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Abstract: Wearable technologies allow the measurement of unhindered activities of daily living (ADL)
among patients who had a stroke in their natural settings. However, methods to extract meaningful
information from large multi-day datasets are limited. This study investigated new visualization-
driven time-series extraction methods for distinguishing activities from stroke and healthy adults.
Fourteen stroke and fourteen healthy adults wore a wearable sensor at the L5/S1 position for
three consecutive days and collected accelerometer data passively in the participant’s naturalistic
environment. Data from visualization facilitated selecting information-rich time series, which resulted
in classification accuracy of 97.3% using recurrent neural networks (RNNs). Individuals with stroke
showed a negative correlation between their body mass index (BMI) and higher-acceleration fraction
produced during ADL. We also found individuals with stroke made lower activity amplitudes than
healthy counterparts in all three activity bands (low, medium, and high). Our findings show that
visualization-driven time series can accurately classify movements among stroke and healthy groups
using a deep recurrent neural network. This novel visualization-based time-series extraction from
naturalistic data provides a physical basis for analyzing passive ADL monitoring data from real-
world environments. This time-series extraction method using unit sphere projections of acceleration
can be used by a slew of analysis algorithms to remotely track progress among stroke survivors in
their rehabilitation program and their ADL abilities.

Keywords: recurrent neural network (RNN); activities of daily living (ADL); long short-term memory
(LSTM); time-series extraction; stroke; body mass index (BMI)

1. Introduction

In the United States, stroke is exceptionally prevalent; approximately 3% of the
adult population has experienced one [1]. Stroke has led to estimated direct and indi-
rect costs of USD 68.9 billion in 2009, and projections suggest an upward trend as the
population ages [1]. Stroke is also one of the leading causes of severe and long-term
disability in adults and is associated with limb weakness and paralysis. Individuals
with stroke are often dependent on caregivers for assistance with activities of daily
living (ADL) [2,3], and their performance during ADL is considered a clinical measure
of disability [4–7]. The ADL loss among individuals with stroke is found even before
the onset of stroke [8]. Thus, ADL performance is the primary functional biomarker in
stroke rehabilitation assessments because of its objectivity, simplicity, and relevance to
this patient population [9]. Currently, disability assessment among stroke survivors
involves subjective scoring such as the Frenchay activities index (FAI) [10] and Gut-
mann scaled ADL assessment [11,12]. ADL monitoring is necessary among individuals
with stroke [13,14] since it is associated with after-stroke depression (ASD) [15,16] and
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decreased quality of life (QOL) [17]. Wearable systems allow multi-days of continuous
tracking of movement data and can comprehensively depict the dynamic health status
of patients. Wearable sensors are becoming a ubiquitous tool to enhance the QOL and
assess successful rehabilitation among stroke survivors [18]. Although wearable devices
are available in various miniature forms, advanced algorithms to analyze a massive
continuum of datasets are lacking. Sensor-based multi-day human activity monitoring
generates large datasets [19] from natural settings. For example, at a data sampling
rate of 100 Hz, one accelerometer sensor can provide over 8.6 million samples over a
single day. Recently, Borton and coworkers reported that activity energy expenditure
derived from wrist-worn wearables can serve as a good predictor of clinical average
levels of physical activity in older adults (n = 2472) and thus objectively measure physi-
cal activity in a population-based study [20]. Although these vast datasets have rich
mobility information, signal processing algorithms to analyze such enormous datasets
for extracting essential features relevant to one’s mobility are lacking. Today, wear-
able sensors have limited use due to the lack of intuitive algorithms that can reliably
organize and interpret movement acceleration data during daily life activities. This
inference of acceleration data is also essential to enable proactive health management
and to develop formal ontologies between research groups [21]. Recently, Chen and
coworkers reported classification of ADL activities using wearable sensors and machine
learning in individuals with stroke with high accuracy [22]. We have earlier reported
that frequency and transition-related information from longitudinal multi-day datasets
can differentiate obese versus non-obese [23] and older versus younger adults [24]. In
this study, we developed a novel visualization-based time-series extraction and analysis
algorithm that can capture the entirety of the data and delineate critical information
from the long-motion datasets. Visualization of long movement datasets through visual
characteristics can quickly reveal activity zones related to sleeping, walking, and other
activities. This study contributes to the extraction of visualization-driven time series
from passive longitudinal multidimensional sensor data and applies machine learning
algorithms to differentiate stroke-related movement asymmetry. We investigated recur-
rent neural networks such as the long short-term memory (LSTM) model to determine
its performance and stroke versus healthy movement discrepancies.

