
Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research

Open Access

H Y MOON, P SONG and others MIF alleviates hepatic steatosis 218 :3 339–348
Involvement of exercise-induced
macrophage migration inhibitory
factor in the prevention of fatty
liver disease
Hyo Youl Moon*, Parkyong Song1,*, Cheol Soo Choi2, Sung Ho Ryu1 and Pann-Ghill Suh

BioSignal Network Laboratory, School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute

of Science and Technology, Engineering Building 104, 689-805 Ulsan, Republic of Korea
1Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang,

Kyungbuk, Republic of Korea
2Lee Gil Ya Cancer and Diabetes Institute, and Gil Medical Center, Korea Mouse Metabolic Phenotyping Center,

Gachon University, Incheon 406-840, Republic of Korea

*(H Y Moon and P Song contributed equally to this work)
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0135

� 2013 The authors
Published by Bioscientifica Ltd

Printed in Great Britain

This work is l
Attribution 3
Correspondence

should be addressed

to P-G Suh

Email

pgsuh@unist.ac.kr
Abstract
Physical inactivity can lead to obesity and fat accumulation in various tissues. Critical

complications of obesity include type II diabetes and nonalcoholic fatty liver disease (NAFLD).

Exercise has been reported to have ameliorating effects on obesity and NAFLD. However, the

underlying mechanism is not fully understood. We showed that liver expression of

macrophage migration inhibitory factor (MIF) was increased after 4 weeks of treadmill

exercise. Phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase in

human hepatocyte cell lines was enhanced after MIF treatment. These responses were

accompanied by increases in lipid oxidation. Moreover, inhibition of either AMPK or cluster of

differentiation 74 resulted in inhibition of MIF-induced lipid oxidation. Furthermore, the

administration of MIF to a human hepatocyte cell line and mice liver reduced liver X receptor

agonist-induced lipid accumulation. Taken together, these results indicate that MIF is highly

expressed in the liver during physical exercise and may prevent hepatic steatosis by activating

the AMPK pathway.
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Introduction
Excessive energy intake, including ingestion of a high-fat

diet (HFD), and sedentary lifestyles cause hyperlipidemia,

metabolic syndrome, and type II diabetes and are

threatening to become a global epidemic (Angulo 2007,

Lazo & Clark 2008). Nonalcoholic fatty liver disease

(NAFLD) is the most common hepatic component of

metabolic syndrome, which is highly associated with

obesity and insulin resistance (Postic & Girard 2008).

A representative phenomenon of NAFLD is hepatic
accumulation of neutral lipids, mainly triglycerides

(TGs), without ethanol consumption, viral infection, or

other etiologies. NAFLD ranged from simple steatosis to

cirrhosis accompanied by oxidative stress and hepatic

injury (Angulo 2002). Although the precise mechanism of

hepatic lipid accumulation remains incompletely under-

stood, abnormal regulation of lipid disposal through fatty

acid (FA) oxidation and processes affecting lipid avail-

ability, such as circulating free FA (FFA) uptake, have been
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suggested to be critical features (Browning&Horton 2004).

Indeed, in HFD-induced hepatic steatosis, both elevated

hepatic lipogenesis and impaired lipid oxidation contrib-

ute to hepatic TG accumulation (Postic & Girard 2008).

Hepatic lipid homeostasis is regulated by lifestyle

modifications that aim to increase physical activity,

induce weight reduction, and decrease energy intake

(Farrell & Larter 2006). Exercise is accompanied by

metabolic adaptations that promote the delivery to, and

oxidation of, FAs in metabolic tissues. The mechanism by

which exercise prevents hepatic steatosis involves AMP-

activated protein kinase (AMPK; Lavoie & Gauthier 2006).

AMPK is a conserved sensor of cellular energy and is

activated under conditions in which energy is required,

such as starvation and exercise, and by many endogenous

hormones (Hardie 2007). Importantly, AMPK plays a

critical role in lipid metabolism by regulating key

substrates, including acetyl-CoA carboxylase (ACC) and

FA synthase (FAS) (Ruderman & Prentki 2004). Based on

the requirement for AMPK to alleviate hepatic steatosis,

there is growing demand to identify mediators of AMPK

activation in response to dynamic physiological activity.

