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Simple Summary: Characterizing the tumour microenvironment (TME) has become increasingly
important to understand the cellular interactions that may be at play for effective therapies. In this
study, we used a novel spatial profiling tool, the Nanostring GeoMX Digital Spatial Profiler (DSP)
technology, to profile non-small-cell lung cancer (NSCLC) for protein markers across immune cell
typing, immune activation, drug targets, and tumour modules. Comparative analysis was performed
between the tumour, adjacent tissue, and microenvironment to identify markers enriched in these
areas with spatial resolution. Our study reveals that this methodology can be a powerful tool for
determining the expression of a large number of protein markers from a single tissue slide.

Abstract: Profiling the tumour microenvironment (TME) has been informative in understanding the
underlying tumour–immune interactions. Multiplex immunohistochemistry (mIHC) coupled with
molecular barcoding technologies have revealed greater insights into the TME. In this study, we utilised
the Nanostring GeoMX Digital Spatial Profiler (DSP) platform to profile a non-small-cell lung cancer
(NSCLC) tissue microarray for protein markers across immune cell profiling, immuno-oncology
(IO) drug targets, immune activation status, immune cell typing, and pan-tumour protein modules.
Regions of interest (ROIs) were selected that described tumour, TME, and normal adjacent tissue (NAT)
compartments. Our data revealed that paired analysis (n = 18) of matched patient compartments
indicate that the TME was significantly enriched in CD27, CD3, CD4, CD44, CD45, CD45RO, CD68,
CD163, and VISTA relative to the tumour. Unmatched analysis indicated that the NAT (n = 19) was
significantly enriched in CD34, fibronectin, IDO1, LAG3, ARG1, and PTEN when compared to the
TME (n = 32). Univariate Cox proportional hazards indicated that the presence of cells expressing CD3
(hazard ratio (HR): 0.5, p = 0.018), CD34 (HR: 0.53, p = 0.004), and ICOS (HR: 0.6, p = 0.047) in tumour
compartments were significantly associated with improved overall survival (OS). We implemented
both high-plex and high-throughput methodologies to the discovery of protein biomarkers and
molecular phenotypes within biopsy samples, and demonstrate the power of such tools for a new
generation of pathology research.
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1. Introduction

Non-small-cell lung cancer (NSCLC) accounts for 85% of lung cancers, and is the leading cause of
cancer-related deaths [1]. Patients are often diagnosed at an advanced stage, where the immediate
prognosis is poor, resulting in a five-year survival rate of less than 20% [2,3]. With the emerging success
of immune checkpoint blockade leading to durable responses and prolonged survival in 15–40% of
cases, there is now a need for predictive biomarkers to guide patient selection for targeted therapies [4].
The use of comprehensive tumoural information to inform clinical decision-making is becoming
increasingly important [5–9]. Studies in the tumour microenvironment (TME) have revealed that a high
degree of T-cell infiltration into the tumour provides fertile grounds for effective immunotherapies [10].
As such, the immune contexture (type, density, and location, as well as phenotypic and functional
profile of immune cells) has been used to understand a greater depth of the tumour-immune cell
interactions, which may provide cues into predictive biomarkers of the response to immune checkpoint
therapy (anti PD-1/PD-L1) [11,12].

While traditional immunohistochemistry (IHC) techniques allow for the spatial profiling of cells
in the tumour, this is often lost when tumours are analysed using bulk tissue genomic approaches.
Moreover, the actual cellular proportions, cellular heterogeneity, and deeper spatial distribution
are lacking in characterisation. Spatial and immunological composition with cellular status can
aid in identifying micro-niches within the TME [13]. The classification of the immune context
within the TME lays the foundation for addressing how the immunological composition and status
(activated/suppressed) may dictate response to therapy. Therefore, to address this need, imaging
and tissue sampling is required simultaneously to analyse tumour tissue and immune proteins with
spatial resolution.