This study essentially explored new visualization-based methods to select time
series and deployed deep learning algorithms to distinguish stroke and healthy coun-
terparts from multi-day longitudinal datasets. This study opens new avenues in differ-
entiating stroke ADLs from healthy peers by collecting sensor data unobtrusively from
natural home settings. Additionally, the visualization method to extract time series is
innovative and has broader impacts on information extraction from passive wearable
sensors. This is critical since ML classifiers can track the effects of clinical rehabilitation
on stroke ADL performance.

2. Materials and Methods
2.1. Data Visualization Method for Time-Series Extraction

Three days of inertial sensor data points from accelerometers contain 25.92 × 106 samples
for each channel (tri-axial accelerometers consisting of x, y, and z axes) and timestamps. The
initial task is to visualize the entirety of the acceleration data to aid further analysis. However,
it is challenging to map complete data samples in their entirety to provide information for
activities performed and their magnitudes for comparison among stroke and healthy groups.
Since the resultant acceleration of 3-dimensional accelerations is independent of the sensor
orientation (how participant-oriented sensors in the home environment may differ), the resul-
tant acceleration vector offered a basis for robust analysis. For example, when the participant
is stationary (with no or minimal movement), regardless of the orientation of the sensor, the
resultant acceleration is unity. Resultant accelerations can be projected on a unit acceleration
sphere (UAS) to comprehensively visualize all movement artifacts in a single shot. All ADLs
such as walking, jogging, reaching, climbing stairs, sitting, standing, laying down, etc., can
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be viewed as movements happening in the vicinity of a stationary stance position in differ-
ent vector directions. An IMU worn at the torso (Figure 1a) could provide rich information
about a person’s movement characteristics since the torso carries 2/3rds of body weight and
represents the whole-body center of mass (COM). To visually represent the resultant accelerom-
eter data from different ADL, the Cartesian coordinates ax, ay, and az of the accelerometer
were transformed to spherical coordinates (ρ,φ,θ) where φ ∈ [−π, π] is the azimuthal angle,
θ ∈ [−π/2, π/2] is the polar angle measured from the equator, and r is the radial distance
from the origin. In Figure 1b, a sample acceleration vector is shown projected onto the UAS.
In Figure 1c, the timeseries of the magnitude of the acceleration vector over 3 days is shown.
Such a visualization of the data is not very helpful in understanding movement characteristic
of stroke and healthy individuals.
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Figure 1. (a) Schematic diagram of an IMU worn by a participant. In this configuration, the positive
acceleration in the x-direction (+ax) is directed toward the left side, the +ay direction is pointed
vertically upwards (opposing gravity), and the +az-direction is pointed in the posterior direction.
(b) Unit acceleration sphere (UAS): The axes refer to the acceleration axis in a sensor-centric left-
handed coordinate system. The equatorial plane is shown in blue color. A sample acceleration point
[ax, ay, az] is shown as a red dot at some time. Its projection on the UAS is represented as the green
dot. (c) Longitudinal 3-day resultant acceleration data.

2.1.1. Unit Acceleration Sphere (UAS)

We propose the visualization of this large passively collected dataset arising from three
consecutive days of activities by projecting the acceleration data onto the sphere of unit
radius in the acceleration space, UAS. The axes X, Y, and Z (Figure 1b) refer to the sensitive
axes of the accelerometer, and ax, ay, and az represent the components of acceleration along
each of these directions. The equatorial plane is shown in shaded blue in Figure 1b. A
sample point is represented as a red dot, and its projection on the unit sphere is described
as a green dot. The resultant acceleration is defined in Equation (1).

