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Abstract

The aim of this study was to use IEDB software to predict the suitable MERS-CoV epitope vaccine against
the most known world population alleles through four selecting proteins such as S glycoprotein and
envelope protein and their modification sequences after the pandemic spread of MERS-CoV in 2012.
IEDB services is one of the computational methods; the output of this study showed that S glycoprotein,
envelope (E) protein, and S and E protein modified sequences of MERS-CoV might be considered as a
protective immunogenic with high conservancy because they can elect both neutralizing antibodies and
T-cell responses when reacting with B-cell, T-helper cell, and cytotoxic T lymphocyte. NetCTL, NetChop,
and MHC-NP were used to confirm our results. Population coverage analysis showed that the putative
helper T-cell epitopes and CTL epitopes could cover most of the world population in more than 60 geo-
graphical regions. According to AllerHunter results, all those selected different protein showed
non-allergen; this finding makes this computational vaccine study more desirable for vaccine synthesis.

Key words Middle East respiratory syndrome coronavirus, Severe acute respiratory syndrome coro-
navirus, Federal Drug Administration, Immuno epitope database, FAO, AllerHunter

1 Introduction

Vaccine development was considered as the most important sub-
jects to protect from a highly infectious disease especially when
treatment is not available; nowadays, a new way for vaccine design
was done by a new aspects called immune-informatics that depends
on software program to determine the most immunogenic parts of
the organisms (epitopes) like these software that were used in this
study to try to develop more powerful immunogenic MERS-CoV
vaccine because the previous MERS-CoV vaccine can be either
inactivated coronavirus, live attenuated coronavirus, S protein-
based, DNA vaccines, and combination vaccines against corona-
viruses; as we know coronaviruses were first described in the 1960s
from the nasal cavities of patients with common cold. These strains
of coronaviruses were called HC-229E and HC-OC43; in 2003,
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following the outbreak of severe acute respiratory syndrome
(SARS) that resulted in over 8000 infections, about 10% of which
resulted in death, but in 24 September 2012, a first report of
isolated new novel coronavirus like SARS-CoV by Egyptian virolo-
gist Dr. Ali Mohamed Zaki in Jeddah, Saudi Arabia, from the lungs
of a 60-year-old male patient with acute pneumonia and acute renal
failure becomes a new discovery that was recently called MERS-
CoV; this finding was posted on ProMED-mail [1–3]. MERS-CoV
belong to group C β-coronaviruses that characterize 30 KB
genome, ssRNA virus, positive sense with 10 predicting open
reading frames (ORFs) like E, M, S, enveloped. MERS-CoV can
grow in a culture media; the genome size, organization, and
sequence analysis revealed that the NCoV is most closely related
to bat coronaviruses BtCoV-HKU4 and BtCoV-HKU5; a partial
spike gene sequencing of South African Neoromicia bats was con-
sidered as close relative to MERS-Cov as illustrated by nucleotide
percentage distance substitution model and the complete deletion
option in MEGA; this makes the possibility of a common coronavi-
rus vaccine more desirable [3–5].

This study depended on using S and E with modified S and E
protein sequences through in silico approach to develop MERS-
CoV vaccine in addition to study the side effects of mutation in
those selected sequences on vaccine development. Spike glycopro-
tein is characterized by a trimeric, envelope-anchored, type I fusion
glycoprotein that interfaces with human dipeptidyl peptidase
4 (DPP4) receptor; to mediate viral entry, it is composed of 2 sub-
units; they are S1, which contains the receptor-binding domain and
determines cell tropism, and S2, the location of the cell fusion
machinery, while E protein was considered as part of virus cell
membrane [4, 6].

This study showed that S, E and their modified sequences can
be considered safe and most promising MERS-CoV vaccine with-
out any kinds of allergic reactions.

2 Materials and Methods

2.1 Protein Sequence

Retrieval

A total number of 130 spike (S) glycoproteins and 41 envelope
(E) proteins of MERS-CoV were retrieved from NCBI (http://
www.ncbi.nlm.nih.gov/protein/) database in September 2016,
which was actually collected from different parts of the world,
such as Saudi Arabia, China, Thailand, United Kingdom, Qatar,
Tunisia, and South Africa. The accession numbers of retrieved
strains were listed in Supplementary Tables 1 and 2. All methods
below were applied for S, E, modified S & E proteins; modified S
and E proteins were made by randomly changing some amino acids
in their reference sequences; see Table 1 envelope protein (E) with
Table 2 spike glycoprotein (S) gene bank accession numbers.
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Table 1
Gene Bank Accession No of Envelope protein

Accession No of E protein Date and place of collection Type of specimen

YP_009047209.1 13-Jun-2012

AKJ80142.1 27-May-2015/China Nasopharyngeal swab

AIZ74456.1 07-May-2013/France Sputum on Vero E6

AIZ74443.1 07-May-2013/France Induced sputum

AIZ74434.1 07-May-2013/France Induced sputum

AIZ74422.1 26-Apr-2013/France Broncho-alveolar lavage

AIZ74406.1 26-Apr-2013/France Broncho-alveolar lavage

AID50423.1 10-Feb-2013/United Kingdom Throat swab

AID50423.1 10-Feb-2013/United Kingdom Throat swab

ALD51909.1 17-Jun-2015/Thailand Sputum

AMQ49075.1 24-Aug-2015/Saudi Arabia Respiratory secretions

AMQ49064.1 27-Aug-2015/Saudi Arabia Respiratory secretions

AMQ49053.1 24-Aug-2015/Saudi Arabia Respiratory secretions

AMQ49020.1 12-Jul-2015/Saudi Arabia Respiratory secretions

AMQ49042.1 24-Aug-2015/Saudi Arabia Respiratory secretions

AMQ49031.1 24-Aug-2015/Saudi Arabia Respiratory secretions

ALW82736.1 02-Feb-2015/Saudi Arabia

ALW82714.1 05-Feb-2015/Saudi Arabia Respiratory secretions

ALW82758.1 10-Feb-2015/Saudi Arabia Respiratory secretions

ALW82747.1 13-Feb-2015/Saudi Arabia Respiratory secretions

ALW82696.1 15-Feb-2015/Saudi Arabia Respiratory secretions

ALW82685.1 07-Feb-2015/Saudi Arabia Respiratory secretions

ALW82674.1 27-Mar-2015/Saudi Arabia Respiratory secretions

AFY13312.1 11-Sep-2012/United Kingdom

AIG13101.1 2011/South Africa

AHY21474.1 Mammalian cell line Vero CCL81

AHY22569.1 Nov-2013/Saudi Arabia nasal swab (camel)

AHB33331.1 07-May-2013/France Vero E6 isolate/sputum

AHC74092.1 13-Oct-2013/Qatar

AHC74103.1 17-Oct-2013/Qatar

AHI48522.1 02-May-2013/Saudi Arabia

(continued)
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2.2 In Silico PCR (http://insilico.ehu.es/PCR_virus/) In silico PCR amplification is
a program that made amplification against sequenced viruses, by
mimicking PCR amplification and primers confirmatory tools too;
here it was used for the above viruses by using store gene bank
sequence; it contains 1783 sequences from 1421 completely
sequenced viruses (last update: 31 May 2010).

2.3 Determination

of Conserved Regions

The retrieved sequences, which were collected from NCBI, were
used as a platform to obtain the conserved regions by using multi-
ple sequence alignment (MSA). Sequences were aligned with the
aid of ClustalW as implemented in the BioEdit program, version
7.0.9.0.

2.4 B-Cell Epitope

Prediction

B-cell epitope is characterized by being hydrophilic, accessible,
flexible, antigenic propensity and in a beta turn region. Thus, the
classical propensity scale methods and hidden Markov model pro-
grammed software from IEDB analysis resource (http://www.iedb.
org/) were used for the following aspects:

2.4.1 Prediction of Linear

B-Cell Epitopes

BepiPred from immune epitope database and analysis resource
(http://toolsiedb.ofg/bcell/) was used for linear B-cell epitope
prediction from the conserved region with a default threshold
value of 0.350. BepiPred combines the predictions of a hidden
Markov model and the propensity scale of Parker et al. as it is
described in Larsen et al. (Immunome Research, 2006).

2.4.2 Prediction

of Surface Accessibility

By Emini surface accessibility prediction tool of the immune epi-
tope database (IEDB), the surface-accessible epitopes were pre-
dicted from the conserved regions holding the default threshold
value 1.000 or higher.

Table 1
(continued)

Accession No of E protein Date and place of collection Type of specimen

AHI48566.1 05-Aug-2013/Saudi Arabia

AHI48544.1 28-Aug-2013/Saudi Arabia

AHI48533.1 17-Jul-2013/Saudi Arabia

AHI48555.1 12-Jun-2013/Saudi Arabia

AHI48588.1 02-Jul-2013/Saudi Arabia

AHI48577.1 15-Aug-2013/Saudi Arabia

AHI48599.1 12-Jun-2013/Saudi Arabia

AHI48610.1 01-Mar-2013/Saudi Arabia
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Table 2
Gene Bank Accession No of S glycoprotein

Accession No of S glycoprotein Date and place of collection Type of specimen

YP_009047204.1 13-Jun-2012

AHX00721.1 30-Dec-2013/Saudi Arabia Camel

AHX00711.1 30-Dec-2013/Saudi Arabia Dromedary

AHX00731.1 30-Nov-2013/Saudi Arabia Dromedary

AHZ90568.1 08-May-2013/Tunisia Serum

AHX71946.1 16-Feb-2014/Qatar Camelus dromedaries

ALJ54521.1 12-May-2015/Saudi Arabia Respiratory secretions

ALJ54520.1 13-Jun-2015/Saudi Arabia Respiratory secretions

ALJ54519.1 07-Jun-2015/Saudi Arabia Respiratory secretions

ALJ54518.1 04-Jun-2015/Saudi Arabia Respiratory secretions

ALJ54517.1 03-Jun-2015/Saudi Arabia Respiratory secretions

ALJ54516.1 02-Jun-2015/Saudi Arabia Respiratory secretions

ALJ54515.1 01-Jun-2015/Saudi Arabia Respiratory secretions

ALJ54514.1 29-May-2015/Saudi Arabia Respiratory secretions

ALJ54513.1 25-Apr-2015/Saudi Arabia Respiratory secretions

ALJ54512.1 27-May-2015/Saudi Arabia Respiratory secretions

ALJ54511.1 27-May-2015/Saudi Arabia Respiratory secretions

ALJ54510.1 28-May-2015/Saudi Arabia Respiratory secretions

ALJ54509.1 28-May-2015/Saudi Arabia Respiratory secretions

ALJ54508.1 29-May-2015/Saudi Arabia Respiratory secretions

ALJ54507.1 29-May-2015/Saudi Arabia Respiratory secretions

ALJ54506.1 23-May-2015/Saudi Arabia Respiratory secretions

ALJ54505.1 22-May-2015/Saudi Arabia Respiratory secretions

ALJ54504.1 20-May-2015/Saudi Arabia Rrespiratory secretions

ALJ54503.1 17-May-2015/Saudi Arabia Respiratory secretions

ALJ54502.1 12-May-2015/Saudi Arabia Respiratory secretions

ALJ54501.1 21-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54500.1 10-May-2015/Saudi Arabia Respiratory secretions

ALJ54499.1 09-May-2015/Saudi Arabia Respiratory secretions

ALJ54498.1 09-May-2015/Saudi Arabia Respiratory secretions

ALJ54497.1 09-May-2015/Saudi Arabia Respiratory secretions

(continued)
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Table 2
(continued)

Accession No of S glycoprotein Date and place of collection Type of specimen

ALJ54496.1 16-Apr-2015/Saudi Arabia Respiratory secretions

ALJ54495.1 13-Apr-2015/Saudi Arabia Respiratory secretions

ALJ54494.1 04-Apr-2015/Saudi Arabia Respiratory secretions

ALJ54493.1 04-Apr-2015/Saudi Arabia Respiratory secretions

ALJ54492.1 30-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54491.1 25-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54490.1 24-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54489.1 08-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54488.1 04-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54487.1 04-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54486.1 28-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54485.1 25-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54484.1 14-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54483.1 13-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54482.1 13-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54481.1 13-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54480.1 10-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54479.1 01-Apr-2015/Saudi Arabia Respiratory secretions

ALJ54478.1 29-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54477.1 29-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54476.1 21-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54475.1 20-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54474.1 09-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54473.1 05-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54472.1 01-May-2015/Saudi Arabia Respiratory secretions

ALJ54471.1 08-May-2015/Saudi Arabia Respiratory secretions

ALJ54470.1 10-May-2015/Saudi Arabia Respiratory secretions

AID55078.1 2014/Saudi Arabia

AID55077.1 2014/Saudi Arabia

AID55076.1 2014/Saudi Arabia

AID55075.1 2014/Saudi Arabia

(continued)
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Table 2
(continued)

Accession No of S glycoprotein Date and place of collection Type of specimen

AID55074.1 2014/Saudi Arabia

AID55073.1 22-Apr-2014/Saudi Arabia

AID55072.1 15-Apr-2014/Saudi Arabia

AID55071.1 21-Apr-2014/Saudi Arabia

AID55070.1 14-Apr-2014/Saudi Arabia

AID55069.1 12-Apr-2014/Saudi Arabia

AID55068.1 07-Apr-2014/Saudi Arabia

AID55067.1 2014/Saudi Arabia

AID55066.1 2014/Saudi Arabia

ALJ54469.1 13-May-2015/Saudi Arabia Respiratory secretions

ALJ54468.1 10-May-2015/Saudi Arabia Respiratory secretions

ALJ54467.1 12-May-2015/Saudi Arabia Respiratory secretions

ALJ54466.1 12-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54465.1 07-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54464.1 08-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54463.1 01-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54462.1 Saudi Arabia Respiratory secretions

ALJ54461.1 10-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54460.1 21-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54459.1 21-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54458.1 23-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54457.1 23-Feb-2015/Saudi Arabia Respiratory secretions

AID55098.1 2014/Saudi Arabia

AID55097.1 2014/Saudi Arabia

AID55096.1 2014/Saudi Arabia

AID55095.1 2014/Saudi Arabia

AID55094.1 2014/Saudi Arabia

AID55093.1 2014/Saudi Arabia

AID55092.1 2014/Saudi Arabia

AID55091.1 2014/Saudi Arabia

AID55090.1 2014/Saudi Arabia

(continued)
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Table 2
(continued)

Accession No of S glycoprotein Date and place of collection Type of specimen

AID55089.1 2014/Saudi Arabia

AID55088.1 2014/Saudi Arabia

AID55087.1 2014/Saudi Arabia

AID55086.1 2014/Saudi Arabia

AID55085.1 2014/Saudi Arabia

AID55084.1 2014/Saudi Arabia

AID55083.1 2014/Saudi Arabia

AID55082.1 2014/Saudi Arabia

AID55081.1 2014/Saudi Arabia

AID55080.1 2014/Saudi Arabia

AID55079.1 2014/Saudi Arabia

ALJ54478.1 29-Mar-2015Saudi Arabia Respiratory secretions

ALJ54477.1 29-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54473.1 05-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54472.1 01-May-2015/Saudi Arabia Respiratory secretions

ALJ54471.1 08-May-2015/Saudi Arabia Respiratory secretions

ALJ54470.1 10-May-2015/Saudi Arabia Respiratory secretions

ALJ54469.1 13-May-2015/Saudi Arabia Respiratory secretions

ALJ54468.1 10-May-2015/Saudi Arabia Respiratory secretions

ALJ54467.1 12-May-2015/Saudi Arabia Respiratory secretions

ALJ54466.1 12-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54465.1 07-Mar-2015/Saudi Arabia Respiratory secretions

ALJ54464.1 08-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54463.1 01-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54462.1 30-Jan-2015/Saudi Arabia Respiratory secretions

ALJ54461.1 10-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54460.1 21-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54459.1 21-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54458.1 23-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54457.1 23-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54456.1 26-Feb-2015/Saudi Arabia Respiratory secretions

(continued)
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2.4.3 Prediction

of Epitope Antigenicity

Sites

The Kolaskar and Tongaonkar antigenicity method was used to
determine the antigenic sites with a default threshold value of
1.045.

2.4.4 Prediction

of Epitope Hydrophilicity

Parker hydrophilicity prediction tool was used to determine the
hydrophilicity of the conserved regions; the threshold default value
was 1.286.

2.4.5 Prediction of Beta

Turn Sites

Chou and Fasman beta turn prediction method was used with the
default threshold 1.009 to determine the sites that contain beta
turns.

2.4.6 Prediction

of Flexibility

Karplus and Schulz flexibility prediction tools were used for the
prediction of chain flexibility in proteins (selection of peptide anti-
gen) with default threshold value 0.992.

Thresholds of all tools were provided by IEDB and it is mainly
calculated by the software as the average score of the tested protein
for each corresponding tools.