In this study, we used the Nanostring GeoMX Digital Spatial Profiler (DSP) to measure
compartment-specific expression of proteins across immune cell profiling, immuno-oncology (IO), drug
targets, immune activation status, immune cell typing, and pan-tumour protein modules. We found
that in paired analysis of matched compartments, the TME was enriched for CD27, CD3, CD4, CD44,
CD45, CD45RO, CD68, CD163, and VISTA relative to the tumour regions. Unmatched analysis
indicated that the normal adjacent tissue (NAT) (n = 19) was significantly enriched in CD34, fibronectin,
IDO1, LAG3, ARG1, and PTEN when compared to TME. Univariate Cox proportional hazard analysis
indicated that the presence of cells expressing CD3 (hazard ratio (HR): 0.5, p = 0.018), CD34 (HR: 0.53,
p = 0.004), and ICOS (HR: 0.6, p = 0.047) in tumour compartments was associated with improved
overall survival (OS).

2. Methods

2.1. Tissue Microarray

This study has QUT Human Research Ethics Committee (UHREC) approval (#2000000494).
The NSCLC Tissue Micro Array (TMA) (HLugA180Su03), containing 92 cases with concordant
histologically normal adjacent tissue, was obtained from US Biomax, Inc. (Rockville, MD, USA),
including associated clinical information. H&E images were demarcated by a pathologist for tumour
and non-tumour regions in each core. The tissue microarray was purchased from US Biomax
(commercial source). These companies keep the informed consent of the patient samples used to create
the microarrays.
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2.2. Nanostring GeoMX Digital Spatial Profiler: Tissue Microarray

The slides were profiled using Technology Access Program (TAP) by Nanostring Technologies
(Seattle, WA, United States). In brief, immunofluorescent staining was performed on the TMA with
tissue morphology markers (PanCK, CD3, CD45, and DAPI) in parallel with DNA-barcoded antibodies
within the immune cell profiling, IO drug targets, immune activation status, immune cell typing,
and pan-tumour protein panels, as shown in Table 1. Geometric (circular) and custom regions of
interest (ROIs) were selected based on visualisation markers to generate tumour (PanCK+) and TME
(PanCK−) areas, from which barcodes were liberated by UV light using the GeoMx DSP instrument,
then hybridised and counted on the Ncounter system.

Table 1. Target proteins within Nanostring Digital Spatial Profiler (DSP) modules.

Controls Immune Cell
Profiling IO Drug Target

Immune
Activation

Status

Immune Cell
Typing

Pan-Tumour
Module

Rb IgG PD-1 4-1BB CD127 CD45RO MART1
Ms IgG1 CD68 LAG3 CD25 FOXP3 NY-ESO-1
Ms IgG2a HLA-DR OX40L CD80 CD34 S100B

Histone H3 Ki-67 Tim-3 ICOS CD66b Bcl-2
S6 Beta-2M VISTA PD-L2 FAP-alpha EpCAM

GAPDH CD11c ARG1 CD40 CD14 Her2
CD20 B7-H3 CD44 CD163 PTEN
CD3 IDO1 CD27 ER-alpha
CD4 STING PR
CD45 GITR
CD56
CD8

CTLA4
GZMB
PD-L1
PanCk
SMA

Fibronectin

2.3. Nanostring GeoMX Digital Spatial Profiler: Data Analysis

Patient data presented in Table 2 was generated in R studio [14] using the package
“gtsummary” [15]. Remote access to the GeoMx DSP analysis suite (GEOMX-0069) allowed inspection,
quality control (QC), normalisation, and differential expression to be performed. Briefly, each ROI was
tagged with metadata for its compartment and patient pairing, in order to allow pairwise comparisons.
Raw data was exported and plotted in R using “ggplot2” [16] for raw counts, a signal relative to
IgG controls, and an evaluation of the Pearson correlation coefficient (R) between normalisation
parameters using the “ggpubr” package [17]. Normalisation using Histone H3 and S6 proteins
was performed in GeoMx DSP analysis suite. Differential expression between paired compartments
was evaluated by paired t-tests with a Benjamini–Hochberg correction, while differential expression
between unpaired compartments was performed by a Mann–Whitney test with Benjamini–Hochberg
correction, and results were plotted in R studio using “ggplot2”. Relative expression data was
exported from the GeoMx DSP analysis suite, hierarchical clustering performed using the R package
“complexHeatmap” [18], and univariate Cox proportional hazards regression was performed using
“survivalAnalysis” [19] package.
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Table 2. Patient characteristics of the TMA cohort by DSP tissue compartment.

