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Abstract

Background: Protease inhibitors (Pls) are important regulators of physiology and represent anti-parasitic druggable
and vaccine targets. We conducted bioinformatic analyses of genome and transcriptome data to determine the
protease inhibitor (Pl) repertoire in Amblyomma americanum and in 25 other ixodid tick species. For A. americanum, we
compared the Pl repertoires in fed and unfed, male and female A. americanum ticks. We also analyzed Pl repertoires of
female 48, 96 and 120 h-fed midgut (MG) and salivary gland (SG) tissues.

Results: We found 1,595 putative non-redundant Pl sequences across 26 ixodid tick species. Ticks express Pls from
at least 18 different families: 11, 12, 14, 18, 121, 125, 129, 131, 132, I35, 139, 143, I51, 153, 163, 168, 172 and 174 (MEROPS). The largest PI
families were 12, 14 and 18 and lowest in 121, 131, 132, 135 and 168. The majority (75%) of tick Pls putatively inhibit
serine proteases, with ~11 and 9% putatively regulating cysteine or metalloprotease-mediated pathways, respectively,
and ~4% putatively regulating multiple/mixed protease types. In A. americanum, we found 370 Pls in female and 354 in
male ticks. In A. americanum we found 231 and 442 in unfed and fed ticks, respectively. In females, we found 206 and
164 Pls in SG and MG, respectively. The majority of highly cross-tick species conserved Pls were in families I1, 12, 18, 121,
125, 129, 139 and 143.

Conclusions: Ticks appear to express large and diverse repertoires of Pls that primarily target serine protease-mediated
pathways. We speculate that Pl families with the highest repertoires may contain functionally redundant members while
those with the lowest repertoires are functionally non-redundant Pls. We found some highly conserved Pls in the latter
category, which we propose as potential candidates for broad-spectrum anti-tick vaccine candidates or druggable targets

in tick control.
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Background

Ticks are a significant source of morbidity and mortality
in both public health and veterinary medicine. Ticks
may transmit a wide diversity of pathogenic organisms
to their hosts including viruses, bacteria, protozoa and
helminthes [1]. In the United States alone, there are at
least 15 human diseases for which the associated pathogens
are transmitted by ticks [2]. Between 1982 and 2001, the list
of human diseases caused by tick-vectored pathogens grew
substantially with the addition of 15 new bacterial patho-
gens [3]. Of veterinary concern, the major diseases caused
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by tick-transmitted pathogens are Lyme, babesiosis,
theileriosis, heartwater, anaplasmosis, cytauxzoonosis and
hepatozoonosis [4, 5]. In livestock production, an esti-
mated 80% of the world’s cattle populations are affected
by disease-causing tick-borne pathogens [6]. Aside from
transmitting disease agents, ticks themselves can lead to a
variety of indirect veterinary and medical morbidity in-
cluding toxicosis, paralysis, anemia, wounds susceptible to
bacterial or screwworm fly infections, damages to hides
and even death [4]. Limitations to acaricide use are the
resistance to these chemicals, environmental contamin-
ation, cost of development for new chemicals and also
food contamination [7-11]. Immunization of hosts against
tick feeding is a validated alternative to acaricide-based
tick control [9, 12]. However, the major bottleneck to the
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development of anti-tick vaccines is the discovery of
effective target antigens. Protease inhibitors are among
some of the most attractive potential anti-tick vaccine
antigens.

The balance between proteases and protease inhibitors
is essential for the regulation of normal homeostasis across
life: from microbes, to plants, to animals. Throughout taxa,
essential pathways are regulated by proteases [13—18]. Left
uncontrolled, however, protease activity can result in
diseases such as cancer, emphysema and blood coagulation
disorders [19-23]. Thus, to avoid aberrant protease activity,
protease inhibitors tightly and precisely control protease
activity. In parasites including ticks, protease inhibitor func-
tion is viewed from two perspectives: one being their
significance in regulating the homeostasis of the tick itself,
and the other being their significance in regulating the
parasite-host interaction.

Ticks accomplish feeding by disrupting host tissue and
then imbibing blood that bleeds into the wounded area.
Tick feeding provokes the host’s protease-mediated defense
pathways including inflammation, blood clotting and platelet
aggregation. Thus, ticks were proposed to secrete protease
inhibitors to evade these defense mechanisms, making them
prime candidates for anti-tick vaccine studies [24, 25]. Prior
to the advent of DNA technology, efforts were focused on
purifying proteases and their inhibitors from crude tick
protein extracts for medicinal applications [26—28]. How-
ever, many tick cDNAs encoding putative protease inhibi-
tors have now been cloned from multiple tick species
[24, 29-35]. Additionally, with the recent sequencing of
the L scapularis genome [36], and of several tick tran-
scriptomes [37-49], the focus of tick protease inhibitor
research can shift from discovery to characterization.
Data mining of sequences from these studies, as available
in public databases, has revealed that tick genomes, like
many other organisms, encode for high numbers of both
proteases and protease inhibitors. Although proteases and
their inhibitors are attractive anti-tick vaccine antigens,
high numbers of sequences in certain groups of PI families
suggests possible functional redundancy. Redundant
systems are a potential problem in that targeting one
member may result in ticks switching to a functionally
equivalent substitute. Therefore, a more detailed bioinfor-
matic investigation into these sequences might reveal a
better prioritization plan for vaccine candidate selection.
To this end, the first step and the goal of this study was to
organize and prioritize the protease inhibitors, into redun-
dant and least or non-redundant systems.

In this study we used Amblyomma americanum in-
house transcriptome data, as well as putative protease
inhibitor sequences for ixodid tick species that have
been deposited in the MEROPS [50], and/or GenBank
databases to compile a reference of all reported putative
protease inhibitors in ixodid ticks. We found and analyzed

Page 2 of 16

1,595 non-redundant putative PI sequences across 26
ixodid tick species. In A. americanum we found evidence
to support previous findings of a time-dependent PI
expression in salivary glands [49, 51] coined as “sialome
switch” [52], however our analyses provide evidence of
time-dependent PI expression throughout tick tissues.
Additionally, our global analysis differentiated tick PI
families that are likely redundant or non-redundant, as
well as Pls that are conserved across tick species and that
may regulate pathways essential in all ticks. This study
serves as the first step in prioritizing tick PIs as anti-tick
vaccine antigen candidates.

Methods

Identification of putative tick protease inhibitors (PI)
Putative tick PI sequences were identified from two sources.
A previously assembled A. americanum transcriptome
(BioProject accession number PRJNA226980) was anno-
tated by local batch blasting against the NCBI protein data-
base and the Conserved Domain Database (CDD) using the
CLC Genomics Workbench software vers 8.0.1 (Qiagen,
Hilden, Germany) as previously described [53]. Tick PI
sequences were also downloaded from the NCBI GenBank
database using keyword searches of the database. For Pls
not uniquely characterized by a specific domain, annotations
were based on > 95% identity to annotated sequences in da-
tabases. PI sequences were also acquired from the MEROPS
version 9.4 database (http://merops.sanger.ac.uk/) [50], and
noted according to PI family.