2.5 T-Cell Epitope

Prediction

Scanning an antigen sequence for amino acid patterns indicative of:

2.5.1 MHC Class

I Binding Predictions

Analysis of peptide binding toMHC class I molecules was assessed by
the IEDB MHC I prediction tool http://tools.iedb.org/mhci/n;
for MHC-I binding prediction, several alleles were used including
HLA-A, HLA-B, HLA-C, and HLA-E that have been reported as
frequent around the world. MHC-I peptide complex presentation to
T lymphocytes undergo several steps. The attachment of cleaved
peptides to MHC molecules step was predicted. Consensus method
which combines ANN, SMM, and scoring matrices derived from
combinatorial peptide libraries (Comblib_Sidney2008) was used.
9-mer epitope lengths were selected. All internationally conserved
epitopes that bind to alleles at score equal or less than 1.0 percentile
rank (low percentile rank ¼ good binders) were selected for further

Table 2
(continued)

Accession No of S glycoprotein Date and place of collection Type of specimen

ALJ54454.1 28-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54455.1 28-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54453.1 06-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54452.1 14-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54451.1 14-Feb-2015/Saudi Arabia Respiratory secretions

ALJ54450.1 12-Feb-2015/Saudi Arabia Respiratory secretions
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analysis as in selecting thresholds (cutoffs) for MHC class I and II
binding predictions, http://help.iedb.org/entries/23854373-
Selecting-thresholds-cut-offs-for-MHC-class-I-and-II-binding-
predictions.

Note: For S glycoprotein, the sequence was divided into ten
parts due to software limitations, no more than 200 FASTA
sequences interring [7–11].

2.5.2 MHC Class II

Binding Predictions

Analysis of peptide binding to MHC class II molecules was assessed
by the IEDBMHC II prediction tool http://tools.immuneepitope.
org/mhcii/. For MHC-II binding prediction, the reference set of
alleles was used, which include HLA-DQ, HLA-DP, and HLA-DR
that are most frequent around the world. MHC class II groove has
the ability to bind to peptides with different lengths. There are
seven prediction methods in the IEDB MHC II prediction tool;
NetMHCIIpan was used in this study; the conserved epitopes that
bind to alleles at scores equal or less than 10 percentile rank were
selected for further analysis as in selecting thresholds (cutoffs) for
MHC class I and II binding predictions, http://help.iedb.org/
entries/23854373-Selecting-thresholds-cut-offs-for-MHC-class-
I-and-II-binding-predictions [7, 11–14].

2.5.3 Proteasomal

Cleavage/TAP Transport/

MHC Class I Combined

Predictor

This tool combines predictors of proteasomal processing, TAP
transport, and MHC binding to produce an overall score for each
peptide’s intrinsic potential of being a T-cell epitope selected; in
this study NetMHCpan was used with immunoproteasomal cleav-
age prediction; there are two types of proteasomes, the constitu-
tively expressed “housekeeping” type and immunoproteasomes
that are induced by IFN-γ secretion. Results can be displayed in
proteasome score, TAP score, MHC score, processing score, total
score, and IC50 score. Explanations of prediction output:

Proteasome cleavage The scores can be interpreted as logarithms of the total amount of
cleavage site usage liberating the peptide C-terminus; it depends on
a lot of other factors, e.g., the amount of source protein degraded.

TAP transport The TAP score estimates an effective �log (IC50) values for the
binding to TAP of a peptide or its N-terminal prolonged
precursors.

MHC binding The MHC binding prediction is identical to Class I with output
�log (IC50) values.

Processing This score combines the proteasomal cleavage and TAP transport
predictions. It predicts a quantity proportional to the amount of
peptide present in the ER, where a peptide can bind to multiple
MHC molecules. This allows predicting T-cell epitope candidates
independent of MHC restriction.
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Total This score combines the proteasomal cleavage, TAP transport, and
MHC binding predictions. It predicts a quantity proportional to
the amount of peptide presented by MHC molecules on the cell
surface. High scores mean high efficiency.

2.5.4 Neural

Network-Based Prediction

of Proteasomal Cleavage

Sites (NetChop) and T-Cell

Epitopes (NetCTL

and NetCTLpan)

NetChop that was used here is a predictor of proteasomal proces-
sing based upon a neural network. NetCTL and NetCTLpan are
predictors of T-cell epitopes along a protein sequence. The positive
predictions threshold, 0.5, 0.75, and 1, sequentially for all methods
above are displayed in green, while the red color for prediction
below the threshold.

2.5.5 MHC-NP:

Prediction of Peptides

Naturally Processed by

the MHC

MHC-NP employs data obtained from MHC elution experiments
in order to assess the probability that a given peptide is naturally
processed and binds to a given MHC molecule. This tool used in
this study was the winner of the second Machine Learning Compe-
tition in Immunology; it is composed of three groups of peptides,
binders, nonbinders, and eluted peptides that considered as natu-
rally processed peptides, so greater probe score considered naturally
processing peptide.

2.6 Epitope Analysis

Tools

2.6.1 Population

Coverage Calculation

All potential MHC I and MHC II binders from spike glycoprotein,
E protein, and S and E modified sequences were assessed for a
population coverage against the whole world population especially
Saudi Arabia with other reported MERS-CoV countries. Calcula-
tions are achieved using the selected MHC-I and MHC-II inter-
acted alleles by the IEDB population coverage calculation tool
http://tools.iedb.org/tools/population/iedb_input; it computes
projected population coverage, average number of epitope hits/
HLA combinations recognized by the population, and minimum
number of epitope hits/HLA combinations recognized by 90% of
the population (PC90).

2.7 Homology

Modeling

The complete 3D structure of spike glycoprotein and envelope
protein was obtained by phyre2 (http://www.sbg.bio.ic.ac.uk/
phyre2) which uses advanced remote homology detection methods
to build 3D models. UCSF Chimera (version 1.8) was used to
visualize the 3D structure, which is currently available within the
chimera package and available from the chimera website (http://
www.cgl.ucsf.edu/cimera). Homology modeling was achieved for
further verification of the service accessibility and hydrophilicity of
B-lymphocyte epitopes predicted, as well as visualization of all
predicted T-cell epitopes in the structural level.

In addition to the above methods, three other software were
used to determine the effect that was induced in S and E reference
sequences among the amino acid (SNP, single nucleotide
polymorphism).
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2.8 Confirmation

of Amino Acid Change

in Spike Glycoprotein

(S) and Envelope

Protein (E) Sequence

2.8.1 PolyPhen-2

(Polymorphism Phenotyping v2) (http://genetics.bwh.harvard.
edu/pph2/index.shtml) is an online bioinformatics program to
automatically predict the consequence of an amino acid change
on the structure and function of a protein was assessed here.
Basically, this program searches for 3D protein structures, multiple
alignments of homologous sequences, and amino acid contact
information in several protein structure databases and then calcu-
lates position-specific independent count scores (PSIC) for each of
two variants and then computes the PSIC score difference between
two variants; PolyPhen scores were assigned as probably damaging
(2.00 or more), possibly damaging (1.40–1.90), potentially dam-
aging (1.0–1.50), and benign (0.00–0.90). Basically PolyPhen
accepts input in form of SNPs or protein sequences [18].

2.8.2 I-Mutant Suite I used I-Mutant version 3.0 (http://gpcr2.biocomp.unibo.it/cgi/
predictors/I-Mutant3.0/I-Mutant3.0.cgi) to predict the protein
stability changes upon single-site mutations. I-Mutant3.0 basically
can evaluate the stability change of a single-site mutation starting
from the protein structure or from the protein sequences. This
program was trained on some data set derived from ProTherm
which is considered to be the most comprehensive database of
experimental data on protein mutations [18].

2.8.3 Project Hope

Mutation

(http://www.cmbi.ru.nl/hope/) Hope Version 1.1.0, HOPE is an
easy-to-use web service that analyzes the structural effects of a point
mutation in a protein sequence.

2.8.4 SNPs and GO (http://snps.biofold.org/snps-and-go//snps-and-go.html) were
used to predict disease-associated variations through using GO
terms by collected information in a unique framework that derived
from protein sequence, 3D structure, protein sequence profile, and
protein function, beside gene ontology annotation to predict if a
given variation can be classified disease-related or neutral. It calcu-
lates the result according to the three methods used depending on
SVM type and data such as:

PANTHER output of the PANTHER algorithm.

PhD-SNP SVM input is the sequence and profile at the mutated position.

SNPs and GO SVM input is all the input in PhD-SNP, PANTHER, and GO term
features, by giving disease probability (if>0.5 mutation is predicted
disease).

2.9 Peptide

Search Tool

The peptide search tool was used to find all UniProtKB sequences
that exactly match a query peptide sequence (http://www.uniprot.
org/peptidesearch/). This means we can easily synthesis the
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desired peptides in the laboratory by cloning methods and so on to
study peptide impact on immune system via injected laboratory
animals with peptide sequence of any organisms.

2.10 AllerHunter (http://tiger.dbs.nus.edu.sg/AllerHunter/index.html) is a cross-
reactive allergen prediction program built on a combination of
support vector machine (SVM) and pairwise sequence similarity.
Results of prediction of query sequence(s) can be achieved by using
AllerHunter and FAO/WHO evaluation scheme; in AllerHunter
sequence can be considered as a cross-reactive allergen if it has a
probability of ≧0.06, while in the guideline of the FAO/WHO,
they stated that a sequence is potentially allergenic if it either has an
identity of at least 6 contiguous amino acids OR >35 percent
sequence identity over a window of 80 amino acids when compared
to known allergens.

2.11 AlgPred:

Prediction

of Allergenic Proteins

and Mapping of IgE

Epitopes

(http://www.imtech.res.in/raghava/algpred/index.html)
AlgPred used to predict allergenic protein and mapping of IgE
epitopes by:

1. It allows prediction of allergens based on similarity of known
epitope with any region of protein.

2. The mapping of IgE epitope(s) feature of server allows user to
locate the position of epitope in their protein.

3. Server search MEME/MAST allergen motifs using MAST and
assign a protein allergen if it has any motif.

4. It allows predicting allergens based on SVM modules using
amino acid or dipeptide composition.

5. It facilitates BLAST search against 2890 allergen-representative
peptides (ARPs) obtained from Bjorklund et al. (2005) and
assigns a protein allergen if it has a BLAST hit.

6. Hybrid option of server allows predicting allergen using com-
bined approach (SVMc + IgE epitope + ARPs BLAST +MAST).

2.12 VaxiJen v2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen_help.
html) VaxiJen is the first server for alignment-independent predic-
tion of protective antigens. It was developed to allow antigen
classification solely based on the physicochemical properties of
proteins without recourse to sequence alignment.

3 Results

3.1 Prediction

of B-Cell Epitopes

Spike glycoprotein, E protein, and modified S and E protein were
subjected to BepiPred linear epitope prediction, Emini surface
accessibility, Kolaskar and Tongaonkar antigenicity, Parker hydro-
phobicity, Chou and Fasman beta turn prediction methods, and
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Karplus and Schulz flexibility in IEDB, as the results in Figs. 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, and 24.

3.1.1 BepiPred Linear

Epitope Prediction Method

The average binder score of spike glycoprotein to B cell was 0.35;
all values equal or greater than the default threshold 0.35 were
predicted to be potential B-cell binders.

3.1.2 Emini Surface

Accessibility Prediction

The average surface accessibility areas of the protein were scored as
1.000; all values equal or greater than the default threshold 1.0
were regarded potentially in the surface. A total number of positive
S glycoprotein peptide represent 481 peptide out of 1349, while in
E protein represents 23 out of 77 and in S and E modified sequence
represents 485 out 485 and 17out of 77 peptides sequentially.

3.1.3 Kolaskar

and Tongaonkar

Antigenicity

The default threshold of antigenicity of the protein was 1.045; all
values greater than 1.045 were considered as potential antigenic
determinants. The positive result number of selected S glycoprotein
peptide represents 655 out of 1348, while in E protein represents
55 out of 76 and in S and E modified sequence represents 668 out
of 668 and 47 out of 76 peptides sequentially.

3.1.4 Parker

Hydrophilicity Prediction

The average hydrophilicity score of the protein was 1.286; all values
equal or greater than the default threshold 1.286 were potentially
hydrophilic. The positive result number of S glycoprotein peptide

Fig. 1 BepiPred linear epitope prediction of S glycoprotein, the desired epitope residue showed in yellow color.
The red horizontal line indicates surface accessibility threshold (0.35)
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Fig. 2 Emini surface accessibility prediction of S glycoprotein. The desired epitope residue for surface
accessibility showed in yellow color, while green color was below threshold (1.000)

Fig. 3 Kolaskar and Tongaonkar antigenicity prediction of S glycoprotein. The desired epitope residue for
antigenicity showed in yellow color, while the green color below the red horizontal line indicates less
antigenicity below (1.045)
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Fig. 4 Parker hydrophilicity prediction of S glycoprotein. The desired epitope residue showed in yellow color.
The red horizontal line indicates parker hydrophilicity threshold (1.286)

Fig. 5 Chou and Fasman beta turn prediction of S glycoprotein. The desired epitope residue showed in yellow
color. The red horizontal line indicates beta turn prediction threshold (1.009)
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Fig. 6 Karplus and Schulz flexibility prediction of S glycoprotein. The desired epitope residue showed in yellow
color. The red horizontal line indicates surface accessibility threshold (0.35)

Fig. 7 BepiPred linear epitope prediction of S glycoprotein modified sequence. The desired epitope residue
showed in yellow color. The red horizontal line indicates BepiPred Linear Epitope threshold (0.35)
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Fig. 8 Emini surface accessibility prediction of S glycoprotein modified sequence. The desired epitope residue
showed in yellow color, while green color below the red horizontal line indicates surface accessibility
threshold � (1.000)

Fig. 9 Kolaskar and Tongaonkar antigenicity prediction of S glycoprotein modified sequence. The desired
epitope residue showed in yellow color. The red horizontal line indicates antigenicity threshold � (1.045)
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Fig. 10 Parker hydrophilicity prediction of S glycoprotein modified sequence. The desired epitope residue
showed in yellow color, while green color below the red horizontal line indicates hydrophilicity threshold �
(1.286)

Fig. 11 Chou and Fasman beta turn prediction of S glycoprotein modified sequence. The desired epitope
residue showed in yellow color. The red horizontal line indicates beta turn threshold (1.009)
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represents 693 out of 1348, while in E protein represents 18 out of
76 and in S and Emodified sequence represents 690 out of 695 and
20 out of 76 peptides sequentially.

Fig. 12 Karplus and Schulz flexibility prediction of S glycoprotein modified sequence. The desired epitope
residue showed in yellow color, while green color below the red horizontal line indicates flexibility threshold�
(0.992)
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Fig. 13 BePipred linear epitope prediction of E protein. The desired epitope residue showed in yellow color.
The red horizontal line indicates Bepipred Linear Epitope threshold � (0.35)
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3.1.5 Chou and Fasman

Beta Turn Prediction

To determine the site that contains beta turns, the default threshold
was 1.009; all values equal or greater than the default threshold
were considered beta turn sites. The positive result number of
selected peptide represents 668 out of 1348 in S glycoprotein,
while it represents 19 out of 76 in E protein and 673 out of
673 with 21 out of 76 in both S and E modified sequence
sequentially.
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Fig. 14 Emini surface accessibility prediction of E protein. The desired epitope residue showed in yellow color,
while green color below the red horizontal line indicates surface accessibility threshold (1.000)
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Fig. 15 Kolaskar and Tongaonkar antigenicity prediction of E protein. The desired epitope residue showed in
yellow color, while green color below the red horizontal line indicates antigenicity threshold (1.045)
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3.1.6 Karplus and Schulz

Flexibility Prediction

The default threshold value 0.992 determined chain flexibility in
proteins, so all values equal or greater than the default threshold
were considered as chain flexibility of protein. The positive results
of selected peptide represent 679 out of 1347 in S glycoprotein,
and it represents 24 out of 24 in E protein beside represented
680 out of 681 and 24 out of 75 in S and E modified sequences
sequentially.

The most common B-cell epitope for E protein is YVKFQDS in
a position 69, while for E protein modified sequence, they are
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Fig. 16 Parker hydrophilicity prediction of E protein the desired epitope residue showed in yellow color. The
red horizontal line indicates hydrophilicity threshold � (1.286)
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Fig. 17 Chou and Fasman beta turn prediction of E protein. The desired epitope residue showed in yellow
color. The red horizontal line indicates beta turn threshold � (1.009)
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VYVPQQD, YVPQQDS, and PPLPED/PPLPEDV in positions
68, 69, and 77 respectively.

The most common B-cell epitopes for both S and modified S
are DVGPDSV, PDSVKSA, DSVKSAC, PRPIDVS, HTPATDC,
AKPSGSV, KPSGSVV, SGTPPQV, GTPPQVY, TPPQVYN,
QLSPLEG, YGPLQTP, PRSVRSV, RSVRSVP, SVKSSQS,
VKSSQSS, SQSSPII, and SLNTKYV in the following positions
23, 26, 27, 48, 211, 371, 372, 393, 394, 395, 547, 707,
750, 751, 855, 856, 859 (or 857 in modified S), and 1202 sequen-
tially; but QVDQLNS and VDQLNSS in positions 772 and
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Fig. 18 Karplus and Schulz flexibility prediction of E protein. The desired epitope residue showed in yellow
color, while green color below the red horizontal line indicated flexibility below threshold (0.992)
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Fig. 19 BepiPred linear epitope prediction of E protein modified sequence. The desired epitope residue showed
in yellow color. The red horizontal line indicates BepiPred Linear Epitope threshold (0.35)
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773 are ordinary only found in S glycoprotein, while LTPTSSY,
TPTSSYV, PTSSYVD, TSSYVDV, DHGDYYV, YSQDVKQ,
ANQYSPC, NQYSPCV, and YYRKQLS in a positions 15, 16,
17, 18, 83, 108, 523, 524, and 543 sequentially are only found in
S glycoprotein modified sequence.