Characteristic Overall, n = 96 NAT, n = 19 1 TME, n = 32 1 Tumour, n = 45 1 p-Value 2

Age 62 (54, 69) 66 (56, 69) 60 (54, 67) 62 (54, 71) 0.6
Sex 0.7
F 42 (44%) 9 (47%) 12 (38%) 21 (47%)
M 54 (56%) 10 (53%) 20 (62%) 24 (53%)
t
0 19 (20%) 19 (100%) 0 (0%) 0 (0%)
1 24 (25%) 0 (0%) 11 (34%) 13 (29%)
2 34 (35%) 0 (0%) 15 (47%) 19 (42%)
3 12 (12%) 0 (0%) 4 (12%) 8 (18%)
4 7 (7.3%) 0 (0%) 2 (6.2%) 5 (11%)
n 0.2
0 78 (81%) 19 (100%) 23 (72%) 36 (80%)
1 13 (14%) 0 (0%) 6 (19%) 7 (16%)
2 3 (3.1%) 0 (0%) 2 (6.2%) 1 (2.2%)
3 2 (2.1%) 0 (0%) 1 (3.1%) 1 (2.2%)

1 Statistics presented: median (IQR); n (%); 2 Statistical tests performed: Kruskal–Wallis test; chi-square test of
independence; Fisher’s exact test.

3. Results

3.1. Region of Interest (ROI) Selection

Ninety-six ROIs in total were selected that were representative of 45 tumours, 32 TMEs, and
19 histologically normal adjacent tissues from the cohort of patients described in Table 2. Images
of H&E-stained cores were demarcated by a pathologist and were utilised alongside Nanostring
immunofluorescent staining for morphology markers PanCK, CD45, CD3, and DAPI to draw ROIs
indicative of a tumour (CK+) or TME (CK-/CD3+). Figure 1 provides an example of this strategy
where tumour and TME ROIs were able to be identified within the same tumour core. Of all the
samples collected, comparisons from the same patient could be made between eight TME–NAT pairs,
14 NAT–tumour pairs, and 18 tumour–TME pairs. Figure 2 provides an overview of the tumour and
immune ROI selection, as well as representative expression profiles for a number of associated markers.

3.2. Data Quality Control

Quality control was performed within the GeoMx DSP analysis suite, to ensure the Ncounter
quantification of probes was within specification. Raw probe counts per ROI were inspected to ensure
comparable ranges of the signal, and to evaluate systemic variability ins sample groups. ROIs generated
median counts within the range of 102 and 103, with observably lower median counts for ROIs 13,
67, and 96 (Figure S1). Raw probe counts were then inspected within TME, tumours, and NAT, as
targets were expected to vary by respective tissue compartment (e.g., immune markers in TME vs.
tumours). Robust counts were observed for abundant targets, including histone H3, SMA, S6, GAPDH,
fibronectin, cytokeratin, CD44, CD68, β-2-microglobulin (B2M), HLA-DR, CD45, and B7-H3 (beyond
axis range in Figure S2); however, the remaining probes shown exhibited raw counts below 200. Overall,
raw counts from NAT ROIs shown in Figure S2 appeared to be lower than others for compartments,
while tumour ROIs generated higher signals for most lowly-abundant probes. Of note, background
isotype control IgG probes possessed counts between 50 to 150 (Figure S2), and while rabbit (Rb) IgG
exhibited similar counts between tumour and TME compartments, mouse (Ms) IgG showed higher
counts for tumours then TME. This suggests that background correction may not be the best strategy
for the normalisation of lowly-expressed targets, as these targets are expressed at background or just
above background levels, making their quantification challenging. Target signals relative to Ms and Rb
IgG control probes was therefore evaluated to identify probes from which data should be considered
with caution. Probes shown in Figure 3 whose median signal from all compartments relative to IgG
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was less than 1 (pink region) were thus followed with caution, and 31 of the 55 probes above CD25 in
Figure 3 below were considered robust for further analysis.
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Figure 1. Representative H&E and immunofluorescent images of TMA cores. (A,C) Tumour regions of 
the cores were demarcated by a pathologist. (B,D) Corresponding regions of interest (ROIs) were 
captured for DSP analysis based on immunofluorescent staining for PanCK (Green), CD3 (Red), CD45 
(Yellow), and DAPI (Blue). Tumour ROI (lower left) and tumour microenvironment (TME) ROI (upper 
right) were manually drawn in (B), and a circular tumour ROI (lower left) and TME ROI (upper right) 
are used in (D). Scale bar not available for H&E images, as images obtained from commercial supplier 
and are representative only. Scale bar = 200 µm. 