Annotated putative PI sequences from each tick species
were sorted according to family and compiled into a single
file. All files were then subjected to multiple sequence
alignments, against themselves, to identify redundant
sequences in each file. An identity value of 95% or
greater was deemed as evidence of redundancy, and
only one sequence was retained for further analysis. In
this way, we determined a non-redundant count for
each PI family for each tick species. Sequences where
family membership could not be verified on the basis
of known domains or similarity to characterized members
of the protease inhibitor family were also eliminated from
the study.

Identification of putative expression patterns and
homologs in other ticks

To determine apparent expression patterns, putative A.
americanum tick PI sequences were further screened for
presence or absence in different transcriptomes: male
and female, unfed and fed whole A. americanum ticks,
as well as dissected salivary gland (SG) and midgut (MQG) of
48, 96 and 120 h fed female ticks. Identification of highly
conserved tick serine protease inhibitors (serpins) in family
14 was previously accomplished [53]. In this study, we de-
termined PIs homologs for all other PI families by BLASTX
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screening of A. americanum Pls against other tick Pls
of the same family. PI sequences in other tick species
where identity values were > 50% were included in fur-
ther analyses.

Results and discussion

Tick genomes likely encode hundreds of protease
inhibitors

Additional file 1: Table S1 (please note the different
tabs) lists a total of 1,595 putative non-redundant PI
sequences across 26 ixodid tick species. Our analysis of
our A. americanum transcriptome data revealed 515
putative Pls for this species (Table 1). We also found
more than 100 PI sequences for three additional tick
species: Ixodes scapularis (239), Ixodes ricinus (149),
Amblyomma maculatum (135) and Amblyomma cajennense
(106) (Fig. 1). Between ten and 100 sequences were found
for eight tick species: Amblyomma triste (83), Rhipicephalus
pulchellus (76), Rhipicephalus microplus (57), Rhipicephalus
appendiculatus (35), Amblyomma parvum (31), Haemaphy-
salis longicornis (20), Amblyomma variegatum (20) and
Rhipicephalus sanguineus (13) (Table 1). The remaining
13 tick species currently have less than ten reported
non-redundant PI sequences: Dermacentor variabilis (8),

Table 1 Amblyomma americanum protease inhibitor counts

Inhibitor
family E M

Sex related® Feeding related® Tissue distribution® Total

F&’M FD  UF FD&UF SG MG SG&MG

1 2 8 1M1 8 T 12 3 2 6 21
12 69 35 73 102 30 45 60 14 27 177
l4¢ 33 57 31 87 12 21 1210 26 122
18 6 2 9 6 2 9 5 0 5 17
121 0 0 1 0 0 1 0 0 1 1
125 6 0 12 17 0 1 3 3 9 28
129 7 7 1 12 1 2 1 4 1 15
131 2 0 4 3 T2 0 1 4 6
132 o 0 2 o 0 2 0 0 2 2
135 1 0 0 0 0 1 0 0 1 1
139 13 2 13 14 4 10 8 5 9 28
143 17 10 7 14 11 9 8 7 3 34
151 0o 9 5 9 0 5 1 0o 4 14
163 8§ 8 32 9 9 30 0 12 7 48
168° 1 - - - - - 1 - - 1
Total 164 148 202 282 71 160 101 59 105 515

2Count of protease inhibitors found present in female (F) or male (M) ticks,
and number found present in both females and males (F&M)

PCount of protease inhibitors found present in fed (FD) or unfed (UF) ticks,
and number found present in both fed and unfed (FD&UF)

“Count of protease inhibitors found present in salivary glands (SG) or midgut
(MG), and number found present in both of these tissues (SG&MG)

“Data reported here are from our previously published analysis of family 14 [53]
®Data reported here are from [52] which analyzed female salivary gland

data only
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Dermacentor andersoni (8), Rhipicephalus haemaphysaloides
(7), Ixodes pacificus (7), Ixodes persulcatus (2), Haemaphysalis
bispinosa (2), Hyalomma anatolicum anatolicum (2), and one
each for Amblyomma hebraeum, Hyalomma marginatum
rufipes, Dermacentor silvarum, Ixodes ovatus, Rhipicephalus
bursa and Rhipicephalus annulatus. Since five well-studied
tick species have more than 100 reported PI sequences, we
predict that this will also be the case for other ixodid
tick species, once further sequence data becomes available.
Interestingly, we found that the large PI counts for A. amer-
icanum, A. maculatum, A. cajennense, I. scapularis and L
ricinus are consistent with current counts in other well-
studied arthropods, such as Anopheles gambiae (131) Apis
mellifera (224), Bombyx mori (269), Culex quinquefasciatus
(99), Drosophila melanogaster (166) and Tribolium
castaneum (184) [50]. We would like to advise the reader
that data presented in this study need further validation
using quantitative (q) RT-PCR. Despite this limitation,
these data provide important information on protease in-
hibitors expressed in tick genomes.

Amblyomma americanum PI repertories may vary by sex,
tissue and feeding time point

Evidence in other in silico transcriptome analyses show
evidence of sex-based differences in transcript levels during
feeding in R. appendiculatus [51], and temporal and
sex-based differences in transcript repertoires across
feeding time points in R. pulchellus [49]. Additionally,
studies using qRT-PCR analysis have validated spatio-
temporal variance of PI expression in ticks [54—56] as
well as semi-quantitative RT-PCR analyses showing spatio-
temporal differences in PI expression patterns [57-59].
Although our study is entirely in silico, our data support
the hypothesis that at least some tick PIs are differentially
expressed in tissues, time points and possibly between the
sexes. In our transcriptome data we found that of 515 A.
americanum Pl sequences, 164 (~32%) and 148 (~29%)
transcripts were found exclusively in females and males, re-
spectively, while 202 (~39%) were found in both sexes
(Table 1, Fig. 2). The next step will be to further explore the
hypothesis that A. americanum ticks express sex-specific
PIs using qRT-PCR.

In A. americanum SG and MG tissues at 48, 96 and
120 h of feeding, we found a total of 265 PIs across 14
families (Table 1, Figs. 2, 3). It is interesting to note that
we found more PI transcripts in SG (205) than in MG (162).
Also interesting is that of the 515 total A. americanum Pls,
we could not find 250 in either SG or MG tissues. While
technical errors could explain the lack of PIs in these tissues,
the data suggests the possibility that at least some PIs are
not expressed in these tissues, and that they might be
expressed in other tissues that are not primarily exposed to
the host components. Although data here need further
validation using qRT-PCR, the 250 sequences not found
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Fig. 1 Pl repertoire for four major medically important tick species. The count of protease inhibitors (Pls) in each PI family for Amblyomma
americanum, Amblyomma maculatum, Ixodes scapularis and Ixodes ricinus are shown. Pl families where total count was less than ten were
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in both SG and MG may not be priority candidates for
anti-tick vaccine development. Data for individual families
are outlined in the following sections. We would like to
note that data here are qualitative and not quantitative;
therefore, it is possible that distribution patterns for A.
americanum PIs may change after further analyses.