3.2 T-Cell Epitope

Prediction

Spike glycoprotein, E protein, and S and E modified sequence were
subjected to consensus method for MHC-I binding, NetMHCII-
pan for MHC-II binding, NetMHCpan for proteasomal cleavage/
TAP transport/MHC class I combined predictor, NetChop and
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Fig. 20 Emini surface accessibility prediction of E protein modified sequence. The desired epitope residue
showed in yellow color, above the red horizontal line threshold (1.000)
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Fig. 21 Kolaskar and Tongaonkar Antigenicity prediction of E protein modified sequence. The desired epitope
residue showed in yellow color, while green color indicates antigenicity below threshold (1.045)
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NetCTL for neural network-based prediction of proteasomal cleav-
age sites (NetChop), and T-cell epitopes (NetCTL and NetCTL-
pan) with MHC-NP for prediction of peptides that’s naturally
processed by the MHC in IEDB software program.

3.2.1 MHC Class

I Binding Predictions

Analysis of peptide sequence that’s binding to MHC class I mole-
cules by consensus method was assessed by the conserved epitopes
that bind to alleles at score equal or less than 1.0 percentile. The
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Fig. 22 Parker hydrophilicity prediction of E protein modified sequence. The desired epitope residue showed in
yellow color. The red horizontal line indicates hydrophilicity threshold � (1.286)
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Fig. 23 Chou and Fasman beta turn prediction of E protein modified sequence. The desired epitope residue
showed in yellow color, while green color below the red horizontal line indicates low beta turn threshold �
(1.009)
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positive result numbers of selected peptide represent 602 out of
53,800 in S glycoprotein and 63 out of 3626 in E protein while in S
and E modified sequence represents 612 out of 58,457 and 41 out
of 3234 sequentially.

Seven alleles were not found in E protein modified sequence,
including HLA-A∗03:01, HLA-A∗11:01, HLA-A∗31:01,
HLA-A∗68:01, HLA-B∗14:02, HLA-B∗40:01, and
HLA-B∗40:02, while in E protein four alleles were not found;
they are HLA-B∗48:01, HLA-B∗58:02, HLA-C∗04:01, and
HLA-E∗01:01; the ruminant of alleles are common between
both of them; among them three peptide sequences are common
such as CMTGFNTLLn, MTGFNTLLVn, and QCMTGFNTLn,
while HLCVQCMTG, KPPLPEDVW, LLVCTAFLT,
LLVQPALSL, LTATHLCVQ, LVCTAFLTA, PALSLYMTG,
PNFFDFTVVn, SLYMTGRSV, VCTAFLTAT, VQERIGWFI,
VQPALSLYM, VVCDITLLV, and WFIPNFFDFn are only found
in E modified sequence.

HLA-A∗02:01 allele showed higher frequency numbers six,
followed by HLA-A∗23:01, HLA-A∗29:02, HLA-A∗68:02, and
HLA-B∗46:01 that had four frequency numbers, and the same for
the peptide sequences FIFTVVCAI, ITLLVCMAF, IVNFFIFTVn,
and LVQPALYLY in E protein while in modified E, I found
HLA-C∗03:03 represents higher frequency numbers forty-three,
but HLA-A∗02:01, HLA-A∗02:06, HLA-A∗29:02, and
HLA-B∗38:01 had the same frequency numbers three.

For the peptide sequences, I found FIFTVVCAI had a higher
frequency numbers five, followed by ITLLVCMAF, IVNFFIFTVn,
and LVQPALYLY in E protein; reverse E protein modified
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Fig. 24 Karplus and Schulz flexibility prediction of E protein modified sequence. The desired epitope residue
showed in yellow color that illustrates flexibility threshold � (0.992)
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sequence, LVQPALSLY had a higher frequency numbers five then
followed by CMTGFNTLLn, FLTATHLCV, FVQERIGWF,
ITLLVCTAF, LYMTGRSVY, WFIPNFFDFn, and YMTGRSVYV
which had a frequency numbers four except QCMTGFNTLn that
had three frequency numbers.

N.B: nindicate presence of asparagine (N) in peptide sequences,
that’s hiding epitope from recognition by immune system so we
should deal with the common epitope with the caution; they are
11 peptide sequence numbers with asparagine in E and 13 in
modified E, while they are 8 in S and 46 in modified S sequence.

HLA-A∗30:02 allele was not found in S glycoprotein modified
sequence, while HLA-B∗38:01, HLA-B∗39:01, HLA-B∗40:01,
HLA-B∗40:02, HLA-B∗44:02, HLA-B∗44:03, HLA-B∗46:01,
HLA-B∗48:01, HLA-B∗51:01, and HLA-B∗53:01 were not
found in S sequence, but they were found in S modified sequence;
these means 15 peptide sequences were absent in S sequence
(AGYKVLPPL, APQVTYQNIn, CKLPLGQSL, CVFFILCCV,
DVKQFDNGFn, DYYVYSAGH, FKLSIPTNFn, FLLTPTSSY,
GEMRLASIA, GNYTYYHKWn, GPASARDLI, GTDTNSVCIn,
HKWPWYIWL, HSKFLLMFL, IAPVNGYFIn) but presented in
modified S sequence; besides this it also lakes a 34 peptide
sequences like AGPISQFNYn, CMGKLKCNRn, DLSQLHCSY,
DVKQFANGFn, FATYHTPAT, FLLTPTESY, FQFATLPVY,
FVYDAYQNLn, GTNCMGKLKn, GVRQQRFVY, HSVFLLMFL,
ICAQYVAGY, etc.; the other peptide sequences were not
shown here.

In S glycoprotein HLA-A∗29:02 allele showed higher fre-
quency numbers (41) then followed by HLA-A∗30:02 (37),
HLA-A∗01:01 (31), HLA-B∗15:01 (29), HLA-C∗14:02 (27),
HLA-A∗25:01 (25), HLA-A∗23:01 (24), HLA-B∗58:01 (23),
and HLA-C∗06:02 (22); modified S glycoprotein sequence par-
tially shared the same alleles with higher frequency numbers like in
S glycoprotein which they are HLA-A∗29:02 allele that repre-
sented the most higher frequency numbers (33), followed by
HLA-C∗14:02 (27), HLA-A∗01:01 (25), HLA-B∗46:01 (22)/
HLA-A∗23:01, HLA-B∗58:01, and HLA-C∗06:02 (21)/HLA-
B∗15:01 (20). In S glycoprotein the following peptide sequences
had higher frequency numbers such as 10 in FSFGVTQEY and
ITYQGLFPY peptides, 8 in WSYTGSSFY, 7 in KAWAAFYVY, and
6 in FVYDAYQNLn, and ITITYQGLF, QTAQGVHLF, while it
represented 5 in FQFATLPVY, NSYTSFATYn, SLILDYFSY,
STVWEDGDY, VSVPVSVIY, and YTYYNKWPWn, but in modi-
fied S glycoprotein, the frequencies were different, like 10 in
FSFGVTQEY peptide, 4 in FLLTPTSSY, FSSRYVDLY, FVA-
NYSQDVn, FYVYKLQPL, and IAFNHPIQVn, while it’s 3 in
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ASIAFNHPIn, DEILEWFGI, DYFSYPLSM, EAAYTSSLL,
FCSKINQALn, FFNHTLVLLn, FQDELDEFF, FSDGKMGRF,
FSNPTCLILn, GEMRLASIA, GRFFNHTLVn, HISSTMSQY,
and HKWPWYIWL peptides.

N.B: n indicate presence of asparagine (N) in peptide
sequences, that’s hiding epitope from recognition by immune
system.

3.2.2 MHC Class II

Binding Predictions

Analysis of peptide binding to MHC class II molecules was assessed
by the conserved epitopes that bind to alleles at scores equal or less
than 10 percentile rank; the positive result numbers of selected
epitopes showed 212 out of 4819 epitopes in S glycoprotein,
685 out of 4148 in E protein, and 6896 out of 75,206 with
685 out of 4148 in both S and E modified proteins sequentially.

The following alleles are more common between S glycopro-
tein, E protein, and S and E modified sequences, and they are
HLA-DPA1∗01:03/DPB1∗02:01, HLA-DPA1∗02:01/
DPB1∗01:01, HLA-DRB1∗01:01, HLA-DRB1∗01:02,
HLA-DRB1∗04:04, HLA-DRB1∗04:05, HLA-DRB1∗04:08,
HLA-DRB1∗04:10, HLA-DRB1∗04:23, HLA-DRB1∗07:01,
HLA-DRB1∗07:03, HLA-DRB1∗08:06, HLA-DRB1∗11:04,
HLA-DRB1∗11:06, HLA-DRB1∗12:01, HLADRB1∗13:04,
HLA-DRB1∗13:11, HLA-DRB1∗13:21, and
HLA-DRB4∗01:01, but in S and modified S glycoprotein, both
of them contain other 42 different alleles not shown here. In E and
modified E protein, HLA-DRB1∗01:01 had higher frequency
numbers of alleles which represented 20, followed by 17 in
HLA-DRB1∗01:02, 11 in HLA-DRB1∗12:01, 10 in
HLA-DRB1∗11:04, HLA-DRB1∗11:06, and
HLA-DRB1∗13:11, and 9 in HLA-DRB1∗07:01,
HLA-DRB1∗07:03 and HLA-DRB1∗13:21, while in S and mod-
ified S glycoprotein, those alleles below had higher frequency num-
bers, which represented (200/199) in HLA-DRB1∗04:08/
(199/201) HLA-DRB1∗04:01, HLA-DRB1∗04:21, and
HLA-DRB1∗04:26/(194/190) in HLA-DRB1∗09:01/
(192/189) in HLA-DRB1∗04:05/(167/167) in
HLA-DRB1∗07:01, HLA-DRB1∗07:03/(164/167) in
HLA-DRB1∗15:02, (160/159) in HLA-DRB1∗13:02/
(159/159) in HLA-DRB1∗11:14, HLA-DRB1∗11:20, and
HLA-DRB1∗13:23, and (152/158) in HLA-DRB3∗01:01.

E and modified E protein had the same peptide sequences
with same frequency numbers, but the higher frequency
numbers only showed in peptides below; it represented 15 with
GFNTLLVQPALSLYMn, 14 with TGFNTLLVQPALSLYn,
13 with FNTLLVQPALSLYMT, 12 with MTGFNTLLVQPALSLn,
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11 with NTLLVQPALSLYMTGn, and 10 with ALSLYMTGRS-
VYVPQ, LSLYMTGRSVYVPQQ, PALSLYMTGRSVYVP, and
QPALSLYMTGRSVYV peptides.

N.B:-

1. The alleles below are not available for S glycoprotein, E pro-
tein, and S and E modified sequence, and they are DPA1∗01-
DPB1∗ 04:01, DRB1∗03:09, DRB1∗08:17, and
DRB1∗13:28.

2. The same peptide sequence shared more than one allele gene or
the same allele has a different peptide sequence.

3. Variation in frequency numbers among both alleles and peptide
sequences has been shown when comparing reference sequence
of S & E protein with the modified sequence of both of them.

4. n that is present in peptide sequences above indicates presence
of arginine in the sequence.

3.2.3 Proteasomal

Cleavage/TAP Transport/

MHC Class I Combined

Predictor

In NetMHCpan high scores mean high efficiency due to prediction
of a quantity proportional to the amount of peptide presented by
MHC molecules on the cell surface; total score higher or equal to
0 were selected for S and modified S glycoprotein, while in E
protein total score equal or higher than 0.3 was selected, but in
modified E protein total score equal or higher than �2.82 was
selected; see Tables 3 and 4.

3.2.4 Neural

Network-Based Prediction

of Proteasomal Cleavage

Sites (NetChop) and T-Cell

Epitopes (NetCTL

and NetCTLpan)

The positive prediction thresholds are 0.5 and 0.75 (green color)
for NetChop and NetCTL sequentially considered as proteasomal
cleavage sites for T-cell epitopes; see Figs. 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, and 38 with Table 5.

NetChop prediction score equal or greater than 0.5 in S glyco-
protein represented a positive result; more than 300 peptides out of
1353 showed positive results, while in modified S glycoprotein,
5 out of 66 showed positive results, in E protein 28 out of
82 were positive, and 28 out of 82 in modified E protein were
positive.

Both E & modified E protein showed 28 amino acid that’s
crossed the threshold; 0.5 with same residue position like: F ! 33;
L ! 58, 50, 39, 51, 28, 56, 2; Q ! 70; R ! 63; Y ! 59 and 66;
V ! 67, 65, 41, 21, 22, 52, 29; except: V ! 82 in E protein while
it’s at position 10 in modified E protein, L! 76 in E protein while
at position 34 and 6 in modified E protein, F ! 69 in E protein
while it’s at positions 17 and 19 in modified E protein, W! 81 in E
while it’s at position 11 in modified E protein, R! 38 in E, I! 18
in E, K! 68 and 73 in E while A! 32 in modified E protein with
M ! 60,Y ! 57 in E protein.

A Computational Vaccine Designing Approach for MERS-CoV Infections 67



Table 3
Illustrate the positive selected peptide sequences for both S and modified
S glycoprotein sequence by NetMHCpan prediction tool

S Modified S

AFYCILEPRa AFYCILEPRa

ASLNSFKEYa,b ASLNSFKEYa,b

ATDCSDGNYa,b ATDCSDGNYa,b

AYQNLVGYYa,b AYQNLVGYYa,b

ALALCVFFIa AAIPFAQSI

CGTLLRAFYa ALGAMQTGF

CTFMYTYNIa,b AVNNNAQALb

CYSSLILDYa ALALCVFFIa

CMGKLKCNRa,b CGTLLRAFYa

DAYQNLVGYa,b CTFMYTYNIa,b

ESFDVESGV CYSSLILDYa

EMRLASIAFa CMGKLKCNRa,b

ETKTHATLFa DLSQLHCSY

ESAALSAQLa DAYQNLVGYa,b

FANGFVVRI b ETKTHATLFa

FLLTPTESYa EMRLASIAFa

FFNHTLVLLa,b EAAYTSSLL

FSDGKMGRFa ESAALSAQLa

FSSRYVDLYa FLLTPTSSYa

FQFATLPVY FFNHTLVLLa,b

FSVDGYIRR FSDGKMGRFa

FYVYKLQPLa FSSRYVDLYa

FSNPTCLILa,b FTNCNYNLTb

FQNCTAVGVa,b FYVYKLQPLa

FSFGVTQEYa FSNPTCLILa,b

FVVNAPNGL b FQNCTAVGVa,b

FQDELDEFFa FVYDAYQNLb

GVHLFSSRYa FSFGVTQEYa

GLVNSSLFVa,b FAQSIFYRL

GYYSDDGNYa,b FQDELDEFFa

GLYFMHVGYa GVHLFSSRYa

(continued)
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Table 3
(continued)

S Modified S

GQGTHIVSF GVRQQRFVY

GRLTTLNAFa,b GYYSDDGNYa,b

HSVFLLMFL GLVNSSLFVa,b

HISSTMSQYa GWTAGLSSF

IEVDIQQTFa GRLTTLNAFa,b

IIYPQGRTYc GLYFMHVGYa

ITITYQGLF HISSTMSQYa

ITYQGLFPYa IEVDIQQTFa

ITEDEILEWa IIYPQTRTYc

IASNCYSSLa,b ITYQGLFPYa

ILATVPHNLa,b ITEDEILEWa

ILDYFSYPLa IASNCYSSLa,b

ITKPLKYSYa ILATVPHNLa

IAFNHPIQVa,b ILDYFSYPLa

IEVVSAYGLa ITKPLKYSYa

IAGLVALALa IAFNHPIQVa,b

KQFANGFVVa,b ICAQYVAGY

KAWAAFYVYa IPFAQSIFY

KLQPLTFLLc IANKFNQAL b

KETKTHATLa IEVVSAYGL1

KVTIADPGYa IPNFGSLTF b

KVTVDCKQYa IAGLVALALa

KELGNYTYYa,b KQFDNGFVVa,b

KYVAPQVTYa KAWAAFYVYa

LLRAFYCILa KLQPLTFLWc

LLDFSVDGY KETKTHATLa

LPVYDTIKYa KVTVDCKQYa

LYGGNMFQFb KVTIADPGYa

LSGTPPQVYa KYVAPQVTYa

LSLFSVNDF b KELGNYTYYa,b

LSIPTNFSFa,b LLRAFYCILa

(continued)
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Table 3
(continued)