Figure 1. Representative H&E and immunofluorescent images of TMA cores. (A,C) Tumour regions
of the cores were demarcated by a pathologist. (B,D) Corresponding regions of interest (ROIs) were
captured for DSP analysis based on immunofluorescent staining for PanCK (Green), CD3 (Red), CD45
(Yellow), and DAPI (Blue). Tumour ROI (lower left) and tumour microenvironment (TME) ROI (upper
right) were manually drawn in (B), and a circular tumour ROI (lower left) and TME ROI (upper right)
are used in (D). Scale bar not available for H&E images, as images obtained from commercial supplier
and are representative only. Scale bar = 200 µm.
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Figure 2. Tumour and immune ROIs exhibit distinct tumour/leukocyte marker expression. PanCK 
(Green), CD3 (Red), CD45 (Yellow), and DAPI (Blue). Representative paired tumour and immune ROIs 
are shown with corresponding Log2 expression of EpCAM, PanCK, CD3, CD4, and CD45. ROIs 71, 69, 
74, and 63 represent tumour regions, while 72, 69, 74, and 63 are respective immune regions from 
corresponding patients. Scale bar = 200 µm. 
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Quality control was performed within the GeoMx DSP analysis suite, to ensure the Ncounter 
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Figure 2. Tumour and immune ROIs exhibit distinct tumour/leukocyte marker expression. PanCK
(Green), CD3 (Red), CD45 (Yellow), and DAPI (Blue). Representative paired tumour and immune ROIs
are shown with corresponding Log2 expression of EpCAM, PanCK, CD3, CD4, and CD45. ROIs 71,
69, 74, and 63 represent tumour regions, while 72, 69, 74, and 63 are respective immune regions from
corresponding patients. Scale bar = 200 µm.
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Figure 3. Probe counts relative to rabbit (Rb) and mouse (Ms) IgG controls. Counts of each probe were
normalised to mean counts of Rb and Ms IgG within each ROI. The mean of these normalised values per
probe was plotted to evaluate the robustness of the target protein signal to isotype background controls.

3.3. Data Normalisation

The method of normalisation between ROIs was assessed by examining correlations between
histone H3, S6, GAPDH, and IgG background control probes, under the assumption that normalisers
should correlate between ROIs and be unrelated to underlying biology. Housekeeping proteins
included in the assay (GAPDH, histone H3, and S6) were plotted to determine which pairs best
correlated across ROIs (Figure 4A–C). Histone H3 and S6 exhibited the strongest Pearson correlation
coefficient (R = 0.7) (Figure 4C), and were thus examined further for correlation to IgG background
to confirm independence from tissue biology. Ms and Rb IgG strongly correlated with each other
across ROIs (R = 0.92) (Figure 4D), and the means of these IgG counts showed strong correlation with
means of histone H3 and S6 housekeeping controls (R = 0.91), indicating that IgG controls, histone H3,
and S6 were unrelated to underlying biology, and could act as appropriate normalisers across ROIs
(Figure 4E).
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In addition to the normalisation by IgG and traditional housekeeping members, ROI area and 
nuclei count were inspected for their utility to normalise DSP data. Figure 5A–C illustrates the 
relationship that the ROI area possessed with histone H3/S6, IgG, and nuclei. A number of ROIs varied 

Figure 4. Assessment of housekeeping proteins and IgG as normalisers. Raw counts (A–D) and
the means (E) of GAPDH, histone H3, S6, and Ms/Rb IgG were compared pairwise and linear
regression performed to determine the Pearson correlation coefficient (R) between putative housekeepers.
(A) GAPDH vs. histone H3, R = 0.43; (B) GAPDH vs. S6, R = 0.66; (C) histone H3 vs. S6, R = 0.7;
(D) Ms IgG vs. Rb IgG, R = 0.92; (E) mean of Ms/Rb IgG vs. mean of histone H3/S6, R = 0.91. NAT:
normal adjacent tissue; TME: tumour microenvironment; tumour: tumour region.

