characteristics of synthetic workload.

Parameter Value
No. of tasks 300 to 1500
Length of the task 2000 to 56 000 MI
File size 400 to 600MB
Output size 400 to 600MB

Table 3: Parameter settings of AOAM and peer algorithms.

Algorithm Parameter Value

AOA

MOPMax 1
MOPMin 0.2

α 5
μ 0.499

MPA FADs 0.2
P 0.5

CHOA a [−1, 1]
f 2⟶ 0

MRFO S 2
r1, r2, r3 [0, 1]

SSA c1, c2, and c3 [0, 1]

AOAM

MOPMax 1
MOPMin 0.2

α 5
μ 0.499

FADs 0.2
P 0.5

Computational Intelligence and Neuroscience 9

Tasks

M
ak
es
pa
n

0

100

200

300

400

500

600

700

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

300 600 900 1200 1500

Figure 6: Average makespan for the synthetic workload.

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

Tasks
1000 2000 3000 4000 5000

M
ak
es
pa
n

0

200

400

600

800

1000

1200

1400

Figure 7: Average makespan for real workload NASA iPSC.

Tasks
300 600 900 1200 1500

Fi
tn
es
s

105

106

107

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

Figure 3: Fitness value for the synthetic workload.

Fi
tn
es
s

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

Tasks
1000 2000 3000 4000 5000

105

106

107

Figure 4: Fitness value for real workload NASA iPSC.

Fi
tn
es
s

107

108

109

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

Tasks
1000 2000 3000 4000 5000

Figure 5: Fitness value for real workload HPC2N.

M
ak
es
pa
n

0

20,000

40,000

60,000

80,000

100,000

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

Tasks
1000 2000 3000 4000 5000

Figure 8: Average makespan for real workload HPC2N.

10 Computational Intelligence and Neuroscience

indicates whether the control group (AOAM) has a sig-
nificant difference with other MH techniques or not based
on different performance measures including makespan,
energy, and fitness value.)e mean rank of each algorithm
over the tested datasets in terms of performance metrics is
given in Table 4. From the given results, it can be seen that in
terms of makespan the developed method has the best mean
rank overall the competitive algorithms with P value of
1.39e− 4, whereas in terms of energy, it can be observed that
the developed AOAM achieves the first rank followed by

MRFO and AOA in the second and third ranks, respectively,
over the three datasets.

In summary, the findings revealed that the AOAM
algorithm provides better solution quality and diversity,
thus leading to near-optimum solutions. Overall, the re-
sults shown above justify the advantage of incorporating
the MPA strategy along with the AOA.)erefore, inte-
grating MPA with the AOA can effectively increase the
search efficiency to achieve better solutions for all exam-
ined workload instances.

En
er
gy

#106

2

3

4

5
6
7
8

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

Tasks
1000 2000 3000 4000 5000

Figure 10: Total energy consumption for real workload NASA iPSC.

En
er
gy

105

106

107

Tasks

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

300 600 900 1200 1500

Figure 9: Total energy consumption for the synthetic workload.

Computational Intelligence and Neuroscience 11

6. Conclusion

Task scheduling is among the significant challenges in cloud
and fog computing environments because of the variability
and dynamicity of the resources and the high volatility of
service requests from cloud subscribers.)is study proposed a
hybrid algorithm that combines AOA with the marine
predators algorithm (MPA) to find an appropriate solution
for optimizing the fog task scheduling.)e suggested AOAM
approach is an attempt to enhance the solution goodness and
convergence ratio of the original AOA.)e performance of
AOAM is evaluated and contrasted with the standard AOA
and other four optimization algorithms, including MRFO,
MPA, AEOSSA, SSA, and CHOA.)e experimental results
confirm the effectiveness of our AOAM approach in terms of
makespan and total energy consumption. More specifically,
the obtained results revealed that the AOAM is better than the
original AOA and outperforms all comparative algorithms in
all of the tested instances.

In future work, we plan to investigate the performance of
the AOAM approach in large-scale computing environments
with hundreds of servicing nodes, considering more objec-
tives such as response time, transmission costs, reliability, and
security to fulfill the growing customer needs. In addition,
AOAM could be further improved and integrated with other

optimization algorithms to tackle more optimization prob-
lems such as vehicle routing problems, job shop scheduling,
quadratic assignment, and traveling salesman problem.