S Modified S

LQMGFGITVa LPVYDTIKYa

LINGRLTTLa,b LSGTPPQVYa

LVRSESAALa LTFLWDFSV

LYFMHVGYYa LQMGFGITVa

LVALALCVFa LSIPTNFSFa,b

MGRFFNHTLa,b LGSIAGVGW

MLGSSVGNFa,b LSSFAAIPF

MGFGITVQYa LASELSNTF b

MTEQLQMGFa LINGRLTTLa,b

MLKRRDSTY LVRSESAALa

MSQYSRSTRa LTFINTTLLb

NLRNCTFMYa,b LYFMHVGYYa

NSYTSFATYa,b LVALALCVFa

NSVCPKLEFa,b MGRFFNHTLa,b

NHIEVVSAYa,b MLGSSVGNFa,b

NTTLLDLTY b MGFGITVQYa

PVYDTIKYY MSQYSRSTRa

QFANGFVVR b MTEQLQMGFa

QTAQGVHLFa MEAAYTSSL

QPLTFLLDFc NLRNCTFMYa,b

QSFSNPTCL1b NSYTSFATYa,b

QALHGANLR b NSVCIKLEFa,b

QSSPIIPGFa NHIEVVSAYa,b

RFFNHTLVLa,b QTAQGVHLFa

RNCTFMYTYa QLHCSYESF

RLVFTNCNYa,b QPLTFLWDFc

RSTRSMLKRa QSFSNPTCLa,b

RSAIEDLLFa QQRFVYDAY

SVFLLMFLL QVDQLNSSY b

SFKEYFNLRa,b QSSPIIPGFa

SLNSFKEYFa,b RFFNHTLVLa,b

(continued)
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Table 3
(continued)

S Modified S

SFDVESGVYa RNCTFMYTYa,b

SGVYSVSSFa RLVFTNCNYa,b

SLILDYFSYa RSTRSMLKRa

SQFNYKQSFa,b RSAIEDLLFa

SSAGPISQFa SFKEYFNLRa,b

SPLEGGGWLa SLNSFKEYFa,b

SQLGNCVEYa,b SFDVESGVYa

STVAMTEQL SGVYSVSSFa

STVWEDGDYa SLILDYFSYa

SYINKCSRLa,b SPLEGGGWLa

SSTMSQYSRa SQFNYKQSFa,b

STLTPRSVRa SSAGPISQFa

STRSMLKRRa STVWEDGDYa

SVRNLFASVa,b SYINKCSRLa,b

TFFDKTWPRa SSTMSQYSRa

TYSNITITYa,b STRSMLKRRa

TAVGVRQQRa SQLGNCVEYa,b

TVWEDGDYYa STLTPRSVRa

TLLDLTYEM SLLGSIAGV

TSIPNFGSLa,b SVRNLFASVa,b

TYQNISTNLa,b TFFDKTWPRa

TYYNKWPWYa,b TYSNITITYa,b

VSKADGIIYa TTITKPLKY

VYKLQPLTFa TVWEDGDYYa

VECDFSPLLa TAVGVRQQRa

VYNFKRLVFa,b TTNEAFQKVb

VASGSTVAM TSIPNFGSLa,b

VSIVPSTVWa TYQNISTNLa,b

VSVPVSVIYa TYYHKWPWYa

VNAPNGLYFa,b VSKADGIIYa

VVNAPNGLYa,b VECDFSPLLa

(continued)
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Table 3
(continued)

S Modified S

VALALCVFFa VYKLQPLTFa

VVKALNESYa,b VYNFKRLVFa,b

WPWYIWLGFa VSIVPSTVWa

WAAFYVYKLa VSVPVSVIYa

YQGDHGDMYc VNAPNGLYFa,b

YFNLRNCTFa,b VVNAPNGLYa,b

YYSIIPHSIa VALALCVFFa

YSIIPHSIRa VVKALNESYa,b

YNLTKLLSLa,b WPWYIWLGFa

YPLSMKSDLa WSYTGSSFY

YSSLILDYFa WTAGLSSFA

YGVSGRGVFa WAAFYVYKLa

YINKCSRLLa YQGDHGDYYc

YSLYGVSGRa YFNLRNCTFa,b

YSYINKCSRa,b YNLTKLLSLa,b

YYRKQLSPLa YSIIPHSIRa

YSRSTRSMLa YYSIIPHSIa

YYSDDGNYYa,b YINKCSRLLa,b

YYPSNHIEVa,b YPLSMKSDLa

YAPEPITSLa YSSLILDYFa

YTYYNKWPWb,c YSYINKCSRa,b

YYNKWPWYIb,c YYRKQLSPLa

YGVSGRGVFa

YSLYGVSGRa

YSRSTRSMLa

YYSDDGNYYa,b

YAPEPITSLa

YYPSNHIEVa,b

YTYYHKWPWc

YYHKWPWYIc

aIndicates a common peptide sequence
bIndicates presence of arginine in sequence
cIndicates a partial similarity between both reference sequence and modified sequence
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N.B:-.

1. Peptide sequences of both E and modified E protein were
different even if they had a similar residue position.

2. NetCTL was used for E and modified E protein just due to
large amounts of data beside, time-consuming when it is used
with S glycoprotein.

3. Modified E protein NetCTL charts were not shown here.

Table 4
Illustrate the positive selected peptide sequences for both E and modified E protein by NetMHCpan
prediction tool

E Modified E

ALYLYNTGR a KPPLPEDVW

CMAFLTATR
FTVVCAITL
FVQERIGLF
ITLLVCMAF
LFIVNFFIF a

LVQPALYLY
LYNTGRSVY a

MAFLTATRL
RIGLFIVNF a

TLLVQPALY

aIndicates presence of arginine in sequence

1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100

Position

S
co

re

NetChop Prediction
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Fig. 25 Illustrate the NetChop positive prediction of E protein with threshold equal or greater than 0.5
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3.2.5 MHC-NP:

Prediction of Peptides

Naturally Processed by

the MHC

The greater probe score was considered as naturally processing
peptide; probe scores greater than 0 were considered as naturally
processing peptides.

The total positive epitope number of naturally processing pep-
tides represented 10,189 out of 10,760 in S glycoprotein and
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Threshold – 0.5 Positive prediction Negative prediction

NetChop Prediction

Fig. 26 Illustrate the NetChop positive prediction of modified E protein threshold equal or greater than 0.5
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Fig. 27 Illustrate the NetCTL positive prediction of E protein supertype A1 that’s indicated in a green color with
threshold equal or greater than 0.75 above the red color
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10,187 out of 10,760 in modified S glycoprotein, while it repre-
sents 568 out of 592 in E and 566 out of 592 in modified E protein.

E protein showed alleles frequencies: H-2-Db (74), H-2-Kb
(74), HLA-A∗02:01 (68), HLA-B∗07:02 (66), HLA-B∗35:01

2.0
Threshold – 0.75 Positive prediction Negative prediction
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NetCTL Prediction

Fig. 28 Illustrate the NetCTL prediction of E protein supertype A2, the desired supertype A2 appeared in a
green color with threshold equal or greater than 0.75 above the threshold red color
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Fig. 29 Illustrate the NetCTL prediction of E protein supertype A3, the positive results appeared in a green color
with threshold equal or greater than 0.75 above the red color
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(74), HLA-B∗44:03 (74), HLA-B∗53:01 (73), HLA-B∗57:01
(62) while in modified E they are H-2-Db (28), H-2-Kb (16),
HLA-A∗02:01 (5), HLA-B∗07:02 (2), HLA-B∗35:01 (6),
HLA-B∗44:03 (28), HLA-B∗53:01 (60), and HLA-B∗57:01 (4).
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Fig. 30 Illustrate the NetCTL prediction of E protein supertype A24, positive results appeared in a green color
with threshold equal or greater than 0.75 above the threshold red color
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Fig. 31 Illustrate the NetCTL prediction of E protein supertype A26, positive results appeared in a green color
with threshold equal or greater than 0.75 above the threshold red color
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N.B: modified E protein showed less allele frequency when
compared with E protein in addition to some epitope differences
even if at the same positions.

NetCTL Prediction
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Fig. 32 Illustrate the NetCTL negative prediction of E protein supertype B7 with threshold below 0.75
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Fig. 33 Illustrate the NetCTL negative prediction of E protein supertype B8 with threshold below 0.75
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Threshold – 0.75 Positive prediction Negative prediction
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Fig. 34 Illustrate the NetCTL negative prediction of E protein supertype B27
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Fig. 35 Illustrate the NetCTL negative prediction of E protein supertype B39 with threshold below 0.75
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Fig. 36 Illustrate the NetCTL negative prediction of E protein supertype B44 with threshold below 0.75
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Fig. 37 Illustrate the NetCTL prediction of E protein supertype B58, positive results appeared in a green
colored with threshold equal or greater than 0.75 above the threshold red color
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3.3 Epitope Analysis

Tools

3.3.1 Population

Coverage Calculation

MHC-I and MHC-II interacted alleles by the IEDB population
coverage calculation tool was computed by the average number of
epitope hits/HLA combinations recognized by the population and
a minimum number of epitope hits/HLA combinations recognized
by 90% of the population (PC90); see tables below.

Those below represented a selected E protein epitopes for
population coverage calculation:

PFVQER, VQERIG, QERIGL, FLTATR, LYLYNT,
YLYNTG, LYNTGR, YNTGRS, NTGRSV, TGRSVY, RSVYVK,
YVKFQD, VKFQDS, KFQDSK, FQDSKP, QDSKPP, DSKPPL,
SKPPLP, KPPLPP, PPLPPD, PLPPDE, LPPDEW, PPDEWV,
MLPFVQE, LPFVQER, PFVQERI, VQERIGL, RIGLFIV,
IGLFIVN, GLFIVNF, LFIVNFF, FIVNFFI, IVNFFIF, and
VNFFIFT.

There are differences between MHC-I and MHC-II popula-
tion coverage percentage.

There are similarities between MHC-I between both E and
modified E protein, but still there are differences between them at
MHC-II.

Those below represented a selected modified E protein epi-
topes for population coverage calculation:

RSVYVP, LYMTGR, VYVPQQ, PLPEDV, QERIGW,
TGRSVY, YMTGRS, QFVQER, VPQQDS, SKPPLP, PPLPED,
DSKPPL, YVPQQD, KPPLPE, QDSKPP, PQQDSK, QQDSKP,
PLPEDVW, QFVQERI, AFLTATH, MLQFVQE, ALSLYMT,
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Fig. 38 Illustrate the NetCTL prediction of E protein supertype B62, positive results appeared in a green
colored with threshold equal or greater than 0.75 above the threshold red color
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Table 5
Illustrate NetCTL +ve results in E and modified E protein with indications of similarities and
differences in the peptide sequences between them, beside the totals numbers of them

Supertype
Peptide sequence for E
protein

Peptide sequence for modified
E protein

Residue position for
E/modified E protein

A1 LVQPALYLY LVQPALSLY 51/51
LYNTGRSVY 58/58

A2 FVQERIGWF FVQERIGWF 4/4
VVCDITLLV VVCDITLLV 21/21
FLTATHLCV FLTATHLCV 33/33
LLVQPALSL LLVQPALSL 50/50
SLYMTGRSV SLYMTGRSV 57/57
YMTGRSVYV YMTGRSVYV 59/59

A3 ALYLYNTGR ALSLYMTGR 55/55
NTGRSVYVK 60/�
VYVKFQDSK 65/�

A24 MLPFVQERI MLQFVQERI 1/1
PFVQERIGL FVQERIGWF 3/4
FVQERIGLF RIGWFIPNF 4/8
RIGLFIVNF WFIPNFFDF 8/11
IGLFIVNFF FTVVCDITL 9/19
LFIVNFFIF ITLLVCTAF 11/25
FTVVCAITL LVQPALSLY 19/51
ITLLVCMAF LYMTGRSVY 25/58
MAFLTATRL 31/�
LVQPALYLY 51/�
LYNTGRSVY 58/�
TGRSVYVKF 61/�
KFQDSKPPL 68/�

A26 FVQERIGWF FVQERIGWF 4/4
RIGWFIPNF RIGWFIPNF 8/8
WFIPNFFDF WFIPNFFDF 11/11
TVVCDITLL TVVCDITLL 20/20
ITLLVCTAF ITLLVCTAF 25/25
ATHLCVQCM ATHLCVQCM 36/36
LCVQCMTGF LCVQCMTGF 39/39
QCMTGFNTL QCMTGFNTL 42/42
NTLLVQPAL NTLLVQPAL 48/48
LVQPALSLY LVQPALSLY 51/51

B7 – LLVQPALSL �/50
QPALSLYMT �/53
KPPLPEDVW �/3

B8 FVQERIGLF FVQERIGWF 4/4
TGRSVYVKF WFIPNFFDF 61/11

B27 – – –

B39 YNTGRSVYV YMTGRSVYV 59/59
KFQDSKPPL 68

(continued)
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LQFVQER, VQCMTGF, YVPQQDS, GFNTLLV, PPLPEDV,
FLTATHL, TGRSVYV, PALSLYM, NTLLVQP, FNTLLVQ,
LPEDVWV, and CTAFLTA.

The percentage of a coverage population was similar among
both S glycoprotein reference sequence and modified S glycopro-
tein; it represented 95.60% of the world by MHC-I; 118 countries
showed a higher percentage especially Chile Amerindian (100%),
69 other countries showed 0% while in East Asia (94.80%), South
Korea and South Oriental Korea (92.84%), China (88.77%), Iran
and Iran Persian (91.53%) but Iran Kurd (0.00%), Jordan and
Jordan Arab (76.80%),Oman and Oman Arab (95.82%), Saudi
Arabia and Saudi Arabia Arab (96.38%), United Arab Emirates
and United Arab Emirates Arab (0.00%), Sudan (86.43%), Sudan
Arab (49.41%), Sudan Black (0.00%), and Sudan Mixed (87.06%);
please see Table 6.

According to the percentage of a coverage population that was
similar between S glycoprotein reference sequence and modified S
glycoprotein, the world MHC-II represent 81.81%; 64 countries
showed a higher percentage especially Norway and Norway Cauca-
soid (94.71%), 59 other countries (0%) while in East Asia represents
(94.80%), South Korea and South Oriental Korea (85.32%), China
(59.99%), Iran (64.22%), Iran Persian (55.78%), Iran Kurd
(65.72%), Jordan and Jordan Arab (52.88%), Oman and Oman
Arab (0.00%), Saudi Arabia and Saudi Arabia Arab (80.14%),
United Arab Emirates and United Arab Emirates Arab (32.92%),
Sudan (60.56%), Sudan Arab (0.00%), Sudan Black (0.00%), and
Sudan Mixed (60.56%), as in Table 7.

According to the percentage of MHC-I E protein coverage, the
world MHC-I represents 95.60%; 116 countries showed a higher
percentage especially Chile Amerindian (100%), 23 other countries
showed more than 4% but less than 50% while in East Asia it

Table 5
(continued)

Supertype
Peptide sequence for E
protein

Peptide sequence for modified
E protein

Residue position for
E/modified E protein

B44 – – –

B58 ITLLVCMAF IGWFIPNFF 25/9
KPPLPPDEW ITLLVCTAF 73/25

KPPLPEDVW �/3

B62 FVQERIGLF FVQERIGWF 4/4
ITLLVCMAF WFIPNFFDF 25/11
TLLVQPALY ITLLVCTAF 49/25
LVQPALYLY LVQPALSLY 51/51
YLYNTGRSV LYMTGRSVY 57/58
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Table 6
MHC-I coverage population for S and modified S glycoprotein

Population/Area

Class I

Coveragea Average hitb PC90c

World 95.60% 10.57 4.38

East Asia 94.80% 10.93 2.58

Japan 96.19% 11.44 3.12

Japan Oriental 96.19% 11.44 3.12

Korea, South 92.84% 10.41 2.16

Korea, South Oriental 92.84% 10.41 2.16

Mongolia 94.37% 10.07 3.12

Mongolia Oriental 94.37% 10.07 3.12

Northeast Asia 88.80% 9.38 0.89

China 88.77% 9.33 0.89

China Oriental 88.77% 9.33 0.89

Hong Kong 90.85% 10.01 1.91

Hong Kong Oriental 90.85% 10.01 1.91

South Asia 86.54% 8.03 0.74

India 82.00% 7.21 0.56

India Asian 82.00% 7.21 0.56

Pakistan 88.63% 8.74 1.76

Pakistan Asian 87.30% 8.38 1.58

Pakistan Mixed 91.12% 9.42 3.23

Sri Lanka 52.39% 3.74 0.84

Sri Lanka Asian 52.39% 3.74 0.84

Southeast Asia 87.81% 9.99 0.82

Borneo 0.00% 0 ?

Borneo Austronesian 0.00% 0 ?

Indonesia 76.44% 7.8 0.42

Indonesia Austronesian 76.44% 7.8 0.42

Malaysia 76.30% 7.64 0.42

Malaysia Austronesian 40.59% 3.17 0.34

Malaysia Oriental 84.44% 9.02 0.64

Philippines 92.86% 11.56 8.01

(continued)
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Philippines Austronesian 92.86% 11.56 8.01

Singapore 85.74% 9.04 0.7

Singapore Austronesian 82.82% 8.55 0.58

Singapore Oriental 88.96% 9.64 0.91

Taiwan 92.58% 11.31 6.08

Taiwan Oriental 92.58% 11.31 6.08

Thailand 82.85% 7.46 0.58

Thailand Oriental 82.85% 7.46 0.58

Vietnam 84.58% 8.55 0.65

Vietnam Oriental 84.58% 8.55 0.65

Southwest Asia 85.77% 7.59 0.7

Iran 91.53% 8.6 1.33

Iran Kurd 0.00% 0 ?

