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There is clear evidence for sublethal effects of neonicotinoid insecticides

on non-target ecosystem service-providing insects. However, their possible

impact on male insect reproduction is currently unknown, despite the key

role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam

and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of

male honeybees (drones), Apis mellifera. Drones were obtained from colonies

exposed to the neonicotinoid insecticides or controls, and subsequently main-

tained in laboratory cages until they reached sexual maturity. While no

significant effects were observed for male teneral (newly emerged adult) body

mass and sperm quantity, the data clearly showed reduced drone lifespan, as

well as reduced sperm viability (percentage living versus dead) and living

sperm quantity by 39%. Our results demonstrate for the first time that neonico-

tinoid insecticides can negatively affect male insect reproductive capacity, and

provide a possible mechanistic explanation for managed honeybee queen failure

and wild insect pollinator decline. The widespread prophylactic use of neonicot-

inoids may have previously overlooked inadvertent contraceptive effects on

non-target insects, thereby limiting conservation efforts.
1. Introduction
Factors affecting reproductive success have a profound influence not only on a

single individual’s fitness, but on the dynamics of entire populations [1,2]. This

principle provides a framework for pest control strategies that target reproduc-

tion. For example, modern-day agricultural practices frequently demand

intensive insect pest management to ensure high-quality crops [3,4]. Strategies

such as sterile insect techniques and insect growth regulator insecticides are

designed for their sublethal effects on adult insect reproduction [5–7], whereas

others may kill the pest insect outright [8,9].

Advances in agrochemical research highlight a lackof knowledge of the sublethal

effects of insecticides on their target insect pests [10], as well as on sympatric ben-

eficial insects such as bees that provide vital ecosystem services [11–13].

Frequentlyapplied neonicotinoid insecticides can affect the nervous system of insects

by acting as agonists of postsynaptic nicotinic acetylcholine receptors [14–16].

Recently, they have been shown to elicit sublethal effects on several bee genera,

such as impairing bumblebee queen (primary reproductive females) production
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and diminishing honeybee queen reproduction [17,18]. However,

to date no data exist on how neonicotinoid insecticides may affect

male insect reproduction.

Historically, the honeybee (Apis mellifera) has served as a

model insect to investigate the effects of various anthropo-

genic and environmental stressors [9] because it can be

easily maintained and is relatively well studied. Furthermore,

honeybees contribute essential pollination services to agricul-

ture [19] and wild plants [20]. Queens perform mating flights

soon after emergence to collect and store sufficient quantities

of sperm from multiple drones (male sexuals) to last their life-

time [21]. This highly polyandrous strategy [22] conveys

several benefits, including increased colony functioning and

resistance to disease [23–25].

Within the last decade, honeybees have experienced severe

annual mortalities in the Northern Hemisphere [26], probably

because of a diverse array of stressors acting in concert [20,27].

These events have paralleled declines of wild bees [28,29]. It is

believed that poor queen health (i.e. premature queen replace-

ment, frequent unfertilized egg-laying) is a major contributor

to honeybee colony mortality [30,31], yet factors affecting hon-

eybee reproductive success remain largely unexplored. Recent

studies have demonstrated, however, that miticides can affect

the production and storage of honeybee sperm in males

[32–34] and stored sperm by mated females [35], respectively.

Because queen survival and productivity are intimately con-

nected to successful mating, any influence on sperm quality

may have profound consequences for the fitness of the

queen, as well as the entire colony [36–39].

Here, we tested for the first time the effects of neonicotinoid

insecticides on male insect reproduction. We employed honey-

bee drones as models that were exposed during development

to chronic field-realistic concentrations of the neonicotinoids

thiamethoxam and clothianidin. We hypothesized that

drones reared in colonies exposed to neonicotinoids would

experience significant lethal (reduced longevity) and sub-

lethal (sperm quality) effects compared with drones from

control colonies based on previous studies demonstrating

strong sublethal effects of neonicotinoids on female insect

reproduction [17,18,30,40] and longevity [41–43], and because

insecticide-induced reactive oxidative stress has been shown to

reduce sperm quality [44–47].
2. Material and methods
The study was performed in Bern, Switzerland, between April and

September 2015 using 20 A. mellifera L. honeybee colonies that were

established at the beginning of the experimental period using the

shook swarm method [48] to source drones and workers (primar-

ily non-reproductive females). Each colony initially consisted of

one laying sister queen, 1.8 kg workers, as well as five Dadant

frames (each 435 mm by 298 mm) containing organic worker cell

wax foundation that was tested for a broad array of agricultural

chemical residues by the University of Hohenheim; an additional

frame containing organic drone cell wax foundation was added

approximately three weeks later to promote drone production [49].