Data Availability

)e data used to support the findings of this study are
available from the authors upon request.

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this study.

Acknowledgments

)is project was supported financially by the Academy of
Scientific Research and Technology (ASRT), Egypt (Grant
No. 6624).

References

[1] L. Abualigah, A. Diabat, and M. Abd Elaziz, “Intelligent
workflow scheduling for big data applications in iot cloud
computing environments,” Cluster Computing, vol. 24,
pp. 1–20, 2021.

En
er
gy

107

108

109

SSA
CHOA
MPA
MRFO

AEOSSA
AOA
AOAM

Tasks
1000 2000 3000 4000 5000

Figure 11: Total energy consumption for real workload HPC2N.

Table 4: Results of the Friedman test.

SSA CHOA MPA MRFO AOA AOAM P value

Makespan
Synthetic 6 5 4 3 2 1 1.39e− 04
NASA 6 5 4 3 2 1 1.39e− 04
HPC2N 6 5 4 3 2 1 1.39e− 04

Energy
Synthetic 5.8 5.2 4 2.2 2.8 1 2.09e− 04
NASA 6 5 3.6 2.4 3 1 3.13e− 04
HPC2N 6 5 3.6 2 3.4 1 1.88e− 04

Fitness
Synthetic 5.8 5.2 4 2.2 2.8 1 2.09e− 04
NASA 6 5 3.6 2.4 3 1 3.13e− 04
HPC2N 6 5 3.6 2 3.4 1 1.88e− 04

12 Computational Intelligence and Neuroscience

[2] L. Abualigah, A. Diabat, P. Sumari, and A. H. Gandomi,
“Applications, deployments, and integration of internet of
drones (iod): a review,” IEEE Sensors Journal, vol. 21, 2021.

[3] J.-S. Fu, Y. Liu, H.-C. Chao, B. K. Bhargava, and Z.-J. Zhang,
“Secure data storage and searching for industrial iot by in-
tegrating fog computing and cloud computing,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4519–4528, 2018.

[4] B. Lin, W. Guo, N. Xiong, G. Chen, A. V. Vasilakos, and
H. Zhang, “A pretreatment workflow scheduling approach for
big data applications in multicloud environments,” IEEE
Transactions on Network and Service Management, vol. 13,
no. 3, pp. 581–594, 2016.

[5] A. Kishor, C. Chakraborty, and W. Jeberson, “A novel fog
computing approach for minimization of latency in health-
care using machine learning,” Int J Interact Multimed Artif
Intell, vol. 1, 2020.

[6] Z.-G. Chen, Z.-H. Zhan, Y. Lin et al., “Multiobjective cloud
workflow scheduling: a multiple populations ant colony
system approach,” IEEE Transactions on Cybernetics, vol. 49,
pp. 2912–2926, 2018.

[7] A. Kishor and C. Chakarbarty, “Task offloading in fog
computing for using smart ant colony optimization,”Wireless
Personal Communications, vol. 306, pp. 1–22, 2021.

[8] X.-F. Liu, Z.-H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang,
“An energy efficient ant colony system for virtual machine
placement in cloud computing,” IEEE Transactions on Evo-
lutionary Computation, vol. 22, pp. 113–128, 2016.

[9] L. Abualigah and A. Diabat, “A novel hybrid antlion opti-
mization algorithm for multi-objective task scheduling
problems in cloud computing environments,” Cluster Com-
puting, vol. 24, pp. 1–19, 2020.

[10] M. Abd Elaziz, L. Abualigah, and I. Attiya, “Advanced op-
timization technique for scheduling iot tasks in cloud-fog
computing environments,” Future Generation Computer
Systems, vol. 124, pp. 142–154, 2021.

[11] A. Kishor, C. Chakraborty, and W. Jeberson, “Intelligent
healthcare data segregation using fog computing with internet
of things and machine learning,” International Journal of
Engineering Systems Modelling and Simulation, vol. 12, no. 2/
3, pp. 188–194, 2021.