The acceleration vector a = [ax, ay, az] represented in Cartesian coordinates is
transformed to a vector in spherical coordinates [ρ,φ, θ], where φ ∈ [−π, π] is the
azimuthal angle, θ ∈ [−π/2, π/2] is the polar or elevation angle measured from the
equator, and ρ is the radial distance from the origin. The projection of every sample
point onto the unit sphere is obtained by setting the radial coordinate to one (ρ = 1)
while keeping the azimuthal (φ) (Equation (2)) and polar angle (θ) (Equation (3)) of the
original signal point. This 3-dimensional unit sphere shows an equatorial x–z plane and
the 3 axes since 3 complete days of resultant acceleration do not reveal much movement
information (Figure 1c). A sample of the ADL dataset can be projected as a red point
and its intersection as a green point on the unit sphere (Figure 1b)

a = |a| =
√(

a2
x + a2

y + a2
z

)
(1)
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θ = tan−1

(
ay√

a2
x + a2

z

)
(2)

φ = tan−1
(

ax

−az

)
(3)

Every data sample point is projected onto the UAS by setting the radial coordinate
ρ = 1 and leaving the original sample point’s azimuthal (φ) and polar angle (θ) of the
original sample point unchanged. Thus, we are able to parametrize the UAS with
the two variables φ and θ to create two new features for each dataset that help us in
visualizing the entire dataset in a manner that helps us gain some insights into the data,
as described below.

2.1.2. Task-Agnostic Time-Series Extraction for Recurrent Neural Networks (RNNs)

One of the significant challenges is extracting information-rich data from extensive
day-long time-series data to analyze human movement characteristics. For example,
the data collected during night-time sleep may not reveal stroke’s gait and movement-
related asymmetry characteristics. In essence, the acceleration profiles during the sleep
or stationary phase are similar between post-stroke survivors and healthy counterparts.
However, the two groups expected a marked difference in acceleration patterns during
active daytime movements. Elevation and azimuthal angle features derived from the
visualization-based time-series extraction method on UAS can help extract meaningful
information-rich time-series data, as described below (Figure 2). This extracted time
series can be an input to train recurrent neural networks (RNNs) to classify pathological
stroke-related movement datasets. However, there are multiple approaches to extracting
valuable data in longitudinal healthcare datasets [24]. In this study, we propose to utilize
visualization techniques to identify essential activity data chunks represented on UAS
(Figure 3). The two-dimensional surface of the UAS is discretized in the φ ∈ [−π,π]
and θ ∈ [−π/2,π/2] variables into 360 and 180 bins, respectively, such that each bin
corresponds to 1◦ in both variables. Every sample projected on the UAS is assigned a
bin number [i, j] to which it belongs where i, j are integers i ∈ [1, 360] and j ∈ [1, 180].
Once bin numbers are assigned, we can compute the empirical probability distribution
of the acceleration magnitude |a| across the bins, the distribution of mean |a|, and the
distribution of the standard deviation of |a|. In the raw form, these distributions look like
2D matrices (Figure 2).
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Figure 2. We can extract interesting statistics such as the probability distribution (a), means (b), and
standard deviation (c) of the acceleration vector across the UAS by discretizing the Φ and θ features
defined in Equations (2) and (3) (shown here using three different color maps). This representative
data corresponds to the southern hemisphere of the UAS of an individual with stroke. The different
colormaps represent different statistics.
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Figure 3. A visual representation of acceleration data from 3 days of continuous sensor wearing
(25.92 million data samples) for a healthy participant projected onto the (a) upper and (b) lower
hemispheres of the unit g acceleration sphere (UAS) when viewed along the y-axis. The color bars
represent the log of the probability density of the projection of the acceleration onto the UAS.

Here, even though three different statistics are extracted from the same dataset, the 2D
matrix form does not help in relating the data to the physical orientation of the acceleration
vectors. We look at the same data on a polar plot (Figure 3) such that it corresponds to
viewing the UAS from the north and south poles. Most of the data is around the south
pole of the UAS, and this corresponds to acceleration vector orientation during vertical rest
state. The yellow shades in this figure indicate orientations that are visited more frequently
by the participant.