(a) Insecticide exposure
In early May 2015, colonies were randomly assigned to one of two

treatments (insecticide or control). Each colony was provided daily

with 100 g pollen paste (60% fresh honeybee corbicular pollen,

10% organic honey, and 30% powder sugar) according to Sandrock

et al. [50] and Williams et al. [18]. Pollen paste for insecticide
colonies additionally contained 4.5 ppb thiamethoxam and

1.5 ppb clothianidin (both Sigma-Aldrich), which represents

field-realistic concentrations found in plant pollen [51]; applied

concentrations were confirmed (4.9 ppb thiamethoxam and

2.1 ppb clothianidin in insecticide patties; below the limit of

quantification for thiamethoxam (less than 0.02 ppb) and clothiani-

din (less than 0.08 ppb) in control patties) by the French National

Centre for Scientific Research using ultra-high performance

liquid chromatography-tandem mass spectrometry (UHPLC-

MS/MS). Pollen paste feeding occurred over a period of 50 days

to ensure colonies would be exposed to at least two complete

brood cycles. Recent evidence suggests that foraging honeybees

may be exposed to insecticide residues for a similar period due

to contamination of non-agricultural foraging areas by surface

run-off or drainage from nearby treated crops [52,53]. During the

entire period, each colony was equipped with an entrance pollen

trap to partially restrict forager-collected corbicular pollen entering

the hive in order to promote pollen paste feeding [50].

(b) Source of drones and workers
Thirty-eight days post-initial pollen paste feeding, queens of each

colony were first caged for approximately 48 h to a drone brood

frame, and then 1 day later to a worker brood frame for an additional

approximately 48 h to obtain sufficient numbers of drones and

workers of the same known age cohort. Both experimental brood

frames remained within their corresponding colonies until approxi-

mately 24 h prior to simultaneous drone and worker emergence;

frames were then transferred to a laboratory incubator maintained

in complete darkness at 34.58C and 60% relative humidity [54].

(c) Teneral body mass and cage mortality
Upon emergence, each experimental drone and worker was visually

examined to assess for physical abnormalities and the presence of

the parasitic mite Varroa destructor. For each colony, the first 30

drones to emerge, which were free of V. destructor infestation and

abnormalities, were weighed to the nearest 0.1 mg using an analytic

scale (Mettler Toledo AT400). These drones, plus the next 30 of simi-

lar status (no V. destructor or abnormalities) to emerge per colony,

were then placed in standard hoarding cages (250 cm3) [54] corre-

sponding to their source colony (and, therefore, respective

treatment groups, i.e. insecticide or control). In total, each colony pro-

vided six hoarding cages of bees that each contained 10 drones and

20 workers from the same colony. The presence of workers in each

cage was necessary because drones depend on worker attendance

within the first few days of emergence [55–57]. Cages were sub-

sequently maintained in complete darkness at 308C and 60%

relative humidity [54], and given 50% (w/v) sucrose solution and

pollen paste (60% fresh honeybee corbicular pollen and 40% sugar

powder) ad libitum to provide a carbohydrate energy source and

ample proteins for organ and tissue development [58,59], respect-

ively. Food was replaced every 72 h, whereas cage mortality was

recorded every 24 h; dead individuals were removed using a forceps.

After 8 days, all cages were exposed to indirect natural light for 1 h to

promote and imitate an initial orientation flight [21]. The assay was

terminated immediately after all experimental drones died.

(d) Sperm assessment
Three cages per colony were randomly selected to assess drone

sperm quantity and viability at 14 days post-cage assay initiation,

the typical age drones reach sexual maturity [60,61]. Drones in

these cages were carefully removed using a forceps; to prevent

sperm from migrating into the penis bulb, the drones were dis-

sected alive by pinning them onto a wax plate [62]. Following

Carreck et al. [63] the testes, mucus glands, and seminal vesicles

were removed from each drone, placed in a 1.5 ml Eppendorfw

tube containing 500 ml Kievþ buffer, and crushed to form a

diluted stock sperm solution.
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Figure 1. Drone (male) honeybee teneral body mass. Comparison of drone
honeybee (Apis mellifera) teneral body mass (mg) showed no significant
difference between controls (N ¼ 200) and neonicotinoid insecticides
(N ¼ 120) ( p ¼ 0.80). The boxplots show the inter-quartile range (box),
the median (black line within box), data range (horizontal black lines
from box), and outliers (black dots).
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Figure 2. Honeybee drone (male) and worker (female) cage mortality. Survival
curves (Kaplan – Meier) indicate the cumulative survival (%) of honeybee (Apis
mellifera) drones (N ¼ 567) (a) and workers (N ¼ 1120) (b) under neonicoti-
noid insecticide exposure compared with controls. A significant difference was
only observed for the mortality of drones ( p , 0.001). A significant difference
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Immediately, a 50 ml aliquot of the stock sperm solution was