[12] C. Zhu, J. Tao, G. Pastor et al., “Folo: latency and quality
optimized task allocation in vehicular fog computing,” IEEE
Internet of Bings Journal, vol. 6, pp. 4150–4161, 2018.

[13] M. Yang, H. Ma, S. Wei, Y. Zeng, Y. Chen, and Y. Hu, “A
multi-objective task scheduling method for fog computing in
cyber-physical-social services,” IEEE Access, vol. 8,
pp. 65085–65095, 2020.

[14] I. Attiya and X. Zhang, “D-choices scheduling: a randomized
load balancing algorithm for scheduling in the cloud,” Journal
of Computational and Beoretical Nanoscience, vol. 14, no. 9,
pp. 4183–4190, 2017.

[15] M. Abd Elaziz and I. Attiya, “An improved henry gas solu-
bility optimization algorithm for task scheduling in cloud
computing,” Artificial Intelligence Review, vol. 54, no. 5,
pp. 3599–3637, 2021.

[16] L. Abualigah, M. Shehab, M. Alshinwan et al., Swarm Intel-
ligence for Cloud Computing, pp. 127–152, , Chapman and
Hall/CRC, Boca Raton, Florida, 2020, Ts-gwo: Iot tasks
scheduling in cloud computing using grey wolf optimizer.

[17] C.-W. Tsai and J. J. Rodrigues, “Metaheuristic scheduling for
cloud: a survey,” IEEE Systems Journal, vol. 8, pp. 279–291,
2013.

[18] L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees,
M. A. A. Al-qaness, and A. H. Gandomi, “Aquila optimizer: a
novel meta-heuristic optimization algorithm,” Computers &
Industrial Engineering, vol. 157, Article ID 107250, 2021.

[19] G. Li, Y. Liu, J. Wu, D. Lin, and S. Zhao, “Methods of resource
scheduling based on optimized fuzzy clustering in fog
computing,” Sensors, vol. 19, no. 9, p. 2122, 2019.

[20] B. M. Nguyen, H.)i)anh Binh, T.)e Anh, and D. Bao
Son, “Evolutionary algorithms to optimize task scheduling
problem for the iot based bag-of-tasks application in
cloud–fog computing environment,” Applied Sciences, vol. 9,
no. 9, p. 1730, 2019.

[21] H. R. Boveiri, R. Khayami, M. Elhoseny, andM. Gunasekaran,
“An efficient swarm-intelligence approach for task scheduling
in cloud-based internet of things applications,” Journal of
Ambient Intelligence and Humanized Computing, vol. 10,
no. 9, pp. 3469–3479, 2019.

[22] Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A scheduling
scheme in the cloud computing environment using deep
q-learning,” Information Sciences, vol. 512, pp. 1170–1191,
2020.

[23] J. Yang, B. Jiang, Z. Lv, and K.-K. R. Choo, “A task scheduling
algorithm considering game theory designed for energy
management in cloud computing,” Future Generation Com-
puter Systems, vol. 105, pp. 985–992, 2020.

[24] M. Mtshali, H. Kobo, S. Dlamini, M. Adigun, and P. Mudali,
“Multi-objective optimization approach for task scheduling in
fog computing,” in Proceedings of the 2019 International
Conference on Advances in Big Data, Computing and Data
Communication Systems (icABCD), pp. 1–6, IEEE, Winterton,
South Africa, August 2019.

[25] M. Ghobaei-Arani, A. Souri, F. Safara, and M. Norouzi, “An
efficient task scheduling approach using moth-flame opti-
mization algorithm for cyber-physical system applications in
fog computing,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 31, Article ID e3770, 2020.

[26] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint opti-
mization of task scheduling and image placement in fog
computing supported software-defined embedded system,”
IEEE Transactions on Computers, vol. 65, no. 12, pp. 3702–
3712, 2016.

[27] M. Abdel-Basset, R. Mohamed, M. Abouhawwash,
R. K. Chakrabortty, and M. J. Ryan, “Ea-msca: an effective
energy-aware multi-objective modified sine-cosine algorithm
for real-time task scheduling in multiprocessor systems:
methods and analysis,” Expert Systems with Applications,
vol. 173, Article ID 114699, 2021.