In addition to the probability distribution, the distribution of the mean magni-
tude of acceleration for each orientation (φ, θ) across the southern hemisphere of UAS
(Figure 4a) helps us identify zones of high amplitude movements. Similarly, the vari-
ability of acceleration magnitude for each orientation (Figure 4b) could provide insights
into zones of high variability and repeated movements. We can use these insights to
develop criteria to filter the full dataset into samples that contain the most information
about movement characteristics.
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Figure 4. Visual representation of mean and standard deviation of resultant accelerations magnitude
across various orientations when performing ADLs. (a) Distribution of means of acceleration samples
for every orientation across the southern hemisphere of the UAS. Higher means indicate high-
acceleration movements in that orientation. (b) The variability of the motion for each orientation is
shown. The color bars represent the log of the probability density of the projection of the acceleration
onto the UAS.
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(1) Considering that the resultant acceleration vector a = [0, −1, 0] g’ in the stationary
standing position corresponds to the south pole on the UAS, we look for data only in
the southern hemisphere, or θ < 0.

(2) Considering movements when in standing position, we look for data such that
θ < −π/3, a neighborhood of the south pole, i.e. we consider samples with
θ ∈ [−π/2,−π/3].

(3) The algorithm selected all bins with a standard deviation of the bin σ|a| ≥ 0.02 and
the mean |µ|a| − g| > 0.02 for input to recurrent neural networks. The rationale
is that the bin corresponding to orientations where resultant acceleration signals
show near-zero standard deviations and mean close to gravitational acceleration UAS
(|a| = 1g) fits the rest of the scenarios and, therefore, there is not much movement-
related information. For example, these scenarios can be regular breathing artifacts
and posture re-orientations during sitting, standing, or other static postures. Further-
more, only daytime samples collected between 7 a.m. and 8 p.m. were considered
since subjects were more active when awake during the day. The data samples that
met the above time constraints were split into continuous 3 s time-series samples
using the timestamp. Since postural transitions typically take up to 3 s, choosing this
window size can capture such transitions. We used such 3 s long time-series samples
with thirteen features to train a deep long short-term memory (LSTM) neural network
using twelve features include: tri-axial acceleration, tri-axial angular velocity, resultant
acceleration, acceleration components on the UAS, polar angle θ, and azimuthal angle
φ. We obtained 37,383 and 19,067 data samples from healthy and stroke participants,
respectively. Each sample has 3 s worth of data containing 11.21 × 106 samples for the
healthy group and 5.72 × 106 samples for individuals with stroke. With such large
numbers, the Z-test comparison yields extremely small p-values, and therefore, we
report the effect size using Cohen’s d. The mean and standard deviations of these
features and the effect size measured by Cohen’s d are listed in Table 1 below. We
note that most of the features have only a small difference in the two populations, as
evidenced by the small Cohen’s d values.

Table 1. Mean, standard deviation, and effect size of features.

Features Healthy (µ, σ) Stroke (µ, σ) Effect Size
(Cohen’s d)

ax −0.01, 0.14 0.01, 0.15 0.16

ay −0.93, 0.14 −0.91, 0.14 0.16

az 0.05, 0.33 0.14, 0.35 0.28

ωx −0.06, 13.82 −0.29, 15.15 −0.02

ωy −0.60, 28.18 0.34, 19.49 0.04

ωz −0.20, 12.09 −0.13, 9.98 0.01

|a| 1.00, 0.11 1.00, 0.09 0.01

axs −0.01, 0.13 0.01, 0.15 0.17

ays −0.93, 0.09 −0.91, 0.11 0.24

azs 0.05, 0.33 0.14, 0.35 0.28

φ −0.30, 2.03 0.09, 2.19 0.19

θ −1.24, 0.20 −1.19, 0.22 0.26

We randomly shuffled these data samples and 80% of the data samples to train the
network and the remaining 20% to validate the network. We did not test the model
separately for performance evaluation on stroke and healthy groups. This work aims to
demonstrate the efficacy of visual techniques in filtering data samples for machine learning
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and classification. Table 2 below shows the input and dense hidden layers and out layer as
implemented in TensorFlow.

Table 2. The input, output, and hidden layers of the recurrent neural network.