In addition to the normalisation by IgG and traditional housekeeping members, ROI area and
nuclei count were inspected for their utility to normalise DSP data. Figure 5A–C illustrates the
relationship that the ROI area possessed with histone H3/S6, IgG, and nuclei. A number of ROIs varied
by area; however, some possessed maximum sized geometry, and these ROIs varied significantly in
their relationship with other normalisation parameters, indicating that ROI area was not a useful
normalisation method in this experiment. Similarly, nuclei counts were evaluated relative to IgG and
histone H3/S6 means (Figure 5D,E), where some trend was evident but lacked the robustness of either
IgG or histone H3/S6 normalisation. Histone H3/S6 means were therefore utilised for normalisation,
and henceforth the comparative quantification of probes.
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Figure 5. Assessment of ROI area and nuclei as normalisers. (A) ROI area was plotted against
histone H3/S6 means (R = 0.7), (B) IgG means (R = 0.78), (C) and nuclei counts (R = 0.89). Nuclei
counts were then evaluated against (D) IgG means (R = 0.8) and (E) histone H3/S6 means (R = 0.79).
Some ROIs contained the maximum area (horizontal dots in A–C) and exhibited significant variance
in the secondary parameter, indicating that area was not a suitable normalisation method. Nuclei
counts (D–E) demonstrated a trend with the secondary parameter; however, correlation was not as
significant as that observed for IgG or histone H3/S6. NAT: normal adjacent tissue; TME: tumour
microenvironment; Tumour: Tumour region.

3.4. Data Analysis

Hierarchal clustering by the Ward D2 method [20] was first used to explore normalised data;
however, expression appeared to vary significantly within classes of compartments, such that clear
distinction between the NAT, tumour, and TME was not evident (Figure 6). K-means clustering to
further group ROIs into classes showed most NATs grouping together (Figure 6, left), characterised by
higher expression of most genes except for PanCK, EpCAM, and Ki-67. Another class consisting of
both the TME and tumour (middle Figure 6) was characterised by lower expression of most proteins,
with some ROIs expressing high levels of Ki-67 and EpCAM, whereas a third class was characterised
by relatively heterogenous expression of all proteins (Figure 6, right).
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Figure 6. Clustered heatmap of relative expression of proteins per ROI. Ward D2 clustering was
applied, followed by K-means clustering to delineate differences between expression profiles among
compartments. NAT: normal adjacent tissue; TME: tumour microenvironment; tumour: tumour region.

Global correlation matrices for target protein expression within the TME (Figure S3) and tumour
(Figure S4) indicated a large number of significant (p ≤ 0.001) positive correlations.

Differential protein expression was then evaluated between patient matched and unmatched
compartments (Figure 7). Interestingly, matched TME and NAT (n = 8) did not exhibit significant
differences (Figure 7A), while matched TME–tumour pairs (n = 18) indicated an expected enrichment
of CD27, CD3, CD4, CD44, CD45, CD45RO, CD68, CD163, and VISTA within the TME, while tumour
regions were enriched in Ki-67, EpCAM, and cytokeratin (Figure 7B).
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downregulated in TME relative to NAT, including CD34, fibronectin, IDO1, LAG3, ARG1, and PTEN 
(Figure 7C). TME–tumour comparisons remained similar to the paired data, whereas CD3, CD45RO, 
VISTA, and CD163 were enriched in the TME relative to the tumour (Figure 7D). Assessment of the 
association between protein expression and survival was also explored through an unadjusted, 
univariate Cox proportional hazards regression. Interestingly, expression data from immune ROIs 
indicated that the presence of EpCAM and cytokeratin was associated with better patient OS (Figure 
8), while the presence of CD34, CD3, and ICOS in tumour ROIs was associated with better patient OS. 
When placed in a multivariate model to adjust for age, AJCC, and TNM tumour staging variables, those 
markers found to be significant in a univariate model no longer reached significance levels (data not 
shown). The number of samples did not permit higher-level multivariate analysis and statistical 
modelling of covariate prognostic signatures. 