Although macrophage migration inhibitory factor

(MIF) has been identified as a pro-inflammatory cytokine

(Nishio et al. 1999, Fingerle-Rowson & Bucala 2001),

recent studies suggest that it has metabolic functions,

including a protection of the heart during ischemia–

reperfusion injury through effects on AMPK (Miller et al.

2008). In a previous study, we found that MIF expression

was significantly increased in the hippocampus by long-

term voluntary exercise (Moon et al. 2012). Based on the

relationship between exercise and hepatic steatosis, we

hypothesized that MIF may have a crucial role in the

prevention of fatty liver disease during exercise. The

purpose of this study was to determine the expression

level of MIF after exercise in multiple metabolic tissues

and to investigate whether MIF protects against hepatic

steatosis. The potential effects of MIF on the AMPK

activation and gene expression related to hepatic lipid

metabolism were also investigated.
Materials and methods

Animals and treadmill exercise

For treadmill exercise experiments, male C57/BL6 (B6)

mice (7–8 weeks old) were used. Mice were habituated

under our laboratory condition for 2–3 days before

initiation of the experiments. Totally, 19 mice were

randomly assigned to two different groups. Mice in the
http://joe.endocrinology-journals.org
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exercise group (nZ9) were acclimated to moderate tread-

mill running (10 m/min for 15 min) daily for 1 week. They

were then subjected to 4 weeks of exercise training

(5 days/week). The mice were trained on a treadmill

inclined at 58, with progressive increases in intensity and

duration. At the end of 4 weeks, all exercise-trained mice

were running for 50 min/day at a speed of 18 m/min.

Electrical shock grids were used to stimulate the mice to

run during treadmill running. The animal-handling

procedures were based on the National Institutes of Health

guidelines for animal studies. The experimental procedure

was approved by the animal ethical review board of

Lee Gil Ya Cancer and Diabetes Institute and Pohang

Institute of Science and Technology. Each animal experi-

ment used the minimum number of animals possible. The

amount of MIF in serum was measured using a MIF ELISA

kit (USCN Life Science, Inc., Wuhan, China). The blood

was collected from orbital sinus in the mice using

previously described protocol. According to previous

papers (Santos et al. 2001, Gao & Liu 2013, Vitzel et al.

2013), treatment ofmice with vehicle (saline) or T0901317

(T090; Sigma) 5 mg/kg was performed by daily i.p.

injection for 5 consecutive days. AICAR (0.4 g/kg, TRC,

Toronto, ON, Canada) or rMIF (1 mg/kg;) with T0901317

(T090; Sigma) 5 mg/kg was administrated by daily single

i.p. injection for 5 consecutive days.
Cell culture

HepG2 cells were maintained in MEM (Sigma Chemical

Company) containing 100 mg/ml kanamycin supple-

mented with 10% fetal bovine serum (FBS; Sigma

Chemical Company) at 37 8C in 100 mm cell culture

dishes (Corning, Inc., Oneonta, NY, USA) under a

humidified atmosphere containing 5% CO2 in air.

CD74 siRNA (catalog no. sc-35024) and control

scramble siRNA (catalog no. sc-37007) were purchased

from Santa Cruz Biotechnology. A total of 2!104

cells/well for HepG2 and 2!106 cells/well for HepG2

were plated for 24 h, and siRNA transfection was

conducted using Lipofectamine 2000 according to the

manufacturer’s instructions (Invitrogen).
Primary hepatocyte culture

Primary hepatocytes were isolated by collagenase diges-

tion, following a previously described protocol with small

modification (Klaunig et al. 1981, Yanhong et al. 2008).