set aside in a separate 1.5 ml Eppendorfw tube for analyses of

sperm viability (proportion of sperm alive [64]). Sperm viability

was quantified using the method previously described by Collins

and Donoghue [65] and Stürup et al. [66]. In brief, each sample was

diluted with 50 ml of Kievþ buffer before 2 ml of propidium iodide

(PI) solution (1 mg ml21) and 1 ml of Hoechst 33342 (0.5 mg ml21)

[67] (both Sigma-Aldrich) were added to the suspension. Samples

were then incubated for approximately 20 min in complete dark-

ness and then gently vortexed. Ten microlitres were viewed at

400� magnification using a fluorescent microscope (Olympus

BX41, Switzerland) equipped with filter cubes for UV excitation

[67]. Ten visual fields were selected for each sample so that the

quantity of living and dead sperm could be counted; an average

value was then calculated from these fields [67].

In addition, 20 ml of each stock sperm solution were diluted

with 80 ml Kievþ buffer (1 : 5 dilution) in a 1.5 ml Eppendorfw

tube to perform sperm counts. Sperm densities were measured

using a Neubauer counting chamber under light microscopy

(Thermo Fischer Scientific, USA). The final density of sperm

was quantified using the following calculation [68]: total sperm

quantity (500 ml) ¼ average number of sperm counted in two

Neubauer counting chambers � dilution factor (1 : 5) � sperm

volume used for Neubauer counting chamber (10 ml) � stock sol-

ution volume (500 ml). Once both total sperm quantity and sperm

viability were assessed, the total living sperm quantity was

obtained by multiplying the two together.

(e) Statistical analyses
Three-level generalized regression mixed models with random

intercepts were fitted using STATA14 [69], wherein individual

drones were considered independent units, treatment (insecti-

cide versus control) was included as the fixed term (or

explanatory variable) and colonies and cages as random effects

because of the clustering of individuals [70]. All statistical figures

were created using NCSS v. 9.0.15 [71].

Drone teneral body mass was normally distributed (Shapiro–

Wilk’s test for normality, p ¼ 0.44), so a general linear model was

fitted using the meglm function. Total sperm quantity and the

total living sperm quantity are count data, and were not normally

distributed (Shapiro–Wilk’s test for normality, p , 0.001) so were

therefore fitted to negative binomial models using the menbreg

function. Sperm viability is a score ranging from 0 to 100% and

was also not normally distributed (Shapiro–Wilk’s test for normal-

ity, p , 0.001) so an ordered logistic model was employed [72]. We

used an XY scatter plot and Spearman’s correlation coefficient to

assess a possible correlation between sperm quantity and sperm

viability. Lastly, survival times of drones and workers for both treat-

ments were fitted using the mestreg function for multilevel survival

models [70]. Median longevity was calculated as the 50th percentile

of the survival time[73].Dronessampled on day 14forsperm assess-

ments, aswell astheiraccompanying caged workers, were censored.

Whenever possible, every three-level model was compared with its

single-level model counterpart using a likelihood ratio (LR) test [69].

LR tests, which do not rely on the assumption of asymptotic normal

sampling distributions, can be used to demonstrate which model

best fit the data.

Median differences and their 95% CI were calculated using

the STATA14 package somersd. The function cendif calculates

confidence intervals for Hodges–Lehmann median differences

(or other percentile differences) between two groups [74].

between treatment groups is indicated by ***p , 0.001.
3. Results
(a) Teneral body mass and cage mortality
No significant difference was observed between treatments

for drone teneral body mass ( p ¼ 0.80; figure 1), which was
277.06+17.06 mg and 278.27+18.16 mg for the controls

and insecticides, respectively (mean+ standard error (s.e.)).

However, median longevity of insecticide drones (15+15–

15 days) was significantly lower than controls (22+ 21–22

days) ( p , 0.001; median+ 95% CI; figure 2a). Furthermore,
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insecticide drone survival was significantly reduced com-

pared with controls for up to 14 days (point of sexual

maturity); mortality was 16.82+ 0.02% and 32.08+0.03%

for controls and insecticides, respectively, which represents

an approximately 50% difference ( p , 0.001; cumulative

hazard%+ s.e.; figure 2a). By contrast, no significant differ-

ence in worker median longevity was observed between

controls (23+ 22–24 days) and insecticides (26+ 25–29

days) ( p ¼ 0.27; median+ 95% CI; figure 2b).