Layer Output Shape Parameters

LSTM (None,300,200) 170,400
Batch Normalization (None,300,200) 800

LSTM (None,50) 50,200
Dropout (None,50) 0

Dense (ReLU) (None,50) 2550
Dropout (None,50) 0

Dense (ReLU) (None,15) 765
Dense (Sigmoid) (None,1) 16

2.1.3. Higher Acceleration Fraction

In order to compare the number of high-acceleration movements in the two groups,
we consider the ratio of the number of samples with magnitude |a| greater than −2g
to the total number of samples obtained after filtering the data by the above-mentioned
constraints. Since such movements with |a| > −2g are expected to be low compared to the
samples collected throughout the day, we consider the logarithm of the ratio. We define the
higher-acceleration fraction as:

Higher Acceleration Fraction = log
(

Samples > 2g
Total samples

)
(4)

We expect this measure of high-acceleration movements to be considerably lower
in people with stroke compared to their healthy counterparts, owing to the limitations
imposed by their pathophysiology.

2.1.4. Stroke-Related Asymmetry Quantification

Individuals with stroke have movement asymmetry due to neural pathology [25]. This
asymmetry may reflect movement signals’ high-acceleration fraction (|a|> 2g). Affected
versus unaffected side movement can be distinguished by the azimuthal angle φ. The
number (nR) of high-acceleration movements on the right side (φ < 0) and the number
of samples on (nL) left side (φ ≥ 0) are substantially different in asymmetric movements.
Since healthy individuals are more symmetric, we expect this nL/nR ratio will be closer
to unity. This asymmetry ratio is farther from unity among individuals with stroke. The
affected limb may produce lower accelerations and induce rigidity in movements. One side
may have more data samples than the other. Additionally, these ratios could be orders of
magnitude different in stroke and healthy subjects. To compare these numbers in the two
populations, we consider the logarithm of the ratio. We define the acceleration asymmetry
index (AAI) in Equation (5) below.

Acceleration Asymmetry Index α = log
(

nR
nL

)
(5)

Thus, we expect AAI to be close to zero for healthy subjects and farther from 0 for
stroke subjects.

Sedentary Behavior: A decline in high-acceleration movements is indicative of seden-
tary behavior. Log of the fraction of samples: log(na/N), where na is the number of data
samples with |a| > 2 g, and N is the total number of data samples at daytime and the
elevation criteria (between 7 a.m. and 8 p.m., θ < −π/3).
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2.1.5. Movement Transitions and Activities in Frequency Bands

Three days of human movement accelerometric data can quantify movement transi-
tions and frequency of movement signal [21]. Earlier reported algorithms identified sleep,
movement transitions, and frequency during daytime activities [21].

Sleep Data Identification: We evaluated resultant acceleration in the XZ plane, as
shown in Equation (4) below [23], to identify sleep signals.

Ra,xz =
√

a2
x + a2

z (6)

We utilized a 1 s moving window to identify sleep data, with a threshold of
mean ± variance of Ra,xz from time series bounded between 0.97g and 1.02g [23] acceler-
ation ranges.

Movement Transitions: Movement transitions were defined using the information of
peaks and duration between peaks [23]. We utilized the resultant acceleration to evaluate
the (i) number of transitions, (ii) sleep hours, (iii) maximum, (iv) minimum, (v) root mean
square (rms), (vi) range, and (vii) duration of acceleration within a transition [23]. We
generated wavelet-based frequency analysis algorithms using a complex Morlet wavelet
(CMW) by multiplying a complex sine wave with a Gaussian wave.

Activity Amplitude (AA): The activity amplitudes were defined similarly to our previ-
ous work [23]. We computed detrended resultant acceleration (DRA) signals by subtracting
gravitational accelerations from resultant accelerations and computed its absolute value.
Then, activity categorizing thresholds were defined similarly to thresholds defined ear-
lier [23,24]. The activity amplitude is the time integral of DRA signals over the period [23].
Activity amplitudes were categorized amplitude wise (low, medium, high) and in time
zones as Time Zone 1 (12 a.m.–5:59 a.m.), Time Zone 2 (6 a.m.–11:59 a.m.), Time Zone 3
(12 p.m.–5:59 p.m.), and Time Zone 4 (6 p.m.–11:59 p.m.) [23].