Briefly, mice were anesthetized and the portal vein was

cannulated with a 22-gauge i.v. catheter. The liver was
Published by Bioscientifica Ltd
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perfused with Hank’s buffer solution (Invitrogen)

containing 0.5 mM EGTA and 0.05 M HEPES (pH 7.4)

maintained at 37 8C at a rate of 5 ml/min for 5 min. Then,

the collagenase-containing solution (Hyclone Medium

199/EBSS (Thermo Scientific, Logan, UT, USA) with 0.05%

collagenase Type IA (Sigma)) was used for the perfusion for

5 min (5 ml/min). The liver was transferred to 10 mm

dishes with 15 ml DMEM containing 0.05% collagenase

and was mechanically dissociated into single cells. Ten

milliliters DMEM supplemented with 10% heat-inacti-

vated FBS were added to the cells to reduce collagenase

activity. Cells were filtered through a 70 mm pore size

strainer (BD, San Jose, CA, USA) and centrifuged at 120 g

(Percoll gradient centrifugation) for three times. The cell

yieldwas counted using a hemocytometer and the viability

of the cells was assessed using Trypan blue exclusion test.
Western blot analysis

The HepG2 cells were grown in six-well plates. After

reaching 60–70% confluence, the cells were fasted for

24 h prior to treatment with the selected agents and

incubation at 37 8C. The medium was aspirated, the cells

were washed twice in ice-cold PBS, and then lysed in

100 ml of lysis buffer (0.5% deoxycholate, 0.1% SDS, 1%

Nonidet P-40, 150 mM NaCl, and 50 mM Tris–HCl (pH

8.0)) containing proteinase inhibitors (0.5 mM aprotinin,

1 mM phenylmethylsulfonyl fluoride, and 1 mM leupeptin)

(Sigma Chemical Company). The supernatants were

sonicated briefly, heated for 5 min at 95 8C, centrifuged

for 5 min, separatedon SDS–PAGE (8–16%) gels, andfinally

transferred to polyvinylidene difluoride membranes.

The blots were then incubated overnight at 4 8C with

primary antibodies and washed six times in Tris-buffered

saline/0.1% Tween 20 prior to probing with HRP-

conjugated secondary antibodies for 1 h at room

temperature. Anti-phospho-AMPK, anti-MIF, anti-ACC, and

anti-AMPK antibodies were purchased from Cell Signaling

Technology (New England Biolabs, Beverly, MA, USA). Anti-

phospho-ACC was purchased from Upstate (Waltham, MA,

USA).Tonormalizeprotein loading,ananti-b-actinantibody

(MP Biomedical, Solon, OH, USA) was used for blotting. The

blots were then visualized with ECL (GE Biosciences, Piscat-

away, NJ, USA).
Adenoviral transfection of a dominant-negative

AMPK2 isoform

Recombinant adenoviral vectors expressing a myc-

tagged dominant-negative mutant of AMPK2 and a
http://joe.endocrinology-journals.org
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control virus were generated as described previously

(Lee et al. 2003). HepG2 cells were infected with the

indicated multiplicity of infection (MOI, or viral

particle:cell ratio) titers for 6 h in serum-free MEM.

The cells were then washed and incubated in growth

medium for 12 h.
Real-time RT-PCR

Total RNA was extracted using a total RNA extraction kit

(iNtRON Biotechnology, Seoul, Korea). First-strand cDNA

was synthesized by RT using oligo(dT) primers and

SuperScript II reverse transcriptase (Invitrogen). cDNA

was amplified for 25–30 cycles using mouse or rat gene-

specific primers (Table 1). For real-time RT-PCR, total RNA

(100 ng) was amplified using the One-Step SYBR RT-PCR

kit and a Light Cycler 2.0 PCR system (Roche Diagnostics).
Palmitate oxidation assay

After starvation for 2 h, HepG2 cells were incubated in

oxidation medium containing 0.1 mmol/l palmitate

(9,10-[3H] palmitate, 5 mCi/ml) and 0.1% lipid-free BSA.