[28] X. Guo, “Multi-objective task scheduling optimization in
cloud computing based on fuzzy self-defense algorithm,”
Alexandria Engineering Journal, vol. 60, no. 6, pp. 5603–5609,
2021.

[29] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and
A. H. Gandomi, “)e arithmetic optimization algorithm,”
Computer Methods in Applied Mechanics and Engineering,
vol. 376, Article ID 113609, 2020.

[30] S. Mnasri, N. Nasri, M. Alrashidi, A. Van den Bossche, and
T. Val, “Iot networks 3d deployment using hybrid many-
objective optimization algorithms,” Journal of Heuristics,
vol. 26, no. 5, pp. 663–709, 2020.

[31] A. Faramarzi, M. Heidarinejad, S. Mirjalili, and
A. H. Gandomi, “Marine predators algorithm: a nature-in-
spired metaheuristic,” Expert Systems with Applications,
vol. 152, Article ID 113377, 2020.

Computational Intelligence and Neuroscience 13

[32] I. Attiya, M. Abd Elaziz, and S. Xiong, “Job scheduling in
cloud computing using a modified Harris hawks optimization
and simulated annealing algorithm,” Computational Intelli-
gence and Neuroscience, vol. 2020, Article ID 3504642, 2020.

[33] L. Zadeh, “Optimality and non-scalar-valued performance
criteria,” IEEE Transactions on Automatic Control, vol. 8,
no. 1, pp. 59-60, 1963.

[34] A. Goicoechea, D. R. Hansen, and L. Duckstein, “Multi-
objective decision analysis with engineering and business
applications,” Technical Report, John Wiley & Sons, Hobo-
ken, NJ, USA, 1982.

[35] M. A. A. Al-Qaness, A. A. Ewees, H. Fan, L. Abualigah, and
M. Abd Elaziz, “Marine predators algorithm for forecasting
confirmed cases of covid-19 in Italy, USA, Iran and korea,”
International Journal of Environmental Research and Public
Health, vol. 17, no. 10, p. 3520, 2020.

[36] A. Eid, S. Kamel, and L. Abualigah, “Marine predators al-
gorithm for optimal allocation of active and reactive power
resources in distribution networks,” Neural Computing and
Applications, vol. 33, pp. 1–29, 2021.

[37] M. Al-Khafajiy, T. Baker, H. Al-Libawy, Z. Maamar,
M. Aloqaily, and Y. Jararweh, “Improving fog computing
performance via fog-2-fog collaboration,” Future Generation
Computer Systems, vol. 100, pp. 266–280, 2019.

[38] A. Karimiafshar, M. R. Hashemi, M. R. Heidarpour, and
A. N. Toosi, “Effective utilization of renewable energy sources
in fog computing environment via frequency and modulation
level scaling,” IEEE Internet of Bings Journal, vol. 7, no. 11,
pp. 10912–10921, 2020.

[39] S. E. Shukri, R. Al-Sayyed, A. Hudaib, and S. Mirjalili, “En-
hanced multi-verse optimizer for task scheduling in cloud
computing environments,” Expert Systems with Applications,
vol. 168, Article ID 114230, 2021.

[40] “Parallel workloads archive,” 2021, http://www.cse.huji.ac.il/
labs/parallel/workload/logs.html.

[41] W. Zhao, Z. Zhang, and L. Wang, “Manta ray foraging op-
timization: an effective bio-inspired optimizer for engineering
applications,” Engineering Applications of Artificial Intelli-
gence, vol. 87, Article ID 103300, 2020.

[42] M. Khishe and M. R. Mosavi, “Chimp optimization algo-
rithm,” Expert Systems with Applications, vol. 149, Article ID
113338, 2020.

[43] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris,
and S. M. Mirjalili, “Salp swarm algorithm: a bio-inspired
optimizer for engineering design problems,” Advances in
Engineering Software, vol. 114, pp. 163–191, 2017.

14 Computational Intelligence and Neuroscience

http://www.cse.huji.ac.il/labs/parallel/workload/logs.html
http://www.cse.huji.ac.il/labs/parallel/workload/logs.html