2.2. Experiment and Data Collection

The study recruited fourteen healthy and fourteen individuals with stroke. All partici-
pants signed the written informed consent approved by the Institutional Review Board at
Chapman University. Table 3 shows the participants’ anthropometric information. Table 4
provides the Fugl–Meyer scores of the participants. The participants wore a Dynaport
sensor (McRoberts, the Netherlands) at their waist level, as shown in Figure 1a, for three
consecutive days (72 h) and performed their activities of daily living in a usual manner.
The device includes a tri-axial accelerometer (resolution of ±1 mg and range of ±6 g) and a
tri-axial gyroscope (sensor resolution of ±0.0069◦/s and range of ±100◦/s). The data were
transferred to the computer after the wearable device recorded the data into the in-built SD
card of the device. Participants followed instructions to take off the sensor if there were any
chances of getting wet or damaged. As per the researcher’s instructions, participants had to
wear the sensor and orient/align at the low back (Figure 1a). The orientation of the sensor
was such that when standing in a normal posture, the acceleration vector in the y-direction
was vertically downwards. When standing in a normal position, the accelerations were
a = [ax, ay, az] = g [0, −1, 0] m/s2, where g = 9.81 m/s2. The sampling frequency of the
sensor was set to 100 Hz. Along with acceleration, this IMU sensor also collected angular
velocity ω = [ωx, ωy, ωz] in rad/s measured about each of the sensor-centric coordinate
axes shown in Figure 1. Algorithms developed were entirely based on accelerometric data.
We used Chapman University’s Keck Center for Science and Engineering for computation.
The cluster contains over 590 Intel Xeon compute cores, 2.7 TB of RAM, and direct access to
all-flash and disk-storage SAN arrays. Sixteen Nvidia TESLA V100 cards are available for
workloads that benefit from GPU-accelerated processing.
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Table 3. Anthropometric data of individuals with stroke and healthy adults.

Stroke Control

Age (years) 69 ± 8.4 74 ± 8.7

BMI (kg/m2) 30.8 ± 5.6 26.1 ± 3.0

Gender Six females and eight males Eight females and six males

Table 4. Fugl–Meyer scores of fourteen healthy and fourteen stroke participants.

Fugl–Meyer Scores Stroke Healthy

Lower Extremity Score 18.5 ± 3.3 28 ± 0

Coordination Speed 4.1 ± 1.0 6 ± 0

Motor Function 22.7 ± 3.7 34 ± 0

Sensation Score 9.2 ± 3.4 12 ± 0

Passive Joint Motion 15.7 ± 2 20 ± 0

Joint Pain 19.7 ± 0.5 20 ± 0

3. Results

The unit sphere projection technique allowed us to visualize various statistical aspects
of the entire dataset in a single shot. Sensors were all worn in a similar configuration by
patients, and direction-wise insights to patient behavior could be evaluated. Figure 3a,b
shows the probability distribution of the data arising from a healthy and stroke participant
across the northern and southern hemispheres of the UAS, respectively. Focusing on
the southern hemisphere of the UAS, Figure 4a shows the distribution of the mean, and
Figure 4b shows the standard deviation of various orientations of the IMU across the UAS.
The visualization of statistics allows understanding which configurations are most common,
have the highest amplitude, and depict the highest variability for the participant. We can
differentiate two participants using these methods. Figure 5 shows the mean acceleration
magnitude for healthy (Figure 5a) and post-stroke individuals (Figure 5b), and we can
distinguish the asymmetry in their acceleration profile. Informed with this qualitative
visual depiction of asymmetry, a quantitative measure of acceleration asymmetry index (α
in Equation (5)) could be evaluated. Figure 5c shows this metric among post-stroke and
healthy individuals.
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mean accelerations in a healthy participant. (b) Distribution of means in a stroke participant. (c) Box
plot representing acceleration asymmetry index (AAI) and stroke and healthy individuals.