After oxidation, the medium was precipitated with the

same volume of 10% TCA solution. The supernatants were

transferred to capless tubes placed in a scintillation vial

containing 0.5 ml of unlabeled water and were incubated

at 50 8C for 12 h. After evaporation and equilibration, the

tubes were removed and scintillation enhancer fluid

(PerkinElmer Life and Analytical Sciences, Waltham, MA,

USA) was added to the vial.
Determination of hepatic lipid contents

Quantitative measurements of hepatic TG accumulation

in HepG2 cells were carried by lipid extraction using

chloroform and enzymatic assays using the EnzyChrom

triglyceride assay kit (Bioassay Systems, Hayward, CA,

USA).
Statistical analysis

All data are expressed as meanGS.E.M. and are representa-

tive of at least three different experiments. Data were

analyzed by two-tailed Student’s t-test or one-way

ANOVA followed by an LSD post hoc test. In all cases,

P values of !0.05 were deemed to be statistically

significant. Statistical analysis was performed using SPSS

17.0 (SPSS Corp.).
Published by Bioscientifica Ltd
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Results

Expression profiling of MIF after 4 weeks

of treadmill exercise

To determine whether MIF is involved in metabolic effects

during exercise, we evaluated the expression level of MIF

in various metabolic tissues and plasma using a mouse

treadmill running model. We confirmed by real-time PCR

that liver MIF expression was significantly increased after

4 weeks of treadmill running; MIF expression in white

adipose tissue, the soleus, the extensor digitorum longus,

and the gastrocnemius was unchanged (Fig. 1A). We

detected a marginal increase in plasma MIF level after

exercise by ELISA (Fig. 1B). Even though the expression

level of cluster of differentiation 74 (CD74), one of the

MIF’s receptors, was not significantly changed (Supple-

mentary Figure 1A, see section on supplementary data

given at the end of this article), we also observed that the
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Figure 1

Expression of MIF in sedentary (Sed) and exercised (Exe) mice. (A) RT-PCR

analysisofMIFmRNAinvariousmetabolic tissues.18srRNAlevelswereusedasa

control. (B)ELISAanalysisofplasmaMIFlevels inmice. (C)Lysatesfromexercised

or sedentary mouse tissues were subjected to western blotting using anti-

phospho-AMPK, anti-total AMPK, and anti-MIF antibodies. Anti-b-actin

antibodies were used to confirm equal protein loading. (D) Bar graph depicts
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MIF level was upregulated in the exercise group when

compared with the sedentary group (Fig. 1C and D).

Finally, western blotting analysis showed that phosphoryl-

ation of AMPK was increased in the exercise group

compared with sedentary group in liver (Fig. 1E), as

described in the previous study (Takekoshi et al. 2006).
MIF stimulates the AMPK pathway in hepatocytes

The administration of MIF induced a dose- and time-

dependent increase in AMPK phosphorylation in HepG2

cells (Fig. 2A and B). AMPK phosphorylation reached a

maximum level after treatment with 100 ng/ml MIF for

60 min. Consistent with the increase in AMPK phos-

phorylation, the phosphorylation of ACC, a downstream

target of AMPK, also increased after MIF administration.

AICAR (1 mM), a known AMPK activator, was used as a

positive control (Table 1).
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Figure 2
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mitochondria-related gene expression in HepG2 cells. (A) Dose-dependent

phosphorylation of AMPK by MIF. HepG2 cells were stimulated with the

indicated doses of MIF, AICAR, or vehicle for 1 h. Cell lysates were analyzed

by western blotting with anti-phospho-ACC (Ser79) and anti-phospho-

AMPK (Thr72) antibodies. Anti-ACC, anti-AMPK, and anti-b-actin
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Effect of MIF on lipid oxidation

AMPK accomplishes the transition to the oxidative mode

of metabolism by upregulating genes related to mito-

chondrial biosynthesis and oxidative enzymes such as

nuclear respiratory factor 1 (NRF1), medium-chain
http://joe.endocrinology-journals.org
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acyl-CoA dehydrogenase (MCAD), carnitine palmitoyl-

transferase-1 (CTP1b), and peroxisome proliferator-

activated receptor-g coactivator-1a (PGC1a) (Tian et al.