Iran Persian 91.53% 8.6 1.33

Israel 82.14% 7.29 0.56

Israel Arab 89.15% 9.13 0.92

Israel Jew 87.17% 7.84 0.78

Jordan 76.80% 6.52 0.43

Jordan Arab 76.80% 6.52 0.43

Lebanon 0.00% 0 0

Lebanon Arab 0.00% 0 ?

Lebanon Mixed 0.00% 0 0

Oman 95.82% 9.96 3.04

Oman Arab 95.82% 9.96 3.04

Saudi Arabia 96.38% 9.87 3.65

Saudi Arabia Arab 96.38% 9.87 3.65

United Arab Emirates 0.00% 0 0

United Arab Emirates Arab 0.00% 0 0

Europe 97.81% 11.07 5.29

Austria 98.78% 11.29 6

(continued)
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Austria Caucasoid 98.78% 11.29 6

Belarus 0.00% 0 ?

Belarus Caucasoid 0.00% 0 ?

Belgium 98.75% 10.62 6.02

Belgium Caucasoid 98.75% 10.62 6.02

Bulgaria 96.59% 11.08 4.52

Bulgaria Caucasoid 96.56% 11.25 4.57

Bulgaria Other 97.43% 10.02 4.35

Croatia 97.76% 11.79 6.12

Croatia Caucasoid 97.76% 11.79 6.12

Czech Republic 96.20% 9.39 4.33

Czech Republic Caucasoid 96.20% 9.39 4.33

Czech Republic Other 0.00% 0 ?

Denmark 0.00% 0 0

Denmark Caucasoid 0.00% 0 0

England 99.29% 11.43 6.21

England Caucasoid 99.29% 11.43 6.21

England Jew 0.00% 0 0

England Mixed 0.00% 0 ?

Finland 99.80% 12.56 7.8

Finland Caucasoid 99.80% 12.56 7.8

France 98.05% 10.72 4.75

France Caucasoid 98.05% 10.72 4.75

Georgia 95.62% 10.98 4.48

Georgia Caucasoid 97.22% 11.66 6.21

Georgia Kurd 89.99% 9.26 1

Germany 99.07% 11.71 6.4

Germany Caucasoid 99.07% 11.71 6.4

Greece 0.00% 0 ?

Greece Caucasoid 0.00% 0 ?

(continued)
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Ireland Northern 99.40% 11.43 6.27

Ireland Northern Caucasoid 99.40% 11.43 6.27

Ireland South 98.83% 10.82 4.85

Ireland South Caucasoid 98.83% 10.82 4.85

Italy 96.52% 9.83 4.16

Italy Caucasoid 96.52% 9.83 4.16

Macedonia 11.83% 0.86 0.45

Macedonia Caucasoid 11.83% 0.86 0.45

Netherlands 0.00% 0 ?

Netherlands Caucasoid 0.00% 0 ?

Norway 0.00% 0 ?

Norway Caucasoid 0.00% 0 ?

Poland 97.99% 11.25 6.02

Poland Caucasoid 97.99% 11.25 6.02

Portugal 97.11% 10.98 4.73

Portugal Caucasoid 97.11% 10.98 4.73

Romania 97.94% 11.56 5.94

Romania Caucasoid 97.94% 11.56 5.94

Russia 96.71% 11.38 4.59

Russia Caucasoid 0.00% 0 0

Russia Mixed 0.00% 0 0

Russia Other 98.34% 12.46 6.71

Russia Siberian 97.30% 11.52 4.53

Scotland 15.91% 0.81 0.24

Scotland Caucasoid 15.91% 0.81 0.24

Serbia 43.75% 0.78 0.18

Serbia Caucasoid 43.75% 0.78 0.18

Slovakia 0.00% 0 ?

Slovakia Caucasoid 0.00% 0 ?

Slovenia 0.00% 0 ?
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Slovenia Caucasoid 0.00% 0 ?

Spain 71.85% 5.51 0.36

Spain Caucasoid 71.85% 5.51 0.36

Spain Jew 0.00% 0 ?

Spain Other 0.00% 0 ?

Sweden 99.69% 12.61 6.84

Sweden Caucasoid 99.69% 12.61 6.84

Switzerland 0.00% 0 0

Switzerland Caucasoid 0.00% 0 0

Turkey 44.80% 3.58 1.45

Turkey Caucasoid 44.80% 3.58 1.45

Ukraine 0.00% 0 ?

Ukraine Caucasoid 0.00% 0 ?

United Kingdom 0.00% 0 0

United Kingdom Caucasoid 0.00% 0 0

Wales 0.00% 0 0

Wales Caucasoid 0.00% 0 0

East Africa 86.99% 6.96 0.77

Kenya 85.86% 6.62 0.71

Kenya Black 85.86% 6.62 0.71

Uganda 91.04% 8.19 1.48

Uganda Black 91.04% 8.19 1.48

Zambia 95.32% 7.98 4.01

Zambia Black 95.32% 7.98 4.01

Zimbabwe 91.57% 7.69 1.71

Zimbabwe Black 91.57% 7.69 1.71

West Africa 92.60% 8.71 1.67

Burkina Faso 58.50% 3.24 0.24

Burkina Faso Black 58.50% 3.24 0.24

Cape Verde 96.69% 10.09 4.14
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Cape Verde Black 96.69% 10.09 4.14

Gambia 0.00% 0 ?

Gambia Black 0.00% 0 ?

Ghana 0.00% 0 0

Ghana Black 0.00% 0 0

Guinea-Bissau 92.66% 8.7 1.49

Guinea-Bissau Black 92.66% 8.7 1.49

Ivory Coast 58.05% 0.78 0.24

Ivory Coast Black 58.05% 0.78 0.24

Liberia 0.00% 0 ?

Liberia Black 0.00% 0 ?

Nigeria 0.00% 0 ?

Nigeria Black 0.00% 0 ?

Senegal 95.03% 9.11 4

Senegal Black 95.03% 9.11 4

Central Africa 84.98% 6.7 0.67

Cameroon 88.67% 7.35 0.88

Cameroon Black 88.67% 7.35 0.88

Central African Republic 10.75% 0.27 0.11

Central African Republic Black 10.75% 0.27 0.11

Congo 0.00% 0 ?

Congo Black 0.00% 0 ?

Equatorial Guinea 0.00% 0 0

Equatorial Guinea Black 0.00% 0 0

Gabon 0.00% 0 ?

Gabon Black 0.00% 0 ?

Rwanda 23.09% 1.33 0.13

Rwanda Black 23.09% 1.33 0.13

Sao Tome and Principe 95.54% 8.72 2.29

Sao Tome and Principe Black 95.54% 8.72 2.29
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

North Africa 91.87% 8.61 1.86

Algeria 0.00% 0 ?

Algeria Arab 0.00% 0 ?

Ethiopia 0.00% 0 ?

Ethiopia Black 0.00% 0 ?

Mali 94.28% 8.82 1.74

Mali Black 94.28% 8.82 1.74

Morocco 95.95% 9.47 4.19

Morocco Arab 97.89% 10.2 4.47

Morocco Caucasoid 94.32% 8.96 4.02

Sudan 86.43% 7.53 0.74

Sudan Arab 49.41% 4.62 0.59

Sudan Black 0.00% 0 0

Sudan Mixed 87.06% 7.56 0.77

Tunisia 96.04% 9.85 4.19

Tunisia Arab 96.04% 9.85 4.19

Tunisia Berber 0.00% 0 ?

South Africa 91.05% 8 2.1

South Africa 91.05% 8 2.1

South Africa Black 86.71% 6.67 0.75

South Africa Other 93.82% 9.59 2.73

West Indies 97.34% 10.78 4.6

Cuba 97.20% 10.65 4.53

Cuba Caucasoid 97.64% 11.2 4.77

Cuba Mixed 0.00% 0 ?

Cuba Mulatto 96.58% 9.66 4.09

Jamaica 0.00% 0 ?

Jamaica Black 0.00% 0 ?

Martinique 22.56% 2.03 1.16

Martinique Black 22.56% 2.03 1.16
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Trinidad and Tobago 0.00% 0 0

Trinidad and Tobago Asian 0.00% 0 0

North America 96.88% 10.98 4.65

Canada 0.00% 0 ?

Canada Amerindian 0.00% 0 ?

Mexico 97.10% 11 6.02

Mexico Amerindian 99.86% 13 7.84

Mexico Mestizo 96.78% 10.7 4.46

United States 96.93% 10.98 4.66

United States Amerindian 99.44% 13.15 8.19

United States Asian 92.39% 10.32 2.29

United States Austronesian 0.00% 0 ?

United States Black 94.18% 8.83 2.54

United States Caucasoid 98.65% 11.4 6.08

United States Hispanic 97.46% 11.01 4.77

United States Mestizo 98.09% 11.2 4.97

United States Polynesian 97.53% 11.57 3.62

Central America 5.10% 0.16 0.11

Costa Rica 0.00% 0 ?

Costa Rica Mestizo 0.00% 0 ?

Guatemala 5.10% 0.16 0.11

Guatemala Amerindian 5.10% 0.16 0.11

South America 86.24% 8.01 0.73

Argentina 98.02% 8.76 2.61

Argentina Amerindian 98.02% 8.76 2.61

Argentina Caucasoid 0.00% 0 ?

Bolivia 0.00% 0 ?

Bolivia Amerindian 0.00% 0 ?

Brazil 93.72% 9.43 2.69

Brazil Amerindian 92.35% 8.37 2.16
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Brazil Caucasoid 97.68% 11.33 5.35

Brazil Mixed 95.06% 9.85 3.75

Brazil Mulatto 0.00% 0 ?

Brazil Other 0.00% 0 0

Chile 94.93% 10.63 4.37

Chile Amerindian 100.00% 14.31 9.11

Chile Hispanic 0.00% 0 ?

Chile Mixed 87.43% 8.16 0.8

Colombia 9.86% 0.76 0.67

Colombia Amerindian 0.00% 0 0

Colombia Black 5.79% 0.42 0.64

Colombia Mestizo 14.81% 1.17 0.7

Ecuador 76.97% 8.77 1.74

Ecuador Amerindian 76.97% 8.77 1.74

Ecuador Black 0.00% 0 ?

Paraguay 0.00% 0 ?

Paraguay Amerindian 0.00% 0 ?

Peru 99.98% 13.69 8.37

Peru Amerindian 99.98% 13.69 8.37

Peru Mestizo 0.00% 0 0

Venezuela 88.37% 9.05 0.86

Venezuela Amerindian 88.88% 8.98 0.9

Venezuela Caucasoid 9.18% 0.83 0.99

Venezuela Mestizo 7.84% 0.71 0.98

Venezuela Mixed 0.00% 0 ?

Oceania 91.82% 10.92 4.06

American Samoa 95.26% 12.14 7.15

American Samoa Polynesian 95.26% 12.14 7.15

Australia 89.30% 9.93 0.93

Australia Australian Aborigines 82.36% 9.31 0.57
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Table 6
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Australia Caucasoid 99.06% 11.46 6.16

Chile 94.93% 10.63 4.37

Chile Amerindian 100.00% 14.31 9.11

Cook Islands 0.00% 0 ?

Cook Islands Polynesian 0.00% 0 ?

Fiji 0.00% 0 ?

Fiji Melanesian 0.00% 0 ?

Kiribati 0.00% 0 ?

Kiribati Micronesian 0.00% 0 ?

Nauru 0.00% 0 ?

Nauru Micronesian 0.00% 0 ?

New Caledonia 96.70% 12.14 8.63

New Caledonia Melanesian 96.70% 12.14 8.63

New Zealand 0.00% 0 ?

New Zealand Polynesian 0.00% 0 ?

Niue 0.00% 0 ?

Niue Polynesian 0.00% 0 ?

Papua New Guinea 97.26% 12.58 8.57

Papua New Guinea Melanesian 97.26% 12.58 8.57

Samoa 0.00% 0 ?

Samoa Polynesian 0.00% 0 ?

Tokelau 0.00% 0 ?

Tokelau Polynesian 0.00% 0 ?

Tonga 0.00% 0 ?

Tonga Polynesian 0.00% 0 ?

Average 55.31% 5.73 ?

(Standard deviation) �44.16% �4.92 (?)

aProjected population coverage
bAverage number of epitope hits/HLA combinations recognized by the population
cMinimum number of epitope hits/HLA combinations recognized by 90% of the population
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Table 7
The MHC-II coverage population for S and modified S glycoprotein

Population/Area

Class II

Coveragea Average hitb PC90c

World 81.81% 8.16 1.1

East Asia 81.82% 8.83 1.1

Japan 74.83% 7.85 0.79

Japan Oriental 74.83% 7.85 0.79

Korea, South 85.32% 9.56 1.36

Korea, South Oriental 85.32% 9.56 1.36

Mongolia 81.85% 7.79 1.1

Mongolia Oriental 81.85% 7.79 1.1

Northeast Asia 59.99% 5.33 0.5

China 59.99% 5.33 0.5

China Oriental 59.99% 5.33 0.5

Hong Kong 0.00% 0 ?

Hong Kong Oriental 0.00% 0 ?

South Asia 75.38% 7.4 0.81

India 74.99% 7.35 0.8

India Asian 74.99% 7.35 0.8

Pakistan 1.18% 0.09 0.81

Pakistan Asian 1.45% 0.12 0.81

Pakistan Mixed 0.00% 0 0

Sri Lanka 0.00% 0 ?

Sri Lanka Asian 0.00% 0 ?

Southeast Asia 56.98% 4.98 0.46

Borneo 49.02% 4.03 0.39

Borneo Austronesian 49.02% 4.03 0.39

Indonesia 47.84% 4.4 0.38

Indonesia Austronesian 47.84% 4.4 0.38

Malaysia 57.99% 5.34 0.48

Malaysia Austronesian 55.38% 5.12 0.45

Malaysia Oriental 70.35% 6.57 0.67

Philippines 28.56% 2.52 0.28

(continued)

A Computational Vaccine Designing Approach for MERS-CoV Infections 93



Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Philippines Austronesian 28.56% 2.52 0.28

Singapore 65.78% 6.04 0.58

Singapore Austronesian 65.78% 6.04 0.58

Singapore Oriental 0.00% 0 ?

Taiwan 67.88% 6.13 0.62

Taiwan Oriental 67.88% 6.13 0.62

Thailand 63.90% 5.92 0.55

Thailand Oriental 63.90% 5.92 0.55

Vietnam 54.44% 4.43 0.44

Vietnam Oriental 54.44% 4.43 0.44

Southwest Asia 43.93% 3.65 0.36

Iran 64.22% 5.65 0.56

Iran Kurd 55.78% 4.74 0.45

Iran Persian 65.72% 5.83 0.58

Israel 68.79% 6.4 0.64

Israel Arab 67.51% 6.2 0.62

Israel Jew 69.65% 6.51 0.66

Jordan 52.88% 4.56 0.42

Jordan Arab 52.88% 4.56 0.42

Lebanon 70.46% 6.48 0.68

Lebanon Arab 70.46% 6.48 0.68

Lebanon Mixed 0.00% 0 ?

Oman 0.00% 0 ?

Oman Arab 0.00% 0 ?

Saudi Arabia 80.14% 8.31 1.01

Saudi Arabia Arab 80.14% 8.31 1.01

United Arab Emirates 32.92% 0.66 0.3

United Arab Emirates Arab 32.92% 0.66 0.3

Europe 85.83% 8.88 1.41

Austria 93.34% 10.8 2.82
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Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Austria Caucasoid 93.34% 10.8 2.82

Belarus 43.81% 3.55 1.25

Belarus Caucasoid 43.81% 3.55 1.25

Belgium 79.39% 7.16 0.97

Belgium Caucasoid 79.39% 7.16 0.97

Bulgaria 57.23% 4.95 0.47

Bulgaria Caucasoid 57.23% 4.95 0.47

Bulgaria Other 0.00% 0 ?

Croatia 66.71% 5.89 0.6

Croatia Caucasoid 66.71% 5.89 0.6

Czech Republic 86.21% 9.23 1.45

Czech Republic Caucasoid 88.76% 9.66 1.78

Czech Republic Other 64.14% 6.4 0.56

Denmark 88.98% 9.04 1.81

Denmark Caucasoid 88.98% 9.04 1.81

England 93.48% 10.49 2.74

England Caucasoid 93.48% 10.49 2.74

England Jew 0.00% 0 ?

England Mixed 0.00% 0 0

Finland 51.14% 4.24 0.41

Finland Caucasoid 51.14% 4.24 0.41

France 88.54% 9.29 1.74

France Caucasoid 88.54% 9.29 1.74

Georgia 75.05% 7.09 0.8

Georgia Caucasoid 75.05% 7.09 0.8

Georgia Kurd 0.00% 0 ?