Figure 7. Differential expression of proteins between tissue compartments. Paired t-tests with a
Benjamini–Hochberg correction were performed between matched compartments. Mann–Whitney tests
with Benjamini–Hochberg correction were performed between unmatched compartments; p-values
adjusted for multiple testing were used to identify significantly differentially expressed proteins.
(A) NAT–TME (n = 8), (B) TME–tumour (n = 18), (C) NAT (n = 19) vs. TME (n = 32); (D) TME
(n = 32) vs. tumour (n = 45). NAT: normal adjacent tissue; TME: tumour microenvironment; tumour:
tumour region.

When incorporating all samples, irrespective of patient pairing, several proteins appeared to be
downregulated in TME relative to NAT, including CD34, fibronectin, IDO1, LAG3, ARG1, and PTEN
(Figure 7C). TME–tumour comparisons remained similar to the paired data, whereas CD3, CD45RO,
VISTA, and CD163 were enriched in the TME relative to the tumour (Figure 7D). Assessment of
the association between protein expression and survival was also explored through an unadjusted,
univariate Cox proportional hazards regression. Interestingly, expression data from immune ROIs
indicated that the presence of EpCAM and cytokeratin was associated with better patient OS (Figure 8),
while the presence of CD34, CD3, and ICOS in tumour ROIs was associated with better patient OS.
When placed in a multivariate model to adjust for age, AJCC, and TNM tumour staging variables,
those markers found to be significant in a univariate model no longer reached significance levels (data
not shown). The number of samples did not permit higher-level multivariate analysis and statistical
modelling of covariate prognostic signatures.
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Figure 8. Cox proportional hazards of compartment-specific protein expression, ranked by association
with overall survival. Log2 protein expression was modelled against follow-up time for the tumour
and TME. Hazard ratio (HR) < 1 was associated with better patient outcome; HR > 1 was associated
with poorer patient outcome.

4. Discussion

The Nanostring GeoMx DSP platform [13,21] offers a novel solution for high-plex digital
quantification of proteins and mRNA from fixed and fresh frozen tissues with spatial resolution [22].
It has been recently applied to triple-negative breast cancer (TNBC) [23], NSCLC [24], and melanoma [25].
However, the implementation and interpretation of such high-plex discovery is still in its infancy.
The application of such technologies to large numbers of patient samples in the TMA format potentially
provides unparalleled insight into spatial cell types, biomarkers, and the interactions that may underlie
the disease biology. In this study, we quantified proteins across the current DSP immune cell profiling,
IO drug targets, immune activation status, immune cell typing, and pan-tumour protein modules to
understand the presence of these markers in tumours, tumour microenvironments, and histologically
normal adjacent tissue compartments. We present a users’ experience where 96 ROIs were collected
from a single TMA-containing tumour and NAT cores, with data processed and analysed within the
GeoMx DSP analysis suite.

In conventional IHC and multiplex IHC, information can be obtained from the entirety of sections
or TMA cores, giving a global perspective of marker expression and allowing post-hoc segmentation
to inform on distribution. The DSP approach differs in that, while visualisation markers may inform
on tumour/non-tumour regions and areas of immune cell infiltrate, ROIs are limited to a maximum
of 600 µm geometric shapes. In this study, circular ROIs and several custom-drawn ROIs were used,
meaning that “tumour” ROIs innately contained immune infiltrate, and that “immune” ROIs needed to
be completely separate from the tumour to be defined, and may represent tumour-adjacent “stromal”
immune infiltrate rather than an activated “tumour microenvironment” immune infiltrate. The DSP
platform does allow for “masking” or “compartmentalization” within ROIs, enabling the signal to
be obtained directly from tumour cells and from the immediate stromal space into which they have
proliferated, at µm resolution [24]. However, this approach was not used in this study, and is a salient
point to be considered for future analyses using the platform.

Here, we also demonstrate that there is a need to empirically determine the method of normalisation
and identify probes which lack robust signal-to-noise. We demonstrated that both IgG background
control probes as well as histone H3 and S6 housekeeping probes correlated across ROIs, while area
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and nuclei varied significantly and were thus less reliable for normalising data for quantification.
Existing studies that have used area as a normaliser [24] have also utilised a signal-to-noise ratio cut-off

>3, suggesting that our particular TMA may have exhibited disproportionately high background
or low overall signal, as a significant number of probes were within range of IgG control probes.
Without validation through IHC, it is difficult to interpret the meaning of probes that give signal
within range of isotype IgG controls. It is noteworthy that, for example, PD-L1 counts fell below
background where an abundance should be expected in a subset of NSCLC tissues, which highlights
the importance of orthogonal validation when using a discovery technique. It is perhaps for this reason
that many significant correlations were observed within compartments for markers that possessed low
signal-to-noise, and these observations require additional validation.