Majority of tick Pls putatively inhibit serine protease-
mediated pathways

Figure 3 shows that the majority (~72.5%, 1,159/1,595)
of tick PI sequences in this study belong to families
inhibiting serine proteases and are therefore putative
inhibitors of serine proteases: 527 in 12 (Kunitz-like
serine protease inhibitors), 287 in I4 (serine protease in-
hibitors, [serpin]), 237 in I8 (TIL domain elastase inhibitors),
61 in 11 (Kazal), 31 in I51 (PEBP, phosphatidylethanolamine-
binding protein), 10 in I53 (madanin), three in family 121
(secretogranin), two in 172 (chimadanin) and one in 174
(variegin, thrombin inhibitor) (Additional file 2: Table S2
and Fig. 1). Of the remaining 436 PI sequences, 164 (~13%)
belong to families inhibiting cysteine proteases: 102 in 125
(cystatin), 53 in 131 (thyropin), 39 in 129 (CTLA, Cytotoxic
T-lymphocyte antigens) and 12 in 132 (survivin); and 134
(~10.5%) belong to families of metalloprotease inhibitors: 75
in 143 (oprins), 62 in 163 (pro-eosinophil major basic
protein), 24 in 168 (tick carboxypeptidase inhibitor) and

6 in I35 (tissue inhibitor of metalloproteinases). The
remaining 63 Pls (~4%) are in family I39, alpha-2-
macroglobulins, which are non-specific Pls.

The relative PI family distribution we observed at the
global level was mirrored at the individual tick species level
with most PIs belonging to families inhibiting serine prote-
ases. We would like to note that some tick serpins may in-
hibit both cysteine and serine proteases, which would
change the relative proportions of proteases inhibited ([60];
unpublished observations by the authors). Nevertheless,
such a high number of putative inhibitors of serine prote-
ases suggest that inhibitors of serine proteases play an im-
portant and extensive role in regulating tick physiology.

In combination with our observations that ticks ex-
press high numbers of PIs for some families, these data
suggest a potential for highly functionally redundant
systems, whereby several proteins can accomplish the
same physiological goal. Evidence of functional redun-
dancy could signal that those PIs regulate tick physio-
logical pathways that must be functional without fail,
and thus finding ways to block such Pls could prove to
be highly effective in tick control. On the other hand,
PI families with fewer sequences could be interpreted
as less likely to have extensive functional redundancy
and these proteins could be the most attractive targets
for anti-tick vaccine development.
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Fig. 2 Amblyomma americanum P! repertoire according to sex,
unfed/fed and SG/MG tissues. The count of protease inhibitors (Pls)
for each PI family that were found exclusively in males, exclusively in
females or in both; found exclusively in unfed ticks, exclusively in fed
ticks or found in both; and found exclusively in salivary glands (SG),
exclusively in midgut (MG) or found in both are shown. PI families
where total count was less than 10 were excluded from the graphs
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Families of Pls encoded in A. americanum and other tick
species

Family I1: Kazal

In A. americanum we found 21 non-redundant Kazal
protease inhibitor (KPI) sequences (Table 1). In our
transcriptome analysis we found the majority of these
(19/21) in male ticks, while we detected a little more
than half (13/21) in female ticks (Table 1). It is interesting
to note that eight KPI transcripts were found only in
males, therefore future experiments should aim to validate
whether or not these PIs are differentially expressed in the
sexes. Strikingly, in our data we found almost all KPIs
(20/21) in fed ticks, strongly supporting the hypothesis
that many KPIs function in feeding physiology.

In 11 other ixodid tick species we found 33 putatively
non-redundant KPI sequences (Additional file 1: Table S1):
24 for I scapularis, four for L ricinus, three for A. variega-
tum, two for A. cajennense and only one KPI sequence for
each of A. maculatum, A. triste, A. parvum, R. microplus,
R sanguineus, R. pulchellus and H. longicornis. Our inter-
specific BLAST analyses showed 13 A. americanum KPls to
be highly conserved in other ixodid tick species, primarily
scapularis (Additional file 2: Table S2). Amino acid iden-
tities exceeded 65% for six A. americanum Kazal Pls with
four of these ranging between 81 and 98%. Interestingly, we
found these four very highly conserved PIs to be expressed
either in all or almost all tissues at all of the time points
examined in this study (Additional file 2: Table S2). Six of
the seven less-conserved KPIs (identities of 50-66%) had a
more limited tissue/time point/sex distribution. Notably,
three of these six were found only in fed males.

The only functional data currently available for tick KPIs
is from H. longicornis (ABB76182.1) and is a follistatin-
related protein (FRP, homologous to human FRP), binding

-

[CATEGORY NAME]
13%

[CATEGORY NAME]
10.5%

Lrlas m Serine

41%
Serpin
Multiple/Mixed m Multiple/Mixed

23% | Metallo-

Cysteine

Serpin
18%

Fig. 3 Proportions of tick protease inhibitors (Pls) which are
predicted inhibit each protease catalytic type. Tick Pls with putative
activity against serine or multiple/mixed activity represent the vast
majority of tick Pls. Serpins are shown separately from other Pl
families showing activity against multiple catalytic types to illustrate
that most tick Pls likely do inhibit proteases of the serine

catalytic type
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activin A and BMP-2 [61]. Activin has been implicated in
cell growth and differentiation, wound repair and acute
inflammation in the innate immune response [62, 63]. We
found one ABB76182.1 homolog in A. americanum
with 84% identity. Several inhibitory KPIs from other
hematophagous organisms have been described. Bdellins
from the medicinal leech Hirudo medicinalis are Kazal-type
inhibitors of trypsin and plasmin [64]. Additionally, three
Kazal-type thrombin inhibitors from hematophagous tria-
toma bugs have been described: dipetalogastin [65], infestin
[66] and rhodniin, [67]. In ticks, several proteins containing
Kazal domains have been reported including an organic
anion transporting polypeptide (Oatp), from A. ameri-
canum [68] and from L scapularis [69], as well as insulin
growth factor binding proteins from R. appendiculatus, R.
microplus and A. variegatum [47]. Inhibitory properties for
tick KPIs however have not been reported. Given the im-
portant role KPIs play in facilitating hematophagy in other
organisms, it will be interesting to investigate if tick KPIs
function the same.