Germany 91.14% 10.14 2.26

Germany Caucasoid 91.14% 10.14 2.26

Greece 66.92% 6.29 0.6

Greece Caucasoid 66.92% 6.29 0.6
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Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Ireland Northern 94.65% 10.58 2.89

Ireland Northern Caucasoid 94.65% 10.58 2.89

Ireland South 93.15% 10 2.51

Ireland South Caucasoid 93.15% 10 2.51

Italy 85.90% 5.93 1.42

Italy Caucasoid 85.90% 5.93 1.42

Macedonia 66.53% 6.2 0.6

Macedonia Caucasoid 66.53% 6.2 0.6

Netherlands 83.44% 8.33 1.21

Netherlands Caucasoid 83.44% 8.33 1.21

Norway 94.71% 10.56 3.01

Norway Caucasoid 94.71% 10.56 3.01

Poland 84.46% 8.85 1.29

Poland Caucasoid 84.46% 8.85 1.29

Portugal 78.00% 7.74 0.91

Portugal Caucasoid 78.00% 7.74 0.91

Romania 0.00% 0 ?

Romania Caucasoid 0.00% 0 ?

Russia 77.62% 7.24 0.89

Russia Caucasoid 88.52% 9.81 1.74

Russia Mixed 0.00% 0 0

Russia Other 85.01% 9.2 1.33

Russia Siberian 78.83% 7.14 0.94

Scotland 90.82% 10.1 2.2

Scotland Caucasoid 90.82% 10.1 2.2

Serbia 0.00% 0 ?

Serbia Caucasoid 0.00% 0 ?

Slovakia 18.28% 0.37 0.24

Slovakia Caucasoid 18.28% 0.37 0.24

Slovenia 84.85% 8.74 1.32
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Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Slovenia Caucasoid 84.85% 8.74 1.32

Spain 80.51% 8.28 1.03

Spain Caucasoid 80.84% 8.34 1.04

Spain Jew 0.00% 0 ?

Spain Other 6.30% 0.57 0.96

Sweden 88.07% 9.13 1.68

Sweden Caucasoid 88.07% 9.13 1.68

Switzerland 0.00% 0 ?

Switzerland Caucasoid 0.00% 0 ?

Turkey 76.19% 7.3 0.84

Turkey Caucasoid 76.19% 7.3 0.84

Ukraine 50.64% 4.17 1.42

Ukraine Caucasoid 50.64% 4.17 1.42

United Kingdom 0.00% 0 0

United Kingdom Caucasoid 0.00% 0 0

Wales 0.00% 0 0

Wales Caucasoid 0.00% 0 0

East Africa 68.30% 5.65 0.63

Kenya 0.00% 0 0

Kenya Black 0.00% 0 0

Uganda 0.00% 0 0

Uganda Black 0.00% 0 0

Zambia 0.00% 0 ?

Zambia Black 0.00% 0 ?

Zimbabwe 68.30% 5.65 0.63

Zimbabwe Black 68.30% 5.65 0.63

West Africa 65.23% 6.13 0.58

Burkina Faso 0.00% 0 ?

Burkina Faso Black 0.00% 0 ?

Cape Verde 80.38% 8.1 1.02
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Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Cape Verde Black 80.38% 8.1 1.02

Gambia 0.00% 0 0

Gambia Black 0.00% 0 0

Ghana 0.00% 0 ?

Ghana Black 0.00% 0 ?

Guinea-Bissau 71.16% 7.04 0.69

Guinea-Bissau Black 71.16% 7.04 0.69

Ivory Coast 0.00% 0 ?

Ivory Coast Black 0.00% 0 ?

Liberia 0.00% 0 0

Liberia Black 0.00% 0 0

Nigeria 0.00% 0 0

Nigeria Black 0.00% 0 0

Senegal 30.28% 2.32 0.29

Senegal Black 30.28% 2.32 0.29

Central Africa 62.71% 5.17 0.54

Cameroon 49.87% 3.31 0.4

Cameroon Black 49.87% 3.31 0.4

Central African Republic 82.69% 6.47 1.16

Central African Republic Black 82.69% 6.47 1.16

Congo 68.66% 5.93 0.64

Congo Black 68.66% 5.93 0.64

Equatorial Guinea 47.58% 3.55 0.38

Equatorial Guinea Black 47.58% 3.55 0.38

Gabon 41.78% 3.84 1.2

Gabon Black 41.78% 3.84 1.2

Rwanda 62.79% 5.38 0.54

Rwanda Black 62.79% 5.38 0.54

Sao Tome and Principe 66.50% 4.89 0.6

Sao Tome and Principe Black 66.50% 4.89 0.6
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Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

North Africa 75.06% 7 0.8

Algeria 77.15% 7.25 0.88

Algeria Arab 77.15% 7.25 0.88

Ethiopia 83.00% 8.71 1.18

Ethiopia Black 83.00% 8.71 1.18

Mali 0.00% 0 ?

Mali Black 0.00% 0 ?

Morocco 83.44% 8.14 1.21

Morocco Arab 85.07% 8.25 1.34

Morocco Caucasoid 79.75% 8.07 0.99

Sudan 60.56% 4.52 0.51

Sudan Arab 0.00% 0 ?

Sudan Black 0.00% 0 0

Sudan Mixed 60.56% 4.52 0.51

Tunisia 74.26% 6.82 0.78

Tunisia Arab 74.97% 6.78 0.8

Tunisia Berber 74.47% 7.43 0.78

South Africa 32.10% 1.11 0.29

South Africa 32.10% 1.11 0.29

South Africa Black 32.10% 1.11 0.29

South Africa Other 0.00% 0 ?

West Indies 69.22% 6.67 0.65

Cuba 85.48% 9.66 1.38

Cuba Caucasoid 0.00% 0 ?

Cuba Mixed 85.48% 9.66 1.38

Cuba Mulatto 0.00% 0 ?

Jamaica 27.41% 2.28 0.28

Jamaica Black 27.41% 2.28 0.28

Martinique 74.51% 7.17 0.78

Martinique Black 74.51% 7.17 0.78
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Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Trinidad and Tobago 0.00% 0 ?

Trinidad and Tobago Asian 0.00% 0 ?

North America 87.89% 9.12 1.65

Canada 38.41% 2.21 0.32

Canada Amerindian 38.41% 2.21 0.32

Mexico 55.04% 4.3 0.44

Mexico Amerindian 42.59% 3.09 0.35

Mexico Mestizo 68.51% 5.97 0.64

United States 88.10% 9.17 1.68

United States Amerindian 42.79% 3.31 0.35

United States Asian 78.84% 8.03 0.95

United States Austronesian 58.09% 5.47 0.48

United States Black 71.50% 6.44 0.7

United States Caucasoid 90.15% 9.68 2.03

United States Hispanic 72.95% 6.9 0.74

United States Mestizo 72.23% 6.78 0.72

United States Polynesian 73.18% 5.87 0.75

Central America 49.91% 4.06 0.4

Costa Rica 24.31% 2.21 0.26

Costa Rica Mestizo 24.31% 2.21 0.26

Guatemala 49.16% 3.37 0.39

Guatemala Amerindian 49.16% 3.37 0.39

South America 58.59% 4.77 0.48

Argentina 62.67% 5.36 0.54

Argentina Amerindian 45.78% 3.4 0.37

Argentina Caucasoid 80.65% 7.85 1.03

Bolivia 77.82% 5.97 0.9

Bolivia Amerindian 77.82% 5.97 0.9

Brazil 63.80% 5.16 0.55

Brazil Amerindian 48.60% 3.23 0.39
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Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Brazil Caucasoid 84.39% 8.81 1.28

Brazil Mixed 77.50% 6.94 0.89

Brazil Mulatto 74.09% 6.89 0.77

Brazil Other 0.00% 0 ?

Chile 67.08% 5.82 0.61

Chile Amerindian 72.65% 6.09 0.73

Chile Hispanic 0.00% 0 0

Chile Mixed 52.65% 4.39 0.42

Colombia 54.02% 4.34 0.43

Colombia Amerindian 47.40% 3.65 0.38

Colombia Black 65.25% 5.28 0.58

Colombia Mestizo 56.31% 4.8 0.46

Ecuador 52.17% 3.75 1.25

Ecuador Amerindian 52.17% 3.75 1.25

Ecuador Black 0.00% 0 0

Paraguay 4.90% 0.29 0.63

Paraguay Amerindian 4.90% 0.29 0.63

Peru 49.87% 3.47 0.4

Peru Amerindian 49.87% 3.47 0.4

Peru Mestizo 0.00% 0 0

Venezuela 3.01% 0.06 0.21

Venezuela Amerindian 0.00% 0 0

Venezuela Caucasoid 0.00% 0 ?

Venezuela Mestizo 0.00% 0 ?

Venezuela Mixed 3.17% 0.06 0.21

Oceania 59.87% 5.38 0.5

American Samoa 0.00% 0 ?

American Samoa Polynesian 0.00% 0 ?

Australia 33.15% 2.21 0.3

Australia Australian Aborigines 33.15% 2.21 0.3

(continued)

A Computational Vaccine Designing Approach for MERS-CoV Infections 101



Table 7
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Australia Caucasoid 0.00% 0 ?

Chile 67.08% 5.82 0.61

Chile Amerindian 72.65% 6.09 0.73

Cook Islands 78.59% 6.44 0.93

Cook Islands Polynesian 78.59% 6.44 0.93

Fiji 79.87% 7.5 0.99

Fiji Melanesian 79.87% 7.5 0.99

Kiribati 10.89% 0.85 0.22

Kiribati Micronesian 10.89% 0.85 0.22

Nauru 38.66% 3.4 0.33

Nauru Micronesian 38.66% 3.4 0.33

New Caledonia 81.41% 8.44 3.77

New Caledonia Melanesian 81.41% 8.44 3.77

New Zealand 84.46% 6.76 1.29

New Zealand Polynesian 84.46% 6.76 1.29

Niue 77.82% 4.27 0.9

Niue Polynesian 77.82% 4.27 0.9

Papua New Guinea 69.15% 7.16 0.65

Papua New Guinea Melanesian 69.15% 7.16 0.65

Samoa 80.86% 7.29 1.04

Samoa Polynesian 80.86% 7.29 1.04

Tokelau 55.11% 2.82 0.45

Tokelau Polynesian 55.11% 2.82 0.45

Tonga 71.91% 6.12 0.71

Tonga Polynesian 71.91% 6.12 0.71

Average 51.14% 4.7 ?

(Standard deviation) �32.55% �3.35 (?)

aProjected population coverage
bAverage number of epitope hits/HLA combinations recognized by the population
cMinimum number of epitope hits/HLA combinations recognized by 90% of the population
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represents 94.80%, South Korea and South Oriental Korea
(92.84%), China (88.77%), Iran and Iran Persian (91.53%%), Jor-
dan and Jordan Arab (76.80%), Oman and Oman Arab (95.82%),
Saudi Arabia and Saudi Arabia Arab (96.38%), Sudan (86.43%),
Sudan Arab (49.41%), Sudan Black (0.00%), and Sudan Mixed
(87.06%); see Table 8. Iran Kurd, United Arab Emirates, and
United Arab Emirates Arab were not mentioned and showed
results in this tool.

According to the percentage of MHC-I modified E protein
coverage population that represented 95.60% of the world popula-
tion, 112 countries showed a higher percentile rate especially Chile
Amerindian which represents 100.00%, 96 other countries showed
0% while in East Asia represents 94.80%, South Korea and South
Oriental Korea (92.84%), China (88.77%), Iran (91.53%), Iran
Persian (91.53%), Iran Kurd (0.00%), Jordan and Jordan Arab
(76.80%), Oman and Oman Arab (95.82%), Saudi Arabia and
Saudi Arabia Arab (96.38%), United Arab Emirates and United
Arab Emirates Arab (0.0%), Sudan (60.56%), Sudan Arab
(0.00%), Sudan Black (0.00%), and Sudan Mixed (60.56%); see
Table 9.

According to the percentile rates of MHC-II E protein cover-
age population that represented 81.81% of the world population,
63 countries showed a higher percentage especially Norway and
Norway Caucasoid (94.71%), 45 other countries showed from 0%
to less than 50% while in East Asia represents 94.80%, South Korea
and South Oriental Korea (85.32%), China (59.99%), Iran
(64.22%), Iran Persian (65.72%), Iran Kurd (55.78%), Saudi Arabia
and Saudi Arabia Arab (80.14%), United Arab Emirates and United
Arab Emirates Arab (32.92%), and Sudan and Sudan Mixed
(60.56%); see Table 10. Oman, Jordan, Sudan Black, and Arab
were not mentioned and showed results in this tool.

According to the percentage of MHC-II modified E protein
coverage population that represented 81.81% of the world popula-
tion, 62 countries showed a higher percentage especially Norway
and Norway Caucasoid (94.71%), 59 other countries showed 0%
while in East Asia represents 94.80%, South Korea and South
Oriental Korea (85.32%), China (59.99%), Iran (64.22%), Iran
Persian (65.72%), Iran Kurd (55.78%), Jordan and Jordan Arab
(52.88%), Oman and Oman Arab (0.00%), Saudi Arabia and Saudi
Arabia Arab (80.14%), United Arab Emirates and United Arab
Emirates Arab (32.92%), Sudan and Sudan Mixed (60.56%), and
Sudan Arab and Sudan Black (0.00%); see Table 11.

3.4 Homology

Modeling

The results of homology modeling were not shown here because
they are not necessary.
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Table 8
MHC-I coverage population for E protein

Population/Area

Class I

Coveragea Average hitb PC90c

World 95.60% 10.57 4.38

East Asia 94.80% 10.93 2.58

Japan 96.19% 11.44 3.12

Japan Oriental 96.19% 11.44 3.12

Korea, South 92.84% 10.41 2.16

Korea, South Oriental 92.84% 10.41 2.16

Mongolia 94.37% 10.07 3.12

Mongolia Oriental 94.37% 10.07 3.12

Northeast Asia 88.80% 9.38 0.89

China 88.77% 9.33 0.89

China Oriental 88.77% 9.33 0.89

Hong Kong 90.85% 10.01 1.91

Hong Kong Oriental 90.85% 10.01 1.91

South Asia 86.54% 8.03 0.74

India 82.00% 7.21 0.56

India Asian 82.00% 7.21 0.56

Pakistan 88.63% 8.74 1.76

Pakistan Asian 87.30% 8.38 1.58

Pakistan Mixed 91.12% 9.42 3.23

Sri Lanka 52.39% 3.74 0.84

Sri Lanka Asian 52.39% 3.74 0.84

Southeast Asia 87.81% 9.99 0.82

Indonesia 76.44% 7.8 0.42

Indonesia Austronesian 76.44% 7.8 0.42

Malaysia 76.30% 7.64 0.42

Malaysia Austronesian 40.59% 3.17 0.34

Malaysia Oriental 84.44% 9.02 0.64

Philippines 92.86% 11.56 8.01

Philippines Austronesian 92.86% 11.56 8.01

Singapore 85.74% 9.04 0.7

(continued)

104 Hiba Siddig Ibrahim and Shamsoun Khamis Kafi



Table 8
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Singapore Austronesian 82.82% 8.55 0.58

Singapore Oriental 88.96% 9.64 0.91

Taiwan 92.58% 11.31 6.08

Taiwan Oriental 92.58% 11.31 6.08

Thailand 82.85% 7.46 0.58

Thailand Oriental 82.85% 7.46 0.58

Vietnam 84.58% 8.55 0.65

Vietnam Oriental 84.58% 8.55 0.65

Southwest Asia 85.77% 7.59 0.7

Iran 91.53% 8.6 1.33

Iran Persian 91.53% 8.6 1.33

Israel 82.14% 7.29 0.56

Israel Arab 89.15% 9.13 0.92

Israel Jew 87.17% 7.84 0.78

Jordan 76.80% 6.52 0.43

Jordan Arab 76.80% 6.52 0.43

Oman 95.82% 9.96 3.04

Oman Arab 95.82% 9.96 3.04

Saudi Arabia 96.38% 9.87 3.65

Saudi Arabia Arab 96.38% 9.87 3.65

Europe 97.81% 11.07 5.29

Austria 98.78% 11.29 6

Austria Caucasoid 98.78% 11.29 6

Belgium 98.75% 10.62 6.02

Belgium Caucasoid 98.75% 10.62 6.02

Bulgaria 96.59% 11.08 4.52

Bulgaria Caucasoid 96.56% 11.25 4.57

Bulgaria Other 97.43% 10.02 4.35

Croatia 97.76% 11.79 6.12

Croatia Caucasoid 97.76% 11.79 6.12

(continued)
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Table 8
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Czech Republic 96.20% 9.39 4.33