The ADL movements were analyzed during daytime (between 7 a.m. and 8 p.m.,
θ < −π/3). We found acceleration asymmetry index α was significantly higher in the



Sensors 2022, 22, 598 10 of 15

stroke patients (mean = 0.61, SD = 0.44) than the healthy patients (mean = 0.24, SD = 0.20,
t (27) = 2.59, p = 0.01 (Welch’s single-tailed independent two-sample t-test)) (Figure 5c).
We found BMI was negatively correlated with high-acceleration movements (|a| > 2g)
(Figure 6). The negative slope was found as 0.21 units for healthy adults and 0.06 units for
individuals with stroke.
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The ROC curve of a deep LSTM model trained on an information-rich time-series was
extracted from the longitudinal data (Figure 7). The threshold of the final activation layer
was adjusted to obtain the desired high sensitivity while keeping the false positives low,
with the area under the ROC curve as 0.97.
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We found stroke participants produced fewer activity amplitudes than their healthy
counterparts when compared amplitudes in three levels (low, medium, and high) (Figure 8).
For most of the day, healthy participants were more active; however, stroke participants
were more active during the evening (6 p.m.–11:59 p.m.) (Figure 9).
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4. Discussion

This study introduces a new method to visualize longitudinal data that allows the
extraction of information-rich time-series samples that can be used as input to other models.
We demonstrate the usefulness of this technique by quantifying ADL movement differences
among stroke and healthy adults.

In this study, participants wear sensors at the low back and complete naturalistic
activities in their home environments. Various functional and disability factors limit the
participation of stroke survivors in essential and valued activities [26,27]. Previously,
researchers have reported mobility decline, cognitive impairment, fatigue, difficulty in
performing ADL, lack of communication and social interaction, and lack of self-efficacy
to restrict movement among stroke survivors [28–30]. We found visually extracted time
series as input was critical for the classification of stroke and healthy groups. The stroke
affected daily activity movements, and recurrent neural networks such as LSTM trained on
the extracted time series could classify stroke ADL movements with high sensitivity and
specificity (AUC = 0.97) (Figure 7).

Wearable sensors such as accelerometers and gyroscopes produce massive volumes of
health information. New technologies are needed to manage, analyze, and extract inter-
pretable clinical data to improve patients’ quality of life. Modern advances in acute medical
treatment of stroke have increased stroke survival rates during the last decade. However,
some patients continue to decline in ADL performance after six months from stroke [31].
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Thus, wearable-technology-assisted early identification of deteriorating patients will help
occupational therapists provide adequate rehabilitation support and continuous monitor-
ing of these patients to prevent further decline in ADL performance [32]. This study has
innovatively utilized visual polar projections (Figures 2–4) to select necessary informative
IMU signals that could quantify stroke movements and help assess rehabilitation progress
based on daily ADL performance. For instance, physical therapists treat stroke pathologies
such as spasticity, range of motion, muscle strength, and pain. However, their treatments
often result in increased physical capacity of stroke survivors and improved performance
during ADL [33]. Still, no standard tool exists as of now to measure rehabilitation progress
among stroke survivors. Cognitive deficits are also common after stroke and substantially
affect stroke recovery and ADL performance [34–36]. These cognitive deficits negatively
affect attention, memory, executive functioning, and motor control [37], affecting ties to
perform ADL and participate in meaningful activities after stroke [34–36]. These deleterious
effects of ADL on health outcomes and quality of life after stroke are well documented [29].
Previous studies suggest younger age, decreased stroke severity, and better motor and
functional abilities at stroke onset are correlated with ADL recovery beyond three months
after stroke [38,39].

Asymmetry among Stroke Survivors: Asymmetry after stroke is a salient index of
movement dysfunction and has negative functional consequences. We found that the
stroke participants exhibited higher asymmetry in their accelerations and movements,
e.g., acceleration asymmetry index α between the two groups, with the stroke group
having significantly more asymmetry (p = 0.01) (Figure 5). These asymmetry measures
from wearable sensors have predictive value [40,41] of assessing global movement and
stroke-related deficits.

Influence of BMI: Stroke leads to paralysis [42,43], resulting in a reduction in muscle
mass and an increase in fat mass [44,45]. These physiological muscle changes lead to deficits
in the body function of stroke survivors [46]. This loss of body function will ultimately
affect the accelerations developed during the movement. Sensors detected ADL-related
tasks that patients performed daily, such as eating, dressing, toileting, and ambulation. We
have earlier reported that obesity affects movement transitions [23]. Similar trends were
observed among healthy and stroke individuals (Figure 6). Our results revealed a negative
correlation of BMI with high amplitude accelerations. These trends were more pronounced
in the healthy group in contrast to the stroke group. This may be due to heterogeneity
among stroke survivors and different levels of stroke severity (Table 3).