Family 12: Kunitz

In A. americanum we found 177 non-redundant Kunitz
sequences. In our transcriptome data we found many
Kunitz sequences only in female ticks (69) and many
only in male ticks (35), while 73 were confirmed to be
expressed in both males and females, again suggesting
there may be differential expression of this PI family
between the sexes. Also noteworthy is the 60 Kunitz PIs
found only in SG suggesting there may be at least some
Kunitz PIs in A. americanum that are only expressed in
SG. The 87 Kunitz sequences found in SG shows the
complexity of tick salivary gland physiology. Notably,
similar numbers of Kunitz sequences were found only in
unfed females (30) as were found common to both fed
and unfed females (45), while more than double those
numbers were found only in fed female ticks (102). These
preliminary data support a hypothesis that at least some
Kunitz sequences may be expressed only in fed ticks and
this hypothesis should be confirmed with qRT-PCR analysis.
Such a marked diversity of Kunitz sequences during feeding
demonstrates their importance in tick feeding physiology. In
17 other ixodid tick species we found 350 putatively non-
redundant Kunitz sequences (Additional file 1: Table S1):
117 for L scapularis, 72 for A. maculatum, 36 for A. triste,
32 for A. cajennense, 22 for R. pulchellus, 17 for L ricinus,
nine for R. microplus, seven each for I pacificus, A.
variegatum and A. parvum, six each for H. longicornis
and R. sanguineus, four for D. andersoni, three for D.
variabilis, two each for R. appendiculatus and R. hae-
maphysaloides, and one for A. hebraeum. Our BLASTX
analyses revealed 12 A. americanum Kunitz PIs homologs
in other tick species with identities at > 60% (Additional
file 2: Table S2). Interestingly, all except one of these 12
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were found in fed ticks, supporting the hypothesis that
conserved A. americanum Pls play an important role
during feeding. However, it is worth mentioning that four
of 12 were confirmed by our transcriptome data to be
expressed in all or almost all tissues and time points
examined in this study.

Kunitz is a large family found in ticks and other
hematophagous species [50, 70-73]. Accordingly, we
found that 18 of 26 tick species in this study had Kunitz
sequences deposited in GenBank (Additional file 1:
Table S1). Kunitz proteins are serine protease inhibitors
of the S1 protease family [50]. Two Kunitz inhibitors
from I scapularis have been functionally characterized:
Ixolaris (AAK83022) [74] and penthalaris (AAM93636)
[75]. Ixolaris and penthalaris are tissue factor pathway
inhibitors, inhibiting blood clotting via FVIIa/TF binding
[74, 75]. Many Kunitz-type inhibitors from other tick
species have also been described, and are now known to
inhibit a range of proteases including thrombin, trypsin,
plasmin, kallikrein, neutrophil elastase and FXa [70]. Some
well-described examples of tick Kunitz inhibitors include
the thrombin-induced platelet aggregation inhibitors
savignygrin (Ornithodoros savignyi, AAM54048), [76],
disagregin (O. moubata, AAB30092), [77, 78] and the
thrombin inhibitors savignin (O. savignyi, AAL37210),
[79], boophilin (R. microplus, CAC82583), [80], amblin
(Amblyomma hebraeum, AAR97367), [81] and hemalin
(H. longicornis, BAH02683), [82]. Additionally, a trypsin-
inhibiting Kunitz protein from D. andersoni shows bac-
teriostatic properties and is upregulated during infection
with Rickettsia [83] demonstrating a role for Kunitz inhib-
itors aside from facilitating hematophagy. The widespread
nature of this family across tick species and its apparent
role in feeding and defense indicate the likelihood that all
ticks express Kunitz inhibitors. However, the large number
of Kunitz inhibitors suggests that this family is likely to
contain functionally redundant members.

3.12 Family 14: Serpins

A previous thorough analysis of serine protease inhibitors
(serpins) in A. americanum shows 122 unique serpin
sequences for this species [53]. In ten other tick species
we found 165 putatively non-redundant serpin sequences:
L scapularis (45), R. appendiculatus (29), R. microplus
(27), L ricinus (22), A. maculatum (17), R. pulchellus
(16), A. variegatum (4), R. haemaphysaloides (2), 1. persul-
catus (2) and H. longicornis (1) (Additional file 1: Table S1).
Serpins were originally identified as inhibitors of serine pro-
teases [84]. While other PIs inhibit serine proteases, this
family is differentiated from other PIs by the RCL of the
serpin domain. Further functional studies show certain ser-
pins have cross-class inhibitory functions against cysteine
proteases [85—87]. For additional reading, we refer the
reader to Porter et al. [53].
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Family 18: Chymotrypsin/Elastase Inhibitor

In A. americanum we found 17 non-redundant I8 inhibitor
sequences. Our transcriptome data confirmed the expres-
sion of more than half of these (nine of 17) in both male
and female ticks, while six were found only in females and
two were found only in males. Our data also confirmed the
expression of more than half (nine of 17) of I8 Pls in both
fed and unfed ticks, while six were found only in fed ticks
and two only in unfed ticks. We also found 10 sequences in
SG, five of which were only in SG while the other five were
also in MG. Based on these data it will be interesting to
explore the hypothesis of differential I8 PI expression using
qRT-PCR data (Fig. 2, Table 1).

In 10 other ixodid tick species we found 220 non-
redundant family I8 sequences (Additional file 1: Table S1):
81 in I ricinus, 78 in L scapularis, 43 in A. cajennense, 35
in A. triste, 32 in A. maculatum, 21 in A. parvum, 5 in R.
microplus, 1 in H. marginatum rufipes, 1 in R. pulchellus
and 1 in A. variegatum (Additional file 1: Table S1). Based
on the currently available data, family I8 appears to make
up a much larger proportion of the Ixodes PI repertoire
than the Amblyomma repertoire (Fig. 1). In A. americanum
we found seven I8 sequences conserved in other tick
species, with amino acid identities ranging from 50 to
72% (Additional file 2: Table S2). Of note is the A.
americanum 18 sequence with 72% identity to R. microplus
ixodidin, which is an antimicrobial peptide found in
tick hemocytes [88].

There are currently few functional studies for family I8
members in ticks, however in R microplus, inhibitory
properties have been verified for some I8 members. These
include ixodidin, a single TIL domain chymotrypsin/elastase
inhibitor with antimicrobial properties [88], and BmSI-7,
another single TIL domain protein shown to inhibit the bac-
terial protease subtisilin A and the fungal protease Prl [89].
Also, a recent study reported a TIL domain protein from L
scapularis nymphs as being upregulated and secreted at
48 h post-attachment [90]. Additionally, an I8 family mem-
ber from I ricinus, also upregulated after feeding, shows
similarity to von Willebrand Factor [91] and thus may play a
role in platelet aggregation inhibition [92]. In the A. macula-
tum sialotranscriptome 85 CDS (57 complete) that contain
TIL domains (or without a TIL domain but having similarity
to such sequences) were reported [45] however, redundancy
analysis data were not provided.

Family 121: Secretogranin

In A. americanum we found only one non-redundant
121 sequence. Strikingly, our transcriptome data confirmed
the expression of this sequence in every tissue and time
point, with the exception of SG at 48 and 120 h. Since this
sequence is expressed in males, females, unfed ticks and
fed ticks in multiple tissues, we speculate that this protein
may serve an important role. We also found only one
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non-redundant 121 sequence in L scapularis and D.
variabilis (Additional file 1: Table S1). Interestingly, the
A. americanum sequence shows 92% identity to the D.
variabilis sequence (ACJ12615.1), and 69% identity to
the I scapularis sequence (Additional file 2: Table S2). The
L scapularis and D. variabilis sequences share 75% identity.