2001, Lee et al. 2006, Li et al. 2007). We next tested

whether MIF treatment affected the expression of genes

related to mitochondrial metabolism and FA utilization.
Published by Bioscientifica Ltd
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Table 1 List of primer sequences used for RT-PCR analysis in

this study.

Gene Sequence Direction Species

PGC1a GTAAATCTGCGGGATGATGG Sense Human

ATTGCTTCCGTCCACAAAA Antisense

CPT1b ATCCTTGCTTGTGGGAACAG Sense Human

TCCATGCTGACAAGAAGCTG Antisense

MCAD TGCCCTGGAAAGGAAAACTTT Sense Human

GTTCAACTTTCATTGCCATTTCAG Antisense

NRF-1 CCACGTTACAGGGAGGTGAG Sense Human

TGTAGCTCCCTGCTGCATCT Antisense

18S rRNA TCGGCGTCCCCCAACTTCTTA Sense Mouse

GGTAGTAGCGACGGGCGGTGT Antisense

Mif ACAGCATCGGCAAGATCG Sense Mouse

GGCCACACAGCAGCTTACT Antisense

Fasn CATCCAGATAGGCCTCATAGAC Sense Mouse

CTCCATGAAGTAGGAGTGGAAG Antisense
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MIF robustly induced the expression of PGC1a, NRF, and

CPT1 in HepG2 cells (Fig. 2C). To further characterize the

mechanism underlying MIF-mediated AMPK activation,

we performed palmitate oxidation analysis. We observed

that MIF increased palmitate oxidation in HepG2 cells at

a concentration of 100 ng/ml (Fig. 2D). AICAR (100 nM)

also increased palmitate oxidation and was utilized as a

positive control. These results suggest that MIF-mediated

AMPK activation may be associated with lipid oxidation.
Inhibition of AMPK suppresses MIF-induced lipid

oxidation

To examine the dependency of MIF-induced FA oxidation

on AMPK, we used a selective AMPK chemical inhibitor and

virus carryingadominant-negative formofAMPKa2,which

was shown to be a major isoform in skeletal muscle. As

shown in Fig. 3A and Supplementary Figure 2A, see section

on supplementary data given at the end of this article, MIF-

induced AMPK activation was completely blocked by

pretreatment with the AMPK inhibitor compound C in

HepG2 and primary mouse hepatocytes. Pretreatment with

compound C (10 mM) also inhibitedMIF-induced palmitate

oxidation, indicating that the AMPKpathway is involved in

MIF-induced lipid metabolism in HepG2 and primary

mouse hepatocytes (Fig. 3B and Supplementary Figure 2B).

To confirm that the effects of MIF were mediated by AMPK

activation, we investigated the effects of MIF on palmitate

oxidation by over-expressing either dominant-negative

AMPK or wild-type AMPK in hepatocytes. Expression of

AMPK viruses was confirmed by blotting with an antibody

against Myc, which was used to tag the virus. MIF-induced

AMPK phosphorylation and palmitate oxidation were
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0135
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clearly reduced in the cells infected with the dominant-

negative form of AMPK (Fig. 3C, D and Supplementary

Figure 3B, C). AMPK is thus important for MIF to induce

lipid oxidation in the liver.
A CD74–AMPK pathway is involved in MIF-induced

lipid oxidation

To elucidate the role of CD74 in MIF-induced lipid

metabolism, we assessed the effects of a kinase inhibitor

and CD74-specific siRNAs on palmitate oxidation. MIF-

inducedphosphorylationofAMPKandACC inHepG2cells

was attenuated by the knockdown of Cd74 expression

(Fig. 3E). Moreover, inhibition of Cd74 expression by

siRNAs (Supplementary Figure 3A) reduced MIF-induced

palmitate oxidation in HepG2 cells (Fig. 3F). Viewed

together, our findings appear to show that AMPKpathways

play an important role in MIF-induced lipid oxidation.
MIF inhibits lipid accumulation due to liver X receptor