(b) Sperm assessment
No evidence of treatment effect was found between control

(2.19+1.93–2.55 million) and insecticide (1.55+1.33–2.05

million) drone sperm quantity 14 days post-cage assay

initiation ( p ¼ 0.14; median+95% CI; figure 3a). By contrast,

sperm viability was significantly different between the two

treatment groups, with insecticide drones having 8+4.6–

11.3% (median difference+95% CI) lower sperm viability

than controls ( p ¼ 0.03; figure 3b). Sperm viability was 92+
90–94% and 83.5+80–86% in the controls and insecticides,

respectively (median+95% CI). No correlation was observed

between sperm quantity and sperm viability (Spearman’s

jrj ¼ 0.05, p ¼ 0.44). In addition, a significant difference was

observed between control (1.98+1.72–2.18 million) and

insecticide (1.2+0.20–1.6 million) treatments for total living

sperm quantity ( p , 0.05; median+95% CI; figure 3c),

which represents on average approximately 39% less living

sperm in insecticides compared with controls. The median

difference and its 95% CI was 0.61+0.32–0.90 million less

living sperm in insecticides compared with controls.
liv
in

g 
sp

er
m

 q
ua

nt
ity

 (
m

ill
io

ns
)

7

6

5

4

3

2

1

0

control
treatment

*

insecticide

Figure 3. Honeybee sperm assessment. Assessment of various sperm traits in
male (drone) honeybees (Apis mellifera) under neonicotinoid insecticide (N ¼
90) exposure compared with controls (N ¼ 145). (a) Comparison of sperm
quantity showed no significant differences ( p ¼ 0.1375). (b) Percentage of
viable sperm in honeybee drones showed significant differences ( p ¼
0.03). (c) Total quantity of living sperm in honeybee drones showed a sig-
nificant difference ( p , 0.05). All boxplots show the inter-quartile range
(box), the median (black line within box), data range (horizontal black
lines from box), and outliers (black dots). A significant difference between
treatment groups is indicated by *p , 0.05.
4. Discussion
Factors governing reproductive success have a profound

influence on shaping populations by affecting fitness [1,75].

Bountiful examples in nature include predation and parasit-

ism [76,77]; however, anthropogenic influences such as

industrial pollution and landscape fragmentation may also

be important drivers [78–80]. Neonicotinoid insecticides rep-

resent a class of neurotoxins widely employed in agriculture

for insect pest control [15]. Our study clearly demonstrates

that neonicotinoid insecticides can have significant lethal

(lifespan) and sublethal (sperm viability and living sperm

quantity) effects on honeybee drones. Using the honeybee

as a model, we hereby provide the first evidence that field-

relevant concentrations of these chemicals can elicit effects

on male insect reproductive capacity.

For eusocial insects such as honeybees, polyandry con-

veys several fitness benefits, such as reducing parasitism

[81,82], buffering colony performance against environmental

change [83], and improving task efficiency [84–86]; it also

ensures sufficient sperm to maintain long-living queens and

large colonies [85,87]. Therefore, evidence to suggest that

neonicotinoids can impair reproduction provides one poss-

ible explanation for recent observations of increased annual

mortality of managed honeybees [17,29,30,88], as well as

the general decline of wild insect pollinators [29,89], through-

out the Northern Hemisphere. Although drones (male

honeybees) do not directly contribute to colony survival

[90], their role via mating is vital for colony fitness [91]. Fur-

thermore, queen survival and productivity are intimately

connected to proper mating as the depletion of sperm results
in costly replacement of the queen by the colony, which can

only successfully occur during specific periods of the year

[92]. Recent data linking poor queen health to colony mor-

tality [30], possibly because of low quality stored sperm

from stressors such as miticides or insect growth regulator

insecticides [33,93,94], highlight the urgent need for



rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160506

5
investigating possible factors that may affect male reproduc-

tive success among non-target, beneficial insects.

Honeybee teneral body mass immediately succeeding pupa-

tion is often used as an index for an individual’s overall

condition [95,96]; both pathogens and insecticides reduce ten-

eral body mass [43,97,98]. Our data revealed the teneral body

mass of drones was not influenced by neonicotinoids, despite

a previous investigation demonstrating reduced mass of neoni-

cotinoid-exposed teneral workers [43]. Reasons for this disparity

could be due to differences in neonicotinoid chemistries (the

neonicotinoids, thiamethoxam and clothianidin versus imida-

cloprid), and routes of exposure (pollen versus sugar water).