Family 121 members are inhibitors of serine endopepti-
dases [50] and have a secretogranin_V domain (GenBank).
The type sequence for this family is a neuroendocrine
protein from humans, named 7B2, which inhibits the
prohormone convertase PC2 [93]. Accordingly, the 121
sequence in D. variabilis was found in the synganglion
(NCBI), and bioinformatic annotations of these sequences
are as neuroendocrine proteins. However, functional studies
of tick secretogranins have not yet been reported. The
apparent tissue and time point ubiquity and lack of family
expansion for A. americanum secretogranins makes this
family very intriguing, particularly since the pattern of a
single secretogranin sequence seems to extend to other tick
species. Single- or low-member PI families are interesting
from the perspective of their being targeted for control
strategies, since it indicates a potential lack of func-
tional redundancy for these proteins.

Family 125: Cystatins

In A. americanum we found 28 non-redundant cystatin
sequences. Our transcriptome data confirmed the expres-
sion of 15 cystatins in SG and MG (Table 1). We did not
find transcripts for all 28 cystatins in all tissues and time
points or in both sexes. We found only 18 in females and
only 22 in males. It will be interesting to use qRT-PCR
data to explore the possibility of differential expression of
cystatins in A. americanum. It is interesting to note how-
ever, that all cystatins we found to be expressed in unfed
male and in unfed female ticks were also found in fed
ticks. These data support the hypothesis that ticks likely
do not express any cystatins only in the unfed stage.

In 12 other ixodid tick species we found 74 cystatins:
L scapularis (15), L ricinus (14), A. cajennense (12), R.
pulchellus (9), R microplus (7), H. longicornis (5), A.
maculatum (3), R. sanguineus (3), D. variabilis (2), and
one each for A. variegatum, R. haemaphysaloides, I ovatus
and D. silvarium (Additional file 1: Table S1). Inter-species
BLASTX analyses showed eight A. americanum cystatins
have homologs across multiple tick species with amino acid
identities ranging from 50 to 82% (Additional file 2:
Table S2). This makes them interesting targets for anti-
tick vaccines that would be capable of protecting against
many species of ticks.

Cystatins are papain-like cysteine protease inhibitors
[50]. Functional data show that silencing of A. americanum
cystatin RNA results in reduced tick engorgement weights
and failure to feed [94]. In H. longicornis, the cystatin
Hlcyst-2 is expressed highest in MG and hemocytes, shows
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increased expression at feeding, and has been implicated in
tick immunity due to inhibitory effects on the growth of
Babesia bovis [95]. In I scapularis, the cystatin sialostatin-1
is a cathepsin L inhibitor involved in anti-inflammation and
inhibition of cytotoxic T-lymphocyte proliferation [96].

Family 129: Cytotoxic T-Lymphocyte Antigen (CTLA)

Family 129 is also known as cytotoxic T-lymphocyte
antigen-2 alpha, (CTLA-2). In A. americanum we found
15 non-redundant CTLA sequences (Table 1). Interestingly,
eight CTLAs in males were not found in females and eight
in females were not found in males. Additionally, 14 of 15
CTLAs were found in fed ticks, with only two of those 14
found in unfed ticks. Similarly, we found only six of 15
CTLA sequences in SG and MG tissues. Taken together,
these data suggest the potential of differential PI expression
across tissues and time points that should be further inves-
tigated. Most striking in our transcriptome data was that
unlike most other PI families, we found almost all CTLA
sequences in only a single tissue and time point. While this
could be explained by a technical rather than biological
reason, it is nonetheless worth noting and worth following
up with qRT-PCR expression analysis.

In 12 other ixodid tick species we found 24 putatively
non-redundant CTLA sequences: four each for I scapularis
and R. appendiculatus, two each for I ricinus, R. haemaphy-
saloides, A. maculatum, A. variegatum, D. variabilis and H.
anatolicum anatolicum, and one each for R microplus, R
annulatus, R. pulchellus and H. longicornis (Additional file 1:
Table S1). Inter-specific BLAST analyses revealed eight A.
americanum CTLAs with homologs in other tick species
(Additional file 2: Table S2). CTLAs are unique cysteine pro-
teases inhibitors, where inhibition of the peptidase is via the
peptidase propeptide [50]. Therefore, these proteins have a
domain profile that includes the 129 inhibitor domain,
followed by a ClA peptidase domain. Strikingly, we
found a high number of tick CTLAs with 60% or more
identity to A. americanum CTLAs, and in every case,
the region conserved between sequences included both
the 129 inhibitor domain and the protease domain regions.
The MEROPS database reports that the L scapularis gen-
ome lacks family 129 homologs, however, we found four
non-redundant I scapularis sequences showing 129 inhibi-
tor domains in the NCBI database (Table 1). While two of
the most conserved A. americanum CTLAs were not
confirmed in our data to be expressed in MG tissues, their
homologs in other ticks (AAO60045, —46, —48, ACF35530
and XP_002403652) are characterized as midgut cysteine
proteinases. Further investigation is required to determine
whether or not A. americanum expresses these CTLAs
in MG.

In mice, Drosophila and Bombyx mori CTLAs are in-
hibitors of cathepsin-L cysteine proteases [97—-99]. Our
BLAST analyses revealed that one A. americanum CTLA
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and 12 CTLAs from 10 other tick species show 40-62%
identity (Additional file 2: Table S2) to the 129 inhibitor and
cathepsin L protease regions of a CTLA in Sarcophaga
peregrina (flesh fly, BAA76272) involved in clearing for-
eign proteins in this insect [100]. The role of CTLAs in
tick physiology remains unknown, however it will be in-
teresting to investigate the potential for tick CTLAs to
be involved in eliminating the excess proteins in blood
meals or unwanted proteins expressed by tick-borne
disease agents.

Family 131: Thyropins

Family I31 is known as equistatin inhibitory unit 1 and
members are called thyropins due to their thyropin (TY)
domains [50, 101]. Thyropins are inhibitors of papain-like
cysteine proteases and cathepsin-D [50, 101, 102]. In A.
americanum we found six non-redundant thyropin se-
quences (Table 1). Unlike most of the other 13 families we
analyzed in this study, our data showed that transcripts
expressed in males were also expressed in females. Simi-
larly, our data showed that transcripts expressed in SG
were also expressed in MG, with the exception of one tran-
script that was found in neither tissue. Since our data do
not support an hypothesis that thyropins play a role in SG-
specific physiology, these PIs may not be recommendable
as anti-tick vaccine candidates.

In nine other ixodid tick species we found 47 putatively
non-redundant thyropins: 16 for A. cajennense, seven for A.
triste, six for L ricinus, five for A. maculatum, four each for
L scapularis and R. pulchellus, three for R. microplus, and
one each for A. variegatum and R. sanguineus in public
databases (Additional file 1: Table S1). Our BLASTX
searches show four of six A. americanum thyropin have
homologs in other tick species (Additional file 2: Table S2).
One interesting observation is that the two most highly
conserved A. americanum thyropins, homologs of an A.
variegatum thyropin (DAA34697) at 73 and 85% identity
values, were found only in fed males and in SG and MG of
female ticks. It will be interesting to further investigate with
qRT-PCR if these thyropins are only expressed in SG and
MG tissues in males and females.

Thyropin domains are found in many types of proteins
including in saxiphilin, which binds the neurotoxin saxi-
toxin [103], in testican, which is a cathepsin-L inhibitor and
regulates some matrix metalloproteases (MMPs) [104] and
in nidogen which functions in basement membrane forma-
tion [105] and neutrophil chemotaxis [106]. The functional
role of thyropins in ticks is not yet known.