agonist exposure

Todeterminewhether increasedFAoxidationcanbe linked

to intracellular TG levels, we measured total TG levels by

lipid extraction methods after co-treatment with MIF plus

an liverX receptor (LXR) agonist (1 mM). Similar to the lipid

oxidation results, treatment for 24 h decreased cellular TG

levels to levels comparable with those in AICAR controls

(Fig. 4A). To further confirm the TG decreases, we stained

HepG2cells andprimarymousehepatocyteswithOilRedO

after MIF treatment. LXR agonist-treated cells contained

large neutral lipid stores. MIF treatment greatly attenuated

the Oil Red O signal in HepG2 and primary mouse

hepatocytes (Fig. 4B and Supplementary Figure 2C).

Furthermore, Fasn, one of the LXR target genes, was

reduced by MIF treatment, and pretreatment of compound C

recovers the effect of MIF on Fasn gene expression in

primarymouse hepatocytes (Supplementary Figure 4A, see

section on supplementary data given at the end of this

article). Consistent with these findings, administration of

rMIF with LXR agonist substantially decreased the FA

accumulation in the liver comparedwith LXR agonist-only

treated group (Fig. 4C, D and Supplementary Figure 5A).

These findings demonstrate that MIF can prevent LXR

agonist-induced hepatic lipid accumulation.
Discussion

Although exercise and AMPK are regarded as key factors in

combating NAFLD, little is known about endogenous
Published by Bioscientifica Ltd
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Figure 3

MIF-stimulated palmitate oxidation in a CD74–AMPK-dependent manner.

(A) HepG2 cells were pre-treated with compound C (10 mM) for 30 min and

were then stimulated with MIF or AICAR for 1 h. Cell lysates were analyzed

by western blotting with an anti-phospho-AMPK(Thr72) antibody. (B) Cells

were pre-incubated with compound C and then stimulated under the

indicated conditions. Oxidation of [3H]-labeled palmitate was measured as

described in the Materials and methods section. (C) Cells infected with a

mock adenovirus or an adenovirus carrying dominant-negative

(DN)-AMPKa2 at an MOI of 30 for 18 h were treated with or without MIF. Cell

lysates were analyzed by western blotting. DN-AMPK a2 expression was

confirmed using an anti-Myc antibody. (D) Oxidation of [3H]-labeled

palmitate was measured after infection with the mock or DN-AMPK a2

adenovirus. (E) HepG2 cells were transfected with CD74 or scrambled siRNA

for 48 h and were then stimulated with MIF for 24 h. Whole-cell lysates were

used to detect the phosphorylation of AMPK and ACC. (F) HepG2 cells were

transfected with CD74 or scrambled siRNA for 48 h and were then stimulated

with MIF for 24 h. HepG2 cells were incubated in 60 mm dishes for 24 h with

either MIF or AICAR and were then assayed for oxidation of [3H]-labeled

palmitate. Data are expressed as meansGS.D. of triplicate experiments.

*P! 0.05 vs vehicle; **P! 0.01 vs vehicle values and #P! 0.05 vs NT

(compound C not treated) values (one-way ANOVA).
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mediators contributing to the improvement. In the

present report, the most striking and unexpected finding

was the MIF level in the liver after 4 weeks of treadmill

exercise. Under hypoxic or ischemic conditions, MIF may

be released from several tissues, such as endothelial

progenitor cells or the heart (Miller et al. 2008, Simons

et al. 2011). Hypoxic conditions are readily induced by

exercise (Moller et al. 2001), which may explain how

exercise induced MIF expression. However, we observed
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0135
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that the circulatingMIF level in the exercise group was not

significantly different from that in the control group.

Based on our data and a previous report (Miller et al. 2008),

it seems that MIF reuptake into the liver or other organs

may explain the unchanged serum MIF level. Further

studies are needed to elucidate this mechanism.

Importantly, MIF activates AMPK, resulting in the

amelioration of lipid accumulation of hepatocytes. We

described a putative mechanism by which MIF exerts its
Published by Bioscientifica Ltd
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Figure 4

Hepatic lipid accumulation was inhibited by MIF treatment.