Sedentary Behavior: We found stroke activity amplitudes were lower in all three
activity bands (low, medium, and high) (Figure 8). These results revealed an overall
decrease in activities (all types of activities: low, medium) or adoption of sedentary lifestyles
in stroke survivors. We found healthy participants to be active throughout the day, but
stroke participants were found to be slightly more involved in the evening (6 a.m. to
11:59 p.m.) (Figure 9). This could be partly attributed to participation in stroke rehabilitation
evening community programs. Understanding trends of movement accelerations among
individuals with stroke could help develop rehabilitation regimens matching activity levels
of these individuals to promote physical activities.

In fact, the two features ϕ and θ can be converted into important visual information.
These features can discretize the UAS into bins on which various statistics can be computed.
When we visualize polar coordinates with the azimuthal angle along the angular coordinate
and the polar angle along the radial coordinate (Figure 3), we can connect the physical
orientation of the acceleration vector with the sensor orientation. This visualization pro-
vides insights into the distribution of the movement data. For example, high probability
areas or activities can be represented on the UAS in Figure 3. These are orientations where
the subjects spend a lot of time. However, when we combine them with the mean and
standard deviation statistics, we find that the high probability zones might not contain
the high-acceleration movements. The spatial distribution of the high standard deviation
and high mean regions is of interest to us, as it contains movements that correspond to
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repeated information-rich samples. The projection on the sphere and the knowledge of
how the subjects wore the sensor gives us a visual understanding of asymmetry in the
movement characteristics by looking at the entire dataset in one single view. In addition to
the qualitative look at the data, we developed data-filtering criteria based on the mean and
variability distribution on the UAS to provide training samples to LSTM, obtain asymmetry
information, and gain further insights into the correlation of BMI with activity performance.

We should interpret the results with the limitations of this study. Although three
days of sensor data were voluminous, the sample size was small for machine learning
(14 healthy and 14 stroke individuals). Thus, the LSTM model may be overfitting to these
idiosyncrasies of movements of these individuals. With the enrollment of more subjects,
we can put the reliability of the time-series extraction methods through a more robust
analysis by training it on one population of subjects and testing models on a completely
new population dataset. Similarly, the asymmetry and correlation of activity with BMI
results can be more robust with more subjects. The development of these images requires
computational resources. When we have to develop the training set for 100s of patients,
this task might require up to two to three days on a cluster to develop the images. The
strength of this study is developing a new method to analyze passive data collected
from participants’ naturalistic environments. This maximizes the generalizability of these
algorithms in detecting activities from real-world settings.

Traditionally a spectrogram of the entire dataset is considered the first choice to run
CNNs to classify the images [47]. Although spectrograms provide important information
about frequencies involved during movement, they fail to quantify movement. We envision
using the UAS (Figures 2–4) in regular 2D matrix form could potentially open new avenues
in ADL identification and quantification methods. Statistics computed on the UAS can
serve as an input channel to CNN. Thus, encompassing multiple statistics (Figure 2) can
either be substituted or be used in conjunction with the spectrogram approach to enrich
the identification and classification of ADL tasks from longitudinal time-series data.

5. Conclusions

Understanding asymmetry of movements during ADL performance in natural envi-
ronments is a very consequential goal for stroke rehabilitation. Currently, there is a paucity
of knowledge on how passively collected wearable sensor data could provide important
health-related information. Deploying visual presentation of passively collected wearable
sensor data in polar coordinates and utilizing this information to filter information-rich data
samples to provide as input to machine learning models is highly promising for automated
objective quantification of ADL performance. In-home assessment of activities for stroke
survivors will help clinicians to design interventions personalized to their everyday life.

The use of wearable sensors, visual algorithms for time-series extraction, and multi-day
motion tracking will allow patient assessment more realistically in their home environ-
ments. The wearable sensors would enable patients to perform ADL unobtrusively and
independently. With new methods of processing multiple-day motion tracking data, we are
entering into a new era of remote monitoring of functional performance in stroke survivors.
Remote monitoring of functional activity assessment will provide insights to clinicians of
the efficacy of stroke rehabilitation programs.
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