Family 132: Inhibitor apoptosis (IAP)

In A. americanum, we found two non-redundant IAP
sequences (Table 1). Interestingly, our transcriptome data
confirm expression of both IAPs in fed and unfed male
and female ticks, and in both SG and MG tissues. The
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wide distribution of these IAPs implies their importance
in A. americanum physiology. In five other ixodid tick
species we found 10 non-redundant IAPs: five for 1. scapu-
laris; two for A. triste; and one each for A. maculatum, R.
microplus and R. pulchellus (Additional file 1: Table S1).
IAPs are also referred to as BIRC or BIR (baculovirus
inhibitor repeat containing) proteins. Since there are many
sequence annotations in GenBank that include the terms
“apoptosis inhibitor,” but do not have BIR domains and
are not protease inhibitors, we counted only sequences
showing a BIR domain in CDD searches. Our two A.
americanum 1APs each had a homolog in another tick
species (Additional file 2: Table S2). Notably, one sequence
showed 70% identity to R. microplus AIT40207 while the
other sequence had 54% identity to I scapularis survivin
(XP_002413809.1). IAPs inhibit caspases and cysteine en-
dopeptidases [50, 107]. According to CDD search analyses
in this study, some tick IAPs also have a C-terminus really
interesting new gene (RING) domain also found in other
IAP proteins [108, 109]. It has been shown that RING
domains in IAPs allow them to ubiquinate caspases for
degradation and removal [102]. Based on our analysis, tick
IAPs with RING domains are found in L scapularis, A.
triste, R. microplus and R. pulchellus. However, the func-
tion of IAPs in tick biology remains to be investigated.

Family 135: Tissue inhibitor of metalloproteinases (TIMPs)
Family 135 is referred to as TIMP (tissue inhibitor of
metalloproteinases) [50]. In A. americanum we found
only one TIMP sequence (Table 1). In our transcriptome
data we found just four redundant TIMP contigs, all of
which were found only in females in our transcriptome
data. The A. americanum TIMP was found in both SG
and MG, and in both fed and unfed females. It will be in-
teresting to confirm the lack of TIMP expression in male
ticks using qRT-PCR data. We found only five TIMPs for
other ixodid tick species, all in I scapularis (Additional
file 1: Table S1). BLASTX analyses show one of these
three sequences to have 68% to the A. americanum
TIMP (Additional file 2: Table S2). These data suggest
ticks have a small TIMP inhibitor repertoire that may not
be present at all in some species.

TIMPs are metalloendopeptidase inhibitors [50, 110].
In humans TIMPs are inhibitors of matrixins, which
function in tissue remodeling, inflammation and cancer
pathogenesis [111, 112]. Additionally, TIMPs are apoptosis
and angiogenesis regulators [113]. From the perspective of
tick feeding, which occurs over a period of several days,
blocking tissue remodeling and repair is essential to main-
tain the feeding site. Therefore, tick TIMPs as wound-
repair inhibitors is an interesting avenue for future research.
Furthermore, since our analyses show ticks appear to have
few TIMP sequences, these PIs might be involved in low-
redundancy or no-redundancy pathways. However, the role
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of TIMPs in the biology of ticks or of any hematophagous
organism remains to be explored.

Family 139: Alpha2-macroglobulins, (a-2 M)

In A. americanum we found 28 non-redundant alpha-
2macroglobulins (a-2 M) sequences (Table 1). Our tran-
scriptome data confirmed the expression of the majority
of these 28 (26/28) in female ticks, while we found only
a little more than half (15/28) in male ticks. Similarly, in
SG and MG tissues we found 18 of 28 a-2Ms, and con-
firmed expression of nine in both tissues. As our data sup-
port that these inhibitors are expressed in many different
tick tissues, this is an indication that they may serve diverse
functions in tick physiology.

In seven other ixodid tick species we found 35 a-2Ms:
L scapularis (17), R. pulchellus (11), R microplus (3),
and one each for L ricinus, A. maculatum, A. triste and
A. parvum (Additional file 1: Table S1, Fig. 2). Our inter-
specific BLAST analyses showed four A. americanum a-
2Ms are highly conserved in L scapularis (Additional file 2:
Table S2), with identities ranging from 76 to 83%. These
PIs appear to be widely distributed in males and females in
many tissue and time points which could indicate they may
not be involved in inhibiting tick host proteases. Notably
however, three of these four were not found in MG tissues.
Interestingly, we found one A. americanum a-2 M with
68% identity to an a-2 M in an argasid tick (Ornithodorous
moubata, AAN10129). Such high identity values of
metastriate a-2Ms with prostriate and argasid tick a-
2Ms indicates that at least some a-2Ms likely control
fundamental pathways in tick physiology. Accordingly,
these PIs warrant further consideration as potential
anti-tick vaccine or druggable targets. Most A. americanum
a-2Ms however, did not show identity with any other tick
a-2 M, suggesting significant divergence for some members
of this family.

In both vertebrates and invertebrates, a-2Ms are
considered components of the innate immune system
involved in clearance of rogue endogenous and exogenous
proteases [114, 115]. Emerging functional data show this
is also the case in ticks. Indeed, one a2M in D. variabilis
(BQ426156) is differentially upregulated when this species
is infected with Rickettsia montana [116]. In other studies,
RNAi-mediated silencing of I ricinus a2M mRNA shows
reduced phagocytosis of pathogens by tick cells, validating
the significance of this protein family in the tick immune
response [117]. The a2M-like protein from the ixodid tick
I ricinus has been characterized as functioning in patho-
gen phagocytosis by hemocytes in the hemolymph [117].
Similarly, the a2M TAM (tick a-macroglobulin) from
Ornithodoros moubata is a trypsin inhibitor expressed by
tick hemocytes and SG tissues [118, 119]. Collectively, this
evidence suggests we may expect to find a2Ms in all tick
species.
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Family 143: Opossum proteinase inhibitor (oprin)

In A. americanum we found 34 non-redundant oprin
sequences (Table 1). Of these 34, our transcriptome data
confirm the expression of 11 in SG and 10 in M@ tissues
and nine found in both tissues, while almost half were not
detected in these tissues. It will be interesting to use qRT-
PCR methods to validate the lack of expression of some
oprin sequences in A. americanum SG and MG tissues.
We also found 20 oprin sequences in unfed and 23 in fed
ticks. These data imply that oprins serve diverse functional
roles in tick physiology. Interestingly, we found seven
sequences present only in SG and five only in MG, but
that were not in males or in whole tick females. Based on
these data it will be interesting to explore in future studies
the hypothesis that these seven oprins are exclusively
expressed in female SG or MG. As with CTLA sequences,
we detected most oprin sequences in only one tissue at
single feeding time point, which will be interesting to vali-
dated using qPCR analysis.