(A) Intracellular TG contents were measured under the indicated

conditions. HepG2 cells were exposed to T0901317, a synthetic LXRa

ligand, with or without MIF for 24 h. Lipid levels were determined by the

TG hydrolysis method. (B) Cells were treated with AICAR or MIF under

conditions of T0901317 stimulation. After 24 h, the cells were stained

with Oil Red O to observe the accumulation of lipids. Data are expressed

as meansGS.D. of triplicate experiments. (C) Mice were administrated with

vehicle (saline), AICAR, or MIF under conditions of T0901317 (nZ4)

stimulation. Intracellular TG contents were measured after 5 days of

administration. Lipid levels were determined by the TG hydrolysis

method. *P!0.05 vs control values, **P!0.01 vs control values. (D) The

mice liver of the each experimental group was prepared for cryosection

with optimal cutting temperature compound and stained with Oil Red O

and hematoxylin to observe the accumulation of lipids. Data are

presented as meanGS.E.M.
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steatosis-preventing effect by demonstrating AMPK-

dependent lipid oxidation in HepG2 cells. Through

intracellular TG measurement and Oil Red O staining,

we demonstrated that MIF administration inhibited

chemically induced lipid accumulation in mice liver and

human hepatoblastoma cell lines. Together, these results

demonstrate thatMIFmaymediate the preventive effect of

exercise against hepatic steatosis through AMPK.

Both isoforms of ACC (ACC1 and ACC2) are indepen-

dently involved in lipid metabolism (Brownsey et al.

2006). ACC1 takes charge of de novo lipogenesis, while

ACC2 is thought to negatively regulate FA oxidation by

modulating local malonyl-CoA levels (Wakil et al. 1983,

McGarry & Brown 1997). Although MIF-induced FA

oxidation is important for alleviating hepatic steatosis,

MIF-induced inhibition of lipogenesis in the liver may be
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-13-0135

� 2013 The authors
Printed in Great Britain
another reasonable mechanism for TG regulation. Sterol

regulatory element-binding protein (SREBP) is a transcrip-

tion factor that binds to the sterol regulatory element and

regulates the expression of lipogenic enzymes, such as

stearoyl-CoA desaturase-1, FAS, and ACC1 (Brown &

Goldstein 1997, Postic & Girard 2008). Prolonged treat-

ment with MIF plus an LXR agonist induced a significant

decrease in the mRNA expression of SREBP-1C, which is

mainly involved in hepatic lipogenesis (data not shown).

Thus, MIF may have a dual function, suppressing lipid

accumulation by modulating lipogenesis and lipid oxi-

dation simultaneously.

HLA class II histocompatibility antigen gamma chain,

also known as CD74, mediates MIF-triggered signaling

(Leng et al. 2003, Lue et al. 2006, Heinrichs et al. 2011),

which plays various roles in cell-mediated immunity,
Published by Bioscientifica Ltd
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inflammation, cell growth, and some neuronal processes

(Lewis et al. 1998). Cd74 expression was recently examined

in various cell types other than antigen-presenting cells,

including liver cells, and is particularly important in

complex immunological functions and in the link

between chronic inflammation and liver disease (Koch &

Leffert 2011). Surprisingly, expression of Cd74 is closely

related to inhibition of fibrogenesis, which can protect

against liver cirrhosis (Heinrichs et al. 2011). We showed

that MIF induced activation of AMPK, and that inhibition

of CD74 reduced the effect of MIF on AMPK activation and

palmitate oxidation in HepG2 cells. These results suggest

that a CD74–AMPK pathway is involved in metabolic

effects following MIF treatment.

In summary, we suggest that MIF stimulates lipid

oxidation in the liver via a CD74–AMPK pathway. These

findings increase our understanding of how exercise-

induced factors ameliorate hyperlipidemia during exer-

cise. Taken together, our findings identify an important

mediator that may reduce lipid accumulation in response

to exercise.
Supplementary data

This is linked to the online version of the paper at http://dx.doi.org/10.1530/

JOE-13-0135.
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