Czech Republic Caucasoid 96.20% 9.39 4.33

England 99.29% 11.43 6.21

England Caucasoid 99.29% 11.43 6.21

Finland 99.80% 12.56 7.8

Finland Caucasoid 99.80% 12.56 7.8

France 98.05% 10.72 4.75

France Caucasoid 98.05% 10.72 4.75

Georgia 95.62% 10.98 4.48

Georgia Caucasoid 97.22% 11.66 6.21

Georgia Kurd 89.99% 9.26 1

Germany 99.07% 11.71 6.4

Germany Caucasoid 99.07% 11.71 6.4

Ireland Northern 99.40% 11.43 6.27

Ireland Northern Caucasoid 99.40% 11.43 6.27

Ireland South 98.83% 10.82 4.85

Ireland South Caucasoid 98.83% 10.82 4.85

Italy 96.52% 9.83 4.16

Italy Caucasoid 96.52% 9.83 4.16

Macedonia 11.83% 0.86 0.45

Macedonia Caucasoid 11.83% 0.86 0.45

Poland 97.99% 11.25 6.02

Poland Caucasoid 97.99% 11.25 6.02

Portugal 97.11% 10.98 4.73

Portugal Caucasoid 97.11% 10.98 4.73

Romania 97.94% 11.56 5.94

Romania Caucasoid 97.94% 11.56 5.94

Russia 96.71% 11.38 4.59

Russia Other 98.34% 12.46 6.71

Russia Siberian 97.30% 11.52 4.53
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Table 8
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Scotland 15.91% 0.81 0.24

Scotland Caucasoid 15.91% 0.81 0.24

Serbia 43.75% 0.78 0.18

Serbia Caucasoid 43.75% 0.78 0.18

Spain 71.85% 5.51 0.36

Spain Caucasoid 71.85% 5.51 0.36

Sweden 99.69% 12.61 6.84

Sweden Caucasoid 99.69% 12.61 6.84

Turkey 44.80% 3.58 1.45

Turkey Caucasoid 44.80% 3.58 1.45

East Africa 86.99% 6.96 0.77

Kenya 85.86% 6.62 0.71

Kenya Black 85.86% 6.62 0.71

Uganda 91.04% 8.19 1.48

Uganda Black 91.04% 8.19 1.48

Zambia 95.32% 7.98 4.01

Zambia Black 95.32% 7.98 4.01

Zimbabwe 91.57% 7.69 1.71

Zimbabwe Black 91.57% 7.69 1.71

West Africa 92.60% 8.71 1.67

Burkina Faso 58.50% 3.24 0.24

Burkina Faso Black 58.50% 3.24 0.24

Cape Verde 96.69% 10.09 4.14

Cape Verde Black 96.69% 10.09 4.14

Guinea-Bissau 92.66% 8.7 1.49

Guinea-Bissau Black 92.66% 8.7 1.49

Ivory Coast 58.05% 0.78 0.24

Ivory Coast Black 58.05% 0.78 0.24

Senegal 95.03% 9.11 4

Senegal Black 95.03% 9.11 4

(continued)
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Table 8
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Central Africa 84.98% 6.7 0.67

Cameroon 88.67% 7.35 0.88

Cameroon Black 88.67% 7.35 0.88

Central African Republic 10.75% 0.27 0.11

Central African Republic Black 10.75% 0.27 0.11

Rwanda 23.09% 1.33 0.13

Rwanda Black 23.09% 1.33 0.13

Sao Tome and Principe 95.54% 8.72 2.29

Sao Tome and Principe Black 95.54% 8.72 2.29

North Africa 91.87% 8.61 1.86

Mali 94.28% 8.82 1.74

Mali Black 94.28% 8.82 1.74

Morocco 95.95% 9.47 4.19

Morocco Arab 97.89% 10.2 4.47

Morocco Caucasoid 94.32% 8.96 4.02

Sudan 86.43% 7.53 0.74

Sudan Arab 49.41% 4.62 0.59

Sudan Black 0.00% 0 0

Sudan Mixed 87.06% 7.56 0.77

Tunisia 96.04% 9.85 4.19

Tunisia Arab 96.04% 9.85 4.19

South Africa 91.05% 8 2.1

South Africa 91.05% 8 2.1

South Africa Black 86.71% 6.67 0.75

South Africa Other 93.82% 9.59 2.73

West Indies 97.34% 10.78 4.6

Cuba 97.20% 10.65 4.53

Cuba Caucasoid 97.64% 11.2 4.77

Cuba Mulatto 96.58% 9.66 4.09

Martinique 22.56% 2.03 1.16
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Table 8
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Martinique Black 22.56% 2.03 1.16

North America 96.88% 10.98 4.65

Mexico 97.10% 11 6.02

Mexico Amerindian 99.86% 13 7.84

Mexico Mestizo 96.78% 10.7 4.46

United States 96.93% 10.98 4.66

United States Amerindian 99.44% 13.15 8.19

United States Asian 92.39% 10.32 2.29

United States Black 94.18% 8.83 2.54

United States Caucasoid 98.65% 11.4 6.08

United States Hispanic 97.46% 11.01 4.77

United States Mestizo 98.09% 11.2 4.97

United States Polynesian 97.53% 11.57 3.62

Central America 5.10% 0.16 0.11

Guatemala 5.10% 0.16 0.11

Guatemala Amerindian 5.10% 0.16 0.11

South America 86.24% 8.01 0.73

Argentina 98.02% 8.76 2.61

Argentina Amerindian 98.02% 8.76 2.61

Brazil 93.72% 9.43 2.69

Brazil Amerindian 92.35% 8.37 2.16

Brazil Caucasoid 97.68% 11.33 5.35

Brazil Mixed 95.06% 9.85 3.75

Chile 94.93% 10.63 4.37

Chile Amerindian 100.00% 14.31 9.11

Chile Mixed 87.43% 8.16 0.8

Colombia 9.86% 0.76 0.67

Colombia Black 5.79% 0.42 0.64

Colombia Mestizo 14.81% 1.17 0.7

Ecuador 76.97% 8.77 1.74

(continued)
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3.5 Confirmation

of Amino Acid Change

in Spike Glycoprotein

(S) and Envelope

Protein (E) Sequence

The results of confirmatory amino acid change were not shown
here because they are not necessary.

3.6 Peptide

Search Tool

The results of peptide search tool showed presence of selected
peptide sequence in another organisms such as Leishmania dono-
vani, Drosophila sechellia (fruit fly), Leishmania infantum,

Table 8
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Ecuador Amerindian 76.97% 8.77 1.74

Peru 99.98% 13.69 8.37

Peru Amerindian 99.98% 13.69 8.37

Venezuela 88.37% 9.05 0.86

Venezuela Amerindian 88.88% 8.98 0.9

Venezuela Caucasoid 9.18% 0.83 0.99

Venezuela Mestizo 7.84% 0.71 0.98

Oceania 91.82% 10.92 4.06

American Samoa 95.26% 12.14 7.15

American Samoa Polynesian 95.26% 12.14 7.15

Australia 89.30% 9.93 0.93

Australia Australian Aborigines 82.36% 9.31 0.57

Australia Caucasoid 99.06% 11.46 6.16

Chile 94.93% 10.63 4.37

Chile Amerindian 100.00% 14.31 9.11

New Caledonia 96.70% 12.14 8.63

New Caledonia Melanesian 96.70% 12.14 8.63

Papua New Guinea 97.26% 12.58 8.57

Papua New Guinea Melanesian 97.26% 12.58 8.57

Average 55.31% 5.73 ?

(Standard deviation) �44.16% �4.92 (?)

aProjected population coverage
bAverage number of epitope hits/HLA combinations recognized by the population
cMinimum number of epitope hits/HLA combinations recognized by 90% of the population
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Table 9
MHC-I coverage population for modified E protein

Population/Area

Class I

Coveragea Average hitb PC90c

World 95.60% 10.57 4.38

East Asia 94.80% 10.93 2.58

Japan 96.19% 11.44 3.12

Japan Oriental 96.19% 11.44 3.12

Korea, South 92.84% 10.41 2.16

Korea, South Oriental 92.84% 10.41 2.16

Mongolia 94.37% 10.07 3.12

Mongolia Oriental 94.37% 10.07 3.12

Northeast Asia 88.80% 9.38 0.89

China 88.77% 9.33 0.89

China Oriental 88.77% 9.33 0.89

Hong Kong 90.85% 10.01 1.91

Hong Kong Oriental 90.85% 10.01 1.91

South Asia 86.54% 8.03 0.74

India 82.00% 7.21 0.56

India Asian 82.00% 7.21 0.56

Pakistan 88.63% 8.74 1.76

Pakistan Asian 87.30% 8.38 1.58

Pakistan Mixed 91.12% 9.42 3.23

Sri Lanka 52.39% 3.74 0.84

Sri Lanka Asian 52.39% 3.74 0.84

Southeast Asia 87.81% 9.99 0.82

Borneo 0.00% 0 ?

Borneo Austronesian 0.00% 0 ?

Indonesia 76.44% 7.8 0.42

Indonesia Austronesian 76.44% 7.8 0.42

Malaysia 76.30% 7.64 0.42

Malaysia Austronesian 40.59% 3.17 0.34

Malaysia Oriental 84.44% 9.02 0.64

Philippines 92.86% 11.56 8.01

(continued)
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Philippines Austronesian 92.86% 11.56 8.01

Singapore 85.74% 9.04 0.7

Singapore Austronesian 82.82% 8.55 0.58

Singapore Oriental 88.96% 9.64 0.91

Taiwan 92.58% 11.31 6.08

Taiwan Oriental 92.58% 11.31 6.08

Thailand 82.85% 7.46 0.58

Thailand Oriental 82.85% 7.46 0.58

Vietnam 84.58% 8.55 0.65

Vietnam Oriental 84.58% 8.55 0.65

Southwest Asia 85.77% 7.59 0.7

Iran 91.53% 8.6 1.33

Iran Kurd 0.00% 0 ?

Iran Persian 91.53% 8.6 1.33

Israel 82.14% 7.29 0.56

Israel Arab 89.15% 9.13 0.92

Israel Jew 87.17% 7.84 0.78

Jordan 76.80% 6.52 0.43

Jordan Arab 76.80% 6.52 0.43

Lebanon 0.00% 0 0

Lebanon Arab 0.00% 0 ?

Lebanon Mixed 0.00% 0 0

Oman 95.82% 9.96 3.04

Oman Arab 95.82% 9.96 3.04

Saudi Arabia 96.38% 9.87 3.65

Saudi Arabia Arab 96.38% 9.87 3.65

United Arab Emirates 0.00% 0 0

United Arab Emirates Arab 0.00% 0 0

Europe 97.81% 11.07 5.29

Austria 98.78% 11.29 6
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Austria Caucasoid 98.78% 11.29 6

Belarus 0.00% 0 ?

Belarus Caucasoid 0.00% 0 ?

Belgium 98.75% 10.62 6.02

Belgium Caucasoid 98.75% 10.62 6.02

Bulgaria 96.59% 11.08 4.52

Bulgaria Caucasoid 96.56% 11.25 4.57

Bulgaria Other 97.43% 10.02 4.35

Croatia 97.76% 11.79 6.12

Croatia Caucasoid 97.76% 11.79 6.12

Czech Republic 96.20% 9.39 4.33

Czech Republic Caucasoid 96.20% 9.39 4.33

Czech Republic Other 0.00% 0 ?

Denmark 0.00% 0 0

Denmark Caucasoid 0.00% 0 0

England 99.29% 11.43 6.21

England Caucasoid 99.29% 11.43 6.21

England Jew 0.00% 0 0

England Mixed 0.00% 0 ?

Finland 99.80% 12.56 7.8

Finland Caucasoid 99.80% 12.56 7.8

France 98.05% 10.72 4.75

France Caucasoid 98.05% 10.72 4.75

Georgia 95.62% 10.98 4.48

Georgia Caucasoid 97.22% 11.66 6.21

Georgia Kurd 89.99% 9.26 1

Germany 99.07% 11.71 6.4

Germany Caucasoid 99.07% 11.71 6.4

Greece 0.00% 0 ?

Greece Caucasoid 0.00% 0 ?

(continued)
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Ireland Northern 99.40% 11.43 6.27

Ireland Northern Caucasoid 99.40% 11.43 6.27

Ireland South 98.83% 10.82 4.85

Ireland South Caucasoid 98.83% 10.82 4.85

Italy 96.52% 9.83 4.16

Italy Caucasoid 96.52% 9.83 4.16

Macedonia 11.83% 0.86 0.45

Macedonia Caucasoid 11.83% 0.86 0.45

Netherlands 0.00% 0 ?

Netherlands Caucasoid 0.00% 0 ?

Norway 0.00% 0 ?

Norway Caucasoid 0.00% 0 ?

Poland 97.99% 11.25 6.02

Poland Caucasoid 97.99% 11.25 6.02

Portugal 97.11% 10.98 4.73

Portugal Caucasoid 97.11% 10.98 4.73

Romania 97.94% 11.56 5.94

Romania Caucasoid 97.94% 11.56 5.94

Russia 96.71% 11.38 4.59

Russia Caucasoid 0.00% 0 0

Russia Mixed 0.00% 0 0

Russia Other 98.34% 12.46 6.71

Russia Siberian 97.30% 11.52 4.53

Scotland 15.91% 0.81 0.24

Scotland Caucasoid 15.91% 0.81 0.24

Serbia 43.75% 0.78 0.18

Serbia Caucasoid 43.75% 0.78 0.18

Slovakia 0.00% 0 ?

Slovakia Caucasoid 0.00% 0 ?

Slovenia 0.00% 0 ?
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Slovenia Caucasoid 0.00% 0 ?

Spain 71.85% 5.51 0.36

Spain Caucasoid 71.85% 5.51 0.36

Spain Jew 0.00% 0 ?

Spain Other 0.00% 0 ?

Sweden 99.69% 12.61 6.84

Sweden Caucasoid 99.69% 12.61 6.84

Switzerland 0.00% 0 0

Switzerland Caucasoid 0.00% 0 0

Turkey 44.80% 3.58 1.45

Turkey Caucasoid 44.80% 3.58 1.45

Ukraine 0.00% 0 ?

Ukraine Caucasoid 0.00% 0 ?

United Kingdom 0.00% 0 0

United Kingdom Caucasoid 0.00% 0 0

Wales 0.00% 0 0

Wales Caucasoid 0.00% 0 0

East Africa 86.99% 6.96 0.77

Kenya 85.86% 6.62 0.71

Kenya Black 85.86% 6.62 0.71

Uganda 91.04% 8.19 1.48

Uganda Black 91.04% 8.19 1.48

Zambia 95.32% 7.98 4.01

Zambia Black 95.32% 7.98 4.01

Zimbabwe 91.57% 7.69 1.71

Zimbabwe Black 91.57% 7.69 1.71

West Africa 92.60% 8.71 1.67

Burkina Faso 58.50% 3.24 0.24

Burkina Faso Black 58.50% 3.24 0.24

Cape Verde 96.69% 10.09 4.14
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Cape Verde Black 96.69% 10.09 4.14

Gambia 0.00% 0 ?

Gambia Black 0.00% 0 ?

Ghana 0.00% 0 0

Ghana Black 0.00% 0 0

Guinea-Bissau 92.66% 8.7 1.49

Guinea-Bissau Black 92.66% 8.7 1.49

Ivory Coast 58.05% 0.78 0.24

Ivory Coast Black 58.05% 0.78 0.24

Liberia 0.00% 0 ?

Liberia Black 0.00% 0 ?

Nigeria 0.00% 0 ?

Nigeria Black 0.00% 0 ?

Senegal 95.03% 9.11 4

Senegal Black 95.03% 9.11 4

Central Africa 84.98% 6.7 0.67

Cameroon 88.67% 7.35 0.88

Cameroon Black 88.67% 7.35 0.88

Central African Republic 10.75% 0.27 0.11

Central African Republic Black 10.75% 0.27 0.11

Congo 0.00% 0 ?

Congo Black 0.00% 0 ?

Equatorial Guinea 0.00% 0 0

Equatorial Guinea Black 0.00% 0 0

Gabon 0.00% 0 ?

Gabon Black 0.00% 0 ?

Rwanda 23.09% 1.33 0.13

Rwanda Black 23.09% 1.33 0.13

Sao Tome and Principe 95.54% 8.72 2.29

Sao Tome and Principe Black 95.54% 8.72 2.29
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

North Africa 91.87% 8.61 1.86

Algeria 0.00% 0 ?

Algeria Arab 0.00% 0 ?

Ethiopia 0.00% 0 ?

Ethiopia Black 0.00% 0 ?

Mali 94.28% 8.82 1.74

Mali Black 94.28% 8.82 1.74

Morocco 95.95% 9.47 4.19

Morocco Arab 97.89% 10.2 4.47

Morocco Caucasoid 94.32% 8.96 4.02

Sudan 86.43% 7.53 0.74

Sudan Arab 49.41% 4.62 0.59

Sudan Black 0.00% 0 0

Sudan Mixed 87.06% 7.56 0.77

Tunisia 96.04% 9.85 4.19

Tunisia Arab 96.04% 9.85 4.19

Tunisia Berber 0.00% 0 ?

South Africa 91.05% 8 2.1

South Africa 91.05% 8 2.1

South Africa Black 86.71% 6.67 0.75

South Africa Other 93.82% 9.59 2.73

West Indies 97.34% 10.78 4.6

Cuba 97.20% 10.65 4.53

Cuba Caucasoid 97.64% 11.2 4.77

Cuba Mixed 0.00% 0 ?

Cuba Mulatto 96.58% 9.66 4.09

Jamaica 0.00% 0 ?

Jamaica Black 0.00% 0 ?

Martinique 22.56% 2.03 1.16

Martinique Black 22.56% 2.03 1.16

(continued)

A Computational Vaccine Designing Approach for MERS-CoV Infections 117



Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Trinidad and Tobago 0.00% 0 0

Trinidad and Tobago Asian 0.00% 0 0

North America 96.88% 10.98 4.65

Canada 0.00% 0 ?