In other ixodid ticks we found 41 putatively non-
redundant oprins and only in I scapularis. While the
MEROPS database indicates 22 oprins for L scapularis
(Additional file 1: Table S1), we found two sequences
(MEROPS ID: MER218533 and MER218534) to be identi-
cal; therefore, MER218534 was eliminated from further
analysis. Another MEROPS entry (MEROPS ID:
MER160224) is concurrently listed in both the Kazal and
oprin families. The domain profile of this protein contains
a single Kazal domain and two Ig domain regions, and
therefore may belong to two inhibitor families, or may be
a mis-annotation. Inter-specific BLASTX searches of A.
americanum oprin sequences revealed six homologs in I
scapularis with > 70% identity and eight with 50-67%
identity (Additional file 2: Table S2). We found most of
these highly conserved A. americanum oprins only in lim-
ited tissues and time points. For example, the top three
conserved oprins at 83, 82 and 80% identity with L scapu-
laris sequences were found only in MG at 48- and 120 h,
only in SG at 48 h, and only in unfed males, respectively,
however, these data should be further validated using
qRT-PCR analysis.

Oprins are inhibitors of metalloendopeptidases and have
varying numbers of immunoglobulin domains [120], but no
defining domain profile. While several oprins function as
snake venom metalloprotease inhibitors [120, 121], one
oprin has been characterized as an immunoglobulin alpha
FC receptor (FCalphaRI), which is the IgA receptor found
on myeloid cells [122]. In this study, BLASTP scanning of
tick sequences using the oprin type-entry from D. virginiana
(MEROPS ID: MER019033), the alphalB glycoprotein entry
from humans (MEROPS ID: MER018491) and the Ig alpha
FC receptor from humans (MEROPS ID: MER033169), re-
vealed no tick sequences of significant similarity, indicating
143 proteins may serve different functional roles in ticks.
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Family 151: Phosphatidylethanolamine-binding proteins
(PEBPs)

In A. americanum we found 14 non-redundant
phosphatidylethanolamine-binding protein (PEBP) se-
quences (Table 1). Our transcriptome data confirm
expression of all 14 PEBPs in males, however nine were
not found in females. The five PEBPs found in female ticks
were also found in male ticks, which will be interesting to
validate using qRT-PCR data since this would indicate
females do not express any unique PEBPs. Since this is
one of the smaller PI families, which could indicate low or
no functional redundancy of PEBPs in ticks, it will be in-
teresting to further investigate the function of the five
PEPBs found in SG and MG tissues in this study.

In six other ixodid tick species we found 17 non-
redundant PEBPs: seven for I scapularis, four for A.
maculatum, three for I ricinus, and one each for A.
triste, A. parvum and A. cajennense (Additional file 1:
Table S1). Seven CDS have been reported in A. maculatum
[45], and six can be found in GenBank, however only four
of those six are non-redundant, therefore an exact count
for A. maculatum remains to be determined. Data are less
often collected for male ticks than for female ticks and this
might explain why the number of known PEBPs in other
tick species is less than in A. americanum. We found
homologs to only three of 14 A. americium PEBPs in other
ticks and only in L scapularis (Additional file 2: Table S2).
However, the identities for these sequences ranged from 56
to 69%. Interestingly, two of these three PEBPs were
confirmed by our transcriptome data to be expressed in all
tissues and feeding time points. Given the evolutionary dis-
tance between Amblyomma and Ixodes, we speculate ho-
mologs in metastriate tick species will be found when more
data become available.

PEBPs are widespread among all types of organisms,
however the function of PEBPs in various organisms is
still being investigated. Some PEBPs have shown inhibitory
function against thrombin, chymotrypsin and neuropsin
[123]. Additionally, inhibition of the non-protease proteins
Raf-1 kinase and G-protein-coupled receptor kinase 2 has
been proposed [124]. The role of PEBPs in tick physiology
has not yet been investigated beyond comparative tran-
scriptomics. In D. variabilis, one putative PEBP was
downregulated in the synganglion of replete-fed females,
as compared to partially fed females [42]. More recently,
PEBP transcripts were found in the salivary glands of three
Amblyomma species: A. parvum, A. cajennense and A.
triste [44]. These findings suggest PEBPs may play several
different roles in tick physiology.

Family 153: Madanins

We found no madanin sequences in our A. americanum
libraries. Family 153 members, known as madanins, were
first discovered as blood coagulation inhibitors from H.



Porter et al. Parasites & Vectors (2017) 10:152

longicornis [125], found in the salivary glands of feeding
ticks [34]. This family has since been reported from the
salivary proteome of H. marginatum rufipes, where a
total of four sequences were annotated as madanin 1-4
[38], however none of these sequences show an 153
domain in a CDD search and these sequences show no
identity to other madanin sequences and were therefore
excluded them from our protease inhibitor counts. In
D. andersoni four sequences have been identified as
putative salivary madanin proteins [126] which we in-
cluded in our counts, however sequences were not
found in GenBank or UniProt for domain verification.
In H. bispinosa two 153 domain sequences named hae-
mathrin -1 and -2 have been deposited in GenBank
(Additional file 1: Table S1).

Madanins are between 78 and 80 amino acids in
length and share between 30 and 96% sequence identity
(data not shown). Madanins have two unique features.
One is that these sequences lack cysteine residues, which
is relatively uncommon among thrombin inhibitors of
blood feeding arthropods [127]. The other feature is two
clusters of acidic residues in the N-terminus of the
sequence (first 2/3 s of the sequence) [127]. Crystallography
studies show madanins bind with low affinity to thrombin
and bind to thrombin’s active site [127]. Madanins found in
other tick species have not yet been characterized.

Family 163: Pro-eosinophilic major basic protein (pro-MBP)
In A. americanum we found 47 non-redundant pro-MBPs
(Table 1). Our transcriptome data confirm expression of
most (32/47) of these PIs in both male and female ticks,
and most (30/47) in both fed and unfed ticks. Interestingly,
we found eight pro-MBPs only in female ticks and eight
only in male ticks. We also found nine pro-MBPs exclu-
sively in each of unfed and fed ticks. Therefore, while it
appears that most pro-MBPs in A. americanum are not
sex- or time point-specific, it will be interesting to verify by
qRT-PCR if there are some that are differentially expressed.
While we found 48 total pro-MBP sequences in A. ameri-
canum, only 19 were found in SG and MG tissues, and it
will be interesting to determine with qRT-PCR analysis if
the other 27 are only expressed elsewhere in the tick.

We found one pro-MBP sequence for I scapularis in
MEROPS, but could not find pro-MBPs in any other tick
species. Additional file 2: Table S2 outlines results from
BLASTX scanning of A. americanum pro-MBPs against
other tick sequences in GenBank. Eighteen of 47 A.
americanum sequences had homologs in I scapularis,
which led us to increase the pro-MBP count for I scapu-
laris to 14 putatively non-redundant sequences. What is
striking is the very high similarity between I scapularis and
A. americanum pro-MBP sequences: four sequences had
63-66% identity, four sequences had 75-79% identity, five
sequences had 80-87% identity and two sequences had
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94-95% identity to L scapularis sequences. For ten of
the 18 conserved A. americanum pro-MBPs, our tran-
scriptome data could confirm expression in only a single
tissue and time point, and six of these 10 were in unfed
males only in our data. It will be interesting to further in-
vestigate the hypothesis of tissue and time point-specific
expression of conserved A. americanum pro-MBPs.