Nonetheless, our results demonstrated that neonicotinoid

exposure strongly reduces the longevity of drones. Considering

that sexual maturity is typically reached 9–14 days post-

emergence, approximately 30% of neonicotinoid-exposed

drones in our study would likely not be afforded the opportu-

nity to mate with virgin queens. This could have severe

consequences for colony fitness [99,100], as well as reduce the

overall genetic variation within honeybee populations [101].

Conversely, female workers exposed to neonicotinoids did

not experience a reduction in longevity, despite contrary

evidence from previous studies [42,102]. This again could

be due to differences among experimental treatments (the

neonicotinoids, thiamethoxam and clothianidin versus thiaclo-

prid), cage assay conditions (e.g. sugar and pollen feeding

versus only sugar), or treatment exposure (colony versus

individual level). This may, furthermore, be explained by the

haploid–diploid susceptibility hypothesis, which proposes

that hemizygous haploid individuals such as honeybee

drones may experience increased susceptibility to environ-

mental stressors due to decreased genetic variability [98,103].

Recent studies revealed that agrochemicals are capable

of impairing immune function [104–107]; therefore, it is poss-

ible that neonicotinoid-exposed drones possess reduced

detoxification abilities that subsequently affected lifespan.

The successful transfer of male sperm is the primary goal of

copulation [23]. Therefore, honeybee mating success is highly

dependent upon drones producing large quantities of sperm

that must remain in excellent condition for an extended

period within the queen’s sperm storage organ (spermatheca).

Although storage conditions afforded by the queen are impor-

tant to ensuring long-term sperm survival [47], sperm received

from the drone must nonetheless be of high quality. Even

though neonicotinoids did not appear to influence the quantity

of total sperm produced by males, we did observe a significant

negative effect on sperm viability, which in turn resulted in a

significant reduction in the number of living sperm produced

by neonicotinoid drones. It is possible that this observation

could be caused by reactive oxidative stress affecting sperm

[44,46,47]; this possible mechanism should be studied in the

future. The mean sperm quantity observed in this study was

lower than found in previous cage and field studies

[36,61,108,109]. The lower values could have resulted from lab-

oratory cage conditions [36], as well as conditions of the drones

during development [110].

Although only a small proportion of transferred sperm is

stored by the queen [111], any decrease in sperm quality

could have negative consequences [112]. Aided by muscular

contractions in the female reproductive tract, transferred

sperm actively swim from the oviducts to the female sper-

matheca, a process that can take up to approximately 40 h

[60,111]. Considering that the majority of queen mating
flights occur within 2–4 days [21,22,113], poor-quality sperm

received during mating could result in a reduced quantity of

stored sperm, or in extended, risky mating flight periods to

ensure sufficient sperm is obtained [50,60,114,115].

As the primary egg layer and an important source of

colony cohesion, the queen is intimately connected to

colony performance [30]. Increased reports of queen failure

have recently been reported in North America and Europe

[30,31,116]; however, no studies have so far investigated the

role of neonicotinoids and male health to explain this

phenomenon. For the first time, we have demonstrated that

frequently employed neonicotinoid insecticides in agro-eco-

systems can elicit important lethal (reduced longevity) and

sublethal (reduced sperm viability and living sperm quantity)

effects on non-target, beneficial male insects; this may have

broad population-level implications [17,29,117]. Furthermore,

the observed effects of neonicotinoid insecticides on a highly

polyandrous bee species are particularly worrying for mon-

androus insects that rely on a single successful mating

event to provide fertilized eggs [118].

By demonstrating the effects of neonicotinoid insecticides

on male insect reproduction, our study provides a possible

mechanism, in addition to introduced parasites and other

land-use practices, for honeybee queen failure [30,31] and

a general decline of non-target beneficial insects throughout

the Northern Hemisphere. Considering that neonicotinoid

insecticides can affect non-target male vertebrate repro-

duction [119–122], our complementary findings for

invertebrates are not surprising. Our research further high-

lights the urgent need for thorough investigations of

possible unintended effects of agricultural insecticides on

male insect reproductive traits, particularly among sympatric

beneficial non-targets. For instance, it is not known if the

insecticides had a direct effect on the male’s reproductive

traits via contaminated pollen, or an indirect effect because

of poor nursing quality and reduced hypopharyngeal gland

activity of young, exposed workers [123,124]. Furthermore,

future research should be directed towards understanding

how our results relate to broader implications for honeybee

reproduction in the natural environment. Although recent

improvements to regulatory requirements for evaluating the

environmental impacts of insecticides have been adopted,

none so far directly address the reproduction of beneficial

insects [9].
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