It is important to note that the use of traditional methods of housekeeping normalisation in such
datasets require deeper investigation. Evidence exists within our data for systematic lower expression
in NAT samples, for which a single normalisation approach, including all samples will arbitrarily
overestimate normalized NAT counts. This is critical in differential analysis where it should be assumed
that most targets are not differentially expressed, and is better controlled for by global scaling methods,
such as the “Trimmed Mean of M-values: (TMM) in edgeR package [26], and “Relative Log Expression”
(RLE) in DESeq2 package [27]. Such methods require more advanced informatics processing beyond
the DSP analysis suite.

With this in mind, it was notable that when differential analysis was applied by paired t-test
to a limited number of patient pairs, NAT was indistinguishable from TME. A clear distinction
between matched tumour and TME was evident, though, and was indicated by the increased presence
of several key markers within the TME. Such markers included CD44, CD45, T cell lineage (CD3,
CD4), memory T cells (CD45RO), monocyte/macrophage lineage (CD163, CD163), and costimulatory
immune checkpoints (CD27, VISTA). When incorporating all samples, irrespective of patient matching,
immunosuppressive molecules LAG3 [28] and IDO1 [29] were, perhaps counter-intuitively, significantly
depleted in the TME relative to NAT, indicating the requirement for patient matching to make
meaningful comparisons. Furthermore, mixed-model differential analysis should be performed to
control for patient matching, where t-tests available for single-slide analysis within the DSP analysis
suite are not wholly appropriate.

Nevertheless, the sheer scale of high-plex analyses appropriately applied to large numbers of cases
through TMAs is an incredibly powerful tool for spatial biology. The DSP protein modules include
key markers that describe multiple immune cell types, immune checkpoints, and experimental targets
that enable a more comprehensive understanding of the immunological parameters that influence
patient outcome. While overall survival was the only clinical endpoint investigated in this study,
the emergence of patient cohorts treated with immunotherapies means that such assays may be used
to track patient progression and outcomes, and indicate potential biomarkers for patients most likely
to respond to these therapies. Despite some limitations in the absolute definition of tumour and
TME compartments in our study, we were able to identify that the presence of CD3, CD34, and ICOS
expressing cells in tumour compartments were associated with better patient OS in an unadjusted
univariate Cox proportional hazards model. However, these findings require validation.

It is interesting to note that the enrichment of CD3 in tumour regions was associated with improved
OS in this study, independently of CD4 T helper cells and cytotoxic CD8 T lymphocytes. Several
markers significantly correlated with CD3 expression in the tumour compartment, including CD40,
CD44, CD14, B2M, Tim-3, CD8, CD45RO, and ICOS, potentially implicating other cell lineages in
immune-associated anti-tumour activity. Of note is the correlation between CD3 and ICOS, both of
which were independently prognostic within tumour compartments, highlighting the potential power
of such multiplex discovery.

Furthermore, limitations include the retrospective nature of the study, the need for orthogonal
validation, and an increase in comparative groups.
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5. Conclusions

In summary, the application of such novel platforms to provide comprehensive snapshots of
clinical material enables an unprecedented insight into molecular phenotypes that may be indicative
of response to emerging therapies, and ultimately, patient outcome. We propose the development
of appropriate normalization methods to overcome systematic variation and low signal-to-noise,
and indicate the requirement for larger sample numbers to overcome the limitations of multiple
testing in discovery approaches. By combining such high-plex approaches with TMAs and orthogonal
validation through multispectral IHC, a new field of biomarker discovery is developing that offers to
change the way clinical pathology is performed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3551/s1,
Figure S1: Range of probe counts from ROI-1 (Top) to ROI-96 (Bottom), Figure S2: Probe counts per compartment
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TME ROIs and Figure S4: Pearson correlation matrix of proteins within tumour ROIs.
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