In humans, pro-MBP has been shown to inhibit
pregnancy-associated plasma protein-A (PAPP-A), which is
a metalloprotease found both in a variety of normal tissues
and in injured vasculature and skin, and is responsible for
promoting cell growth and repair [128, 129]. Another 163
member in snake venom, bothrojaracin (Bothrops jararaca),
has been characterized as a thrombin-induced platelet
aggregation inhibitor, interacting with thrombin’s exosite 1
to inhibit factor V activation [130, 131]. Interestingly, it
has been noted that pro-MBP is capable of inhibiting
MBP [132, 133], which is toxic to the schistosomulum of
Schistosoma mansoni [132, 133], however, there have been
no studies investigating the role of the pro-MBP protein
in any tick species or other parasites.

Family 168: Tick Carboxypeptidase Inhibitor (TCI)
Family 168 sequences are known as tick carboxypeptidase
inhibitors (tick CPI, or TCI). In A. americanum we found
a single non-redundant TCI in GenBank (JAG91585)
(Additional file 2: Table S2). In eight other ixodid tick
species we found 23 putatively non-redundant TCI
sequences: 10 for R. pulchellus, four for I ricinus [134],
three each for A. maculatum [45] and I scapularis
(MEROPS), and one each for R. bursa [135], R. sanguineus
[39] and H. longicornis [136]; and (Additional file 1:
Table S1). It is interesting to note the low family mem-
bership for TCIs, with most species having just one or
a few non-redundant sequences. This could indicate that
TClIs are functionally non-redundant and could be interest-
ing targets for tick control. Rhipicephalus pulchellus is a
notable exception, with 10 non-redundant TCIs. However,
of the 10 non-redundant sequences our CDD searchers
showed 168 domains in only eight. In D. andersoni six
potential orthologs have been reported [137] but are not
available in public databases for further analysis. The only
TCI found for A. americanum showed 61% identity to the
carboxypeptidase inhibitor in H. longicornis (ABO93460).
As the name suggests, TCIs are found exclusively in
ticks and inhibit carboxypeptidases [50]. Functional studies
show that the TCI in R bursa inhibits proteases using its
C-terminus at the protease active site, and its N-terminus
at the carboxypeptidase exosite, and show a role for this
protein in fibrinolysis acceleration by inhibiting thrombin-
activatable fibrinolysis inhibitor (TAFI) [135]. TAFI also
functions in wound healing, tissue remodeling and inflam-
mation [135, 138]. Additionally, TCIs from both R bursa
and H. longicornis have been demonstrated to inhibit
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carboxypeptidases A and B, which function in mast cell-
related inflammation, and in peptide digestion in pancreas
and mast cells [136, 139, 140]. This is interesting because
mast cells are suggested to be important in host defense
against parasitism. Indeed, inhibitors of mast cell car-
boxypeptidase A from Ascaris suum have been con-
cluded as a significant for the nematode’s survival
within its host [140, 141]. More data are needed to fur-
ther characterize the role of TClIs in tick physiology.

3.35 Family 172: Chimadanins

We found no chimadanins in A. americanum. Family
172 was established with the discovery of a blood coagula-
tion inhibitor from H. longicornis [142]. This protein was
named chimadanin and remains the sole member for this
family, not having been discovered in any other organism
(Additional file 1: Table S1). Chimadanin is a thrombin in-
hibitor of only 93 amino acids [142]. Expression of this pro-
tein is notable in the salivary glands of ticks during feeding
[142]. This protein shows no domains in a CDD search. A
recent study of the R sanguineus sialotranscriptome re-
sulted in a sequence bioinformatically annotated as chima-
danin anti-thrombin like (ACX53883) [39], however a CDD
search of this sequence showed an 153 domain. Thus, the
placement of this sequence in family 172 is likely incorrect,
leaving the chimadanin from H. longicornis as the sole 172
sequence. Due to the lack of a specific domain characteriz-
ing this family it may be difficult to assign new members to
this family. Future assignment may be limited to sequences
showing very high sequence conservation, followed by
functional characterization studies.

Family 174: Variegin

Family 174, known as variegin, is comprised of a sin-
gle sequence from one tick species, A. variegatum
(Additional file 1: Table S1). As was the case in our
A. americanum transcriptome analysis and in the A.
triste, A. parvum and A. cajennense transcriptome analyses,
studies may fail to find this protein because of its unusually
small size of only 32 amino acids [44]. Like madanins,
this sequence lacks cysteine residues [143]. Functional
characterization of this protein shows that it is a thrombin
inhibitor [144]. A prolonged inhibition of thrombin is
interesting from the perspective of tick feeding which
requires an interruption of blood coagulation for the
many days over which tick feeding occurs. It will be inter-
esting to see if further tick transcriptome analyses reveal
this protein in other tick species.

Conclusions

Studies characterizing the function of tick PIs show a
role in host protease regulation [50, 60, 145, 146], and in
the regulation of tick proteases [55, 83]. This study
shows that there are at least 1,595 known putative
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non-redundant PIs in ixodid tick species. Our A.
americanum transcriptome analyses reveal that just
six PI families: 12, 14, 125, 139, 143 and 163 represent
the vast majority (80%) of the A. americanum PI rep-
ertoire. Based on these results, we predict many more
tick PIs are as yet undiscovered, primarily from one of
the big three families: 12, 4 and I8. Though limited by
the fact that transcripts in this study may not have
been found due to technical and not biological reasons,
our analysis of A. americium transcriptomes showed all PI
families were always present, (with the exception of 135),
but also supported previous in silico, semi-quantitiative
and quantitative RT-PCR data showing differential expres-
sion of specific PIs within families [49, 51-59], between
the sexes, tissues, and throughout feeding. It is not pos-
sible to study all 1,595 tick PIs in a reasonable time
frame, therefore this study provides a prioritization
template for selecting suitable anti-tick vaccine and/or
pharmacologically relevant targets. The discovery of
tick PIs that are conserved across different tick species
[53] suggests some Pls likely regulate pathways that
important to all ticks, and suggests these could be tar-
geted for development of universal anti-tick vaccines.
Conversely, PI families found neither in the I scapularis
genome, nor in our extensive transcriptome data for A.
americanum, suggest we will find more Pls unique to
certain tick species. These proteins are not attractive
candidates for a broad-spectrum anti-tick vaccine. We
propose that tick PI families with low PI numbers, sug-
gesting non-redundancy in function, and that are highly
conserved across species be among the priority proteins
to investigate in future studies.

Additional files

<
Additional file 1: Table S1. Counts of protease inhibitors for ixodid tick
species and GenBank accession numbers for accessed tick Pl sequences

by PI family. (XLSX 97 kb)

Additional file 2: Table S2. Results of Amblyomma americanum
BLASTX search against tick sequences in the GenBank database. (XLSX 83
kb)

Additional file 3: FASTA sequences for Amblyomma americanum
contigs from lllumina sequencing, by PI family. (ZIP 638 kb)
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