Canada Amerindian 0.00% 0 ?

Mexico 97.10% 11 6.02

Mexico Amerindian 99.86% 13 7.84

Mexico Mestizo 96.78% 10.7 4.46

United States 96.93% 10.98 4.66

United States Amerindian 99.44% 13.15 8.19

United States Asian 92.39% 10.32 2.29

United States Austronesian 0.00% 0 ?

United States Black 94.18% 8.83 2.54

United States Caucasoid 98.65% 11.4 6.08

United States Hispanic 97.46% 11.01 4.77

United States Mestizo 98.09% 11.2 4.97

United States Polynesian 97.53% 11.57 3.62

Central America 5.10% 0.16 0.11

Costa Rica 0.00% 0 ?

Costa Rica Mestizo 0.00% 0 ?

Guatemala 5.10% 0.16 0.11

Guatemala Amerindian 5.10% 0.16 0.11

South America 86.24% 8.01 0.73

Argentina 98.02% 8.76 2.61

Argentina Amerindian 98.02% 8.76 2.61

Argentina Caucasoid 0.00% 0 ?

Bolivia 0.00% 0 ?

Bolivia Amerindian 0.00% 0 ?

Brazil 93.72% 9.43 2.69

Brazil Amerindian 92.35% 8.37 2.16
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Brazil Caucasoid 97.68% 11.33 5.35

Brazil Mixed 95.06% 9.85 3.75

Brazil Mulatto 0.00% 0 ?

Brazil Other 0.00% 0 0

Chile 94.93% 10.63 4.37

Chile Amerindian 100.00% 14.31 9.11

Chile Hispanic 0.00% 0 ?

Chile Mixed 87.43% 8.16 0.8

Colombia 9.86% 0.76 0.67

Colombia Amerindian 0.00% 0 0

Colombia Black 5.79% 0.42 0.64

Colombia Mestizo 14.81% 1.17 0.7

Ecuador 76.97% 8.77 1.74

Ecuador Amerindian 76.97% 8.77 1.74

Ecuador Black 0.00% 0 ?

Paraguay 0.00% 0 ?

Paraguay Amerindian 0.00% 0 ?

Peru 99.98% 13.69 8.37

Peru Amerindian 99.98% 13.69 8.37

Peru Mestizo 0.00% 0 0

Venezuela 88.37% 9.05 0.86

Venezuela Amerindian 88.88% 8.98 0.9

Venezuela Caucasoid 9.18% 0.83 0.99

Venezuela Mestizo 7.84% 0.71 0.98

Venezuela Mixed 0.00% 0 ?

Oceania 91.82% 10.92 4.06

American Samoa 95.26% 12.14 7.15

American Samoa Polynesian 95.26% 12.14 7.15

Australia 89.30% 9.93 0.93

Australia Australian Aborigines 82.36% 9.31 0.57
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Table 9
(continued)

Population/Area

Class I

Coveragea Average hitb PC90c

Australia Caucasoid 99.06% 11.46 6.16

Chile 94.93% 10.63 4.37

Chile Amerindian 100.00% 14.31 9.11

Cook Islands 0.00% 0 ?

Cook Islands Polynesian 0.00% 0 ?

Fiji 0.00% 0 ?

Fiji Melanesian 0.00% 0 ?

Kiribati 0.00% 0 ?

Kiribati Micronesian 0.00% 0 ?

Nauru 0.00% 0 ?

Nauru Micronesian 0.00% 0 ?

New Caledonia 96.70% 12.14 8.63

New Caledonia Melanesian 96.70% 12.14 8.63

New Zealand 0.00% 0 ?

New Zealand Polynesian 0.00% 0 ?

Niue 0.00% 0 ?

Niue Polynesian 0.00% 0 ?

Papua New Guinea 97.26% 12.58 8.57

Papua New Guinea Melanesian 97.26% 12.58 8.57

Samoa 0.00% 0 ?

Samoa Polynesian 0.00% 0 ?

Tokelau 0.00% 0 ?

Tokelau Polynesian 0.00% 0 ?

Tonga 0.00% 0 ?

Tonga Polynesian 0.00% 0 ?

Average 55.31% 5.73 ?

(Standard deviation) �44.16% �4.92 (?)

aProjected population coverage
bAverage number of epitope hits/HLA combinations recognized by the population
cMinimum number of epitope hits/HLA combinations recognized by 90% of the population
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Table 10
The MHC-II coverage population for E protein

Population/Area

Class II

Coveragea Average hitb PC90c

World 81.81% 8.16 1.1

East Asia 81.82% 8.83 1.1

Japan 74.83% 7.85 0.79

Japan Oriental 74.83% 7.85 0.79

Korea, South 85.32% 9.56 1.36

Korea, South Oriental 85.32% 9.56 1.36

Mongolia 81.85% 7.79 1.1

Mongolia Oriental 81.85% 7.79 1.1

Northeast Asia 59.99% 5.33 0.5

China 59.99% 5.33 0.5

China Oriental 59.99% 5.33 0.5

South Asia 75.38% 7.4 0.81

India 74.99% 7.35 0.8

India Asian 74.99% 7.35 0.8

Pakistan 1.18% 0.09 0.81

Pakistan Asian 1.45% 0.12 0.81

Southeast Asia 56.98% 4.98 0.46

Borneo 49.02% 4.03 0.39

Borneo Austronesian 49.02% 4.03 0.39

Indonesia 47.84% 4.4 0.38

Indonesia Austronesian 47.84% 4.4 0.38

Malaysia 57.99% 5.34 0.48

Malaysia Austronesian 55.38% 5.12 0.45

Malaysia Oriental 70.35% 6.57 0.67

Philippines 28.56% 2.52 0.28

Philippines Austronesian 28.56% 2.52 0.28

Singapore 65.78% 6.04 0.58

Singapore Austronesian 65.78% 6.04 0.58

Singapore Oriental 0.00% 0 ?

Taiwan 67.88% 6.13 0.62
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Table 10
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Taiwan Oriental 67.88% 6.13 0.62

Thailand 63.90% 5.92 0.55

Thailand Oriental 63.90% 5.92 0.55

Vietnam 54.44% 4.43 0.44

Vietnam Oriental 54.44% 4.43 0.44

Southwest Asia 43.93% 3.65 0.36

Iran 64.22% 5.65 0.56

Iran Kurd 55.78% 4.74 0.45

Iran Persian 65.72% 5.83 0.58

Israel 68.79% 6.4 0.64

Israel Arab 67.51% 6.2 0.62

Israel Jew 69.65% 6.51 0.66

Jordan 52.88% 4.56 0.42

Jordan Arab 52.88% 4.56 0.42

Lebanon 70.46% 6.48 0.68

Lebanon Arab 70.46% 6.48 0.68

Saudi Arabia 80.14% 8.31 1.01

Saudi Arabia Arab 80.14% 8.31 1.01

United Arab Emirates 32.92% 0.66 0.3

United Arab Emirates Arab 32.92% 0.66 0.3

Europe 85.83% 8.88 1.41

Austria 93.34% 10.8 2.82

Austria Caucasoid 93.34% 10.8 2.82

Belarus 43.81% 3.55 1.25

Belarus Caucasoid 43.81% 3.55 1.25

Belgium 79.39% 7.16 0.97

Belgium Caucasoid 79.39% 7.16 0.97

Bulgaria 57.23% 4.95 0.47

Bulgaria Caucasoid 57.23% 4.95 0.47

Croatia 66.71% 5.89 0.6
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Table 10
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Croatia Caucasoid 66.71% 5.89 0.6

Czech Republic 86.21% 9.23 1.45

Czech Republic Caucasoid 88.76% 9.66 1.78

Czech Republic Other 64.14% 6.4 0.56

Denmark 88.98% 9.04 1.81

Denmark Caucasoid 88.98% 9.04 1.81

England 93.48% 10.49 2.74

England Caucasoid 93.48% 10.49 2.74

Finland 51.14% 4.24 0.41

Finland Caucasoid 51.14% 4.24 0.41

France 88.54% 9.29 1.74

France Caucasoid 88.54% 9.29 1.74

Georgia 75.05% 7.09 0.8

Georgia Caucasoid 75.05% 7.09 0.8

Germany 91.14% 10.14 2.26

Germany Caucasoid 91.14% 10.14 2.26

Greece 66.92% 6.29 0.6

Greece Caucasoid 66.92% 6.29 0.6

Ireland Northern 94.65% 10.58 2.89

Ireland Northern Caucasoid 94.65% 10.58 2.89

Ireland South 93.15% 10 2.51

Ireland South Caucasoid 93.15% 10 2.51

Italy 85.90% 5.93 1.42

Italy Caucasoid 85.90% 5.93 1.42

Macedonia 66.53% 6.2 0.6

Macedonia Caucasoid 66.53% 6.2 0.6

Netherlands 83.44% 8.33 1.21

Netherlands Caucasoid 83.44% 8.33 1.21

Norway 94.71% 10.56 3.01

Norway Caucasoid 94.71% 10.56 3.01
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Table 10
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Poland 84.46% 8.85 1.29

Poland Caucasoid 84.46% 8.85 1.29

Portugal 78.00% 7.74 0.91

Portugal Caucasoid 78.00% 7.74 0.91

Russia 77.62% 7.24 0.89

Russia Caucasoid 88.52% 9.81 1.74

Russia Other 85.01% 9.2 1.33

Russia Siberian 78.83% 7.14 0.94

Scotland 90.82% 10.1 2.2

Scotland Caucasoid 90.82% 10.1 2.2

Slovakia 18.28% 0.37 0.24

Slovakia Caucasoid 18.28% 0.37 0.24

Slovenia 84.85% 8.74 1.32

Slovenia Caucasoid 84.85% 8.74 1.32

Spain 80.51% 8.28 1.03

Spain Caucasoid 80.84% 8.34 1.04

Spain Other 6.30% 0.57 0.96

Sweden 88.07% 9.13 1.68

Sweden Caucasoid 88.07% 9.13 1.68

Turkey 76.19% 7.3 0.84

Turkey Caucasoid 76.19% 7.3 0.84

Ukraine 50.64% 4.17 1.42

Ukraine Caucasoid 50.64% 4.17 1.42

East Africa 68.30% 5.65 0.63

Zimbabwe 68.30% 5.65 0.63

Zimbabwe Black 68.30% 5.65 0.63

West Africa 65.23% 6.13 0.58

Cape Verde 80.38% 8.1 1.02

Cape Verde Black 80.38% 8.1 1.02

Guinea-Bissau 71.16% 7.04 0.69
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Table 10
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Guinea-Bissau Black 71.16% 7.04 0.69

Senegal 30.28% 2.32 0.29

Senegal Black 30.28% 2.32 0.29

Central Africa 62.71% 5.17 0.54

Cameroon 49.87% 3.31 0.4

Cameroon Black 49.87% 3.31 0.4

Central African Republic 82.69% 6.47 1.16

Central African Republic Black 82.69% 6.47 1.16

Congo 68.66% 5.93 0.64

Congo Black 68.66% 5.93 0.64

Equatorial Guinea 47.58% 3.55 0.38

Equatorial Guinea Black 47.58% 3.55 0.38

Gabon 41.78% 3.84 1.2

Gabon Black 41.78% 3.84 1.2

Rwanda 62.79% 5.38 0.54

Rwanda Black 62.79% 5.38 0.54

Sao Tome and Principe 66.50% 4.89 0.6

Sao Tome and Principe Black 66.50% 4.89 0.6

North Africa 75.06% 7 0.8

Algeria 77.15% 7.25 0.88

Algeria Arab 77.15% 7.25 0.88

Ethiopia 83.00% 8.71 1.18

Ethiopia Black 83.00% 8.71 1.18

Morocco 83.44% 8.14 1.21

Morocco Arab 85.07% 8.25 1.34

Morocco Caucasoid 79.75% 8.07 0.99

Sudan 60.56% 4.52 0.51

Sudan Mixed 60.56% 4.52 0.51

Tunisia 74.26% 6.82 0.78

Tunisia Arab 74.97% 6.78 0.8
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Table 10
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Tunisia Berber 74.47% 7.43 0.78

South Africa 32.10% 1.11 0.29

South Africa 32.10% 1.11 0.29

South Africa Black 32.10% 1.11 0.29

West Indies 69.22% 6.67 0.65

Cuba 85.48% 9.66 1.38

Cuba Mixed 85.48% 9.66 1.38

Jamaica 27.41% 2.28 0.28

Jamaica Black 27.41% 2.28 0.28

Martinique 74.51% 7.17 0.78

Martinique Black 74.51% 7.17 0.78

North America 87.89% 9.12 1.65

Canada 38.41% 2.21 0.32

Canada Amerindian 38.41% 2.21 0.32

Mexico 55.04% 4.3 0.44

Mexico Amerindian 42.59% 3.09 0.35

Mexico Mestizo 68.51% 5.97 0.64

United States 88.10% 9.17 1.68

United States Amerindian 42.79% 3.31 0.35

United States Asian 78.84% 8.03 0.95

United States Austronesian 58.09% 5.47 0.48

United States Black 71.50% 6.44 0.7

United States Caucasoid 90.15% 9.68 2.03

United States Hispanic 72.95% 6.9 0.74

United States Mestizo 72.23% 6.78 0.72

United States Polynesian 73.18% 5.87 0.75

Central America 49.91% 4.06 0.4

Costa Rica 24.31% 2.21 0.26

Costa Rica Mestizo 24.31% 2.21 0.26

Guatemala 49.16% 3.37 0.39

(continued)

126 Hiba Siddig Ibrahim and Shamsoun Khamis Kafi



Table 10
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Guatemala Amerindian 49.16% 3.37 0.39

South America 58.59% 4.77 0.48

Argentina 62.67% 5.36 0.54

Argentina Amerindian 45.78% 3.4 0.37

Argentina Caucasoid 80.65% 7.85 1.03

Bolivia 77.82% 5.97 0.9

Bolivia Amerindian 77.82% 5.97 0.9

Brazil 63.80% 5.16 0.55

Brazil Amerindian 48.60% 3.23 0.39

Brazil Caucasoid 84.39% 8.81 1.28

Brazil Mixed 77.50% 6.94 0.89

Brazil Mulatto 74.09% 6.89 0.77

Chile 67.08% 5.82 0.61

Chile Amerindian 72.65% 6.09 0.73

Chile Mixed 52.65% 4.39 0.42

Colombia 54.02% 4.34 0.43

Colombia Amerindian 47.40% 3.65 0.38

Colombia Black 65.25% 5.28 0.58

Colombia Mestizo 56.31% 4.8 0.46

Ecuador 52.17% 3.75 1.25

Ecuador Amerindian 52.17% 3.75 1.25

Paraguay 4.90% 0.29 0.63

Paraguay Amerindian 4.90% 0.29 0.63

Peru 49.87% 3.47 0.4

Peru Amerindian 49.87% 3.47 0.4

Venezuela 3.01% 0.06 0.21

Venezuela Mixed 3.17% 0.06 0.21

Oceania 59.87% 5.38 0.5

Australia 33.15% 2.21 0.3

Australia Australian Aborigines 33.15% 2.21 0.3
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Table 10
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Chile 67.08% 5.82 0.61

Chile Amerindian 72.65% 6.09 0.73

Cook Islands 78.59% 6.44 0.93

Cook Islands Polynesian 78.59% 6.44 0.93

Fiji 79.87% 7.5 0.99

Fiji Melanesian 79.87% 7.5 0.99

Kiribati 10.89% 0.85 0.22

Kiribati Micronesian 10.89% 0.85 0.22

Nauru 38.66% 3.4 0.33

Nauru Micronesian 38.66% 3.4 0.33

New Caledonia 81.41% 8.44 3.77

New Caledonia Melanesian 81.41% 8.44 3.77

New Zealand 84.46% 6.76 1.29

New Zealand Polynesian 84.46% 6.76 1.29

Niue 77.82% 4.27 0.9

Niue Polynesian 77.82% 4.27 0.9

Papua New Guinea 69.15% 7.16 0.65

Papua New Guinea Melanesian 69.15% 7.16 0.65

Samoa 80.86% 7.29 1.04

Samoa Polynesian 80.86% 7.29 1.04

Tokelau 55.11% 2.82 0.45

Tokelau Polynesian 55.11% 2.82 0.45

Tonga 71.91% 6.12 0.71

Tonga Polynesian 71.91% 6.12 0.71

Average 51.14% 4.7 ?

(Standard deviation) �32.55% �3.35 (?)

aProjected population coverage
bAverage number of epitope hits/HLA combinations recognized by the population
cMinimum number of epitope hits/HLA combinations recognized by 90% of the population
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Table 11
The MHC-II coverage population for modified E protein

Population/Area

Class II

Coveragea Average hitb PC90c

World 81.81% 8.16 1.1

East Asia 81.82% 8.83 1.1

Japan 74.83% 7.85 0.79

Japan Oriental 74.83% 7.85 0.79

Korea, South 85.32% 9.56 1.36

Korea, South Oriental 85.32% 9.56 1.36

Mongolia 81.85% 7.79 1.1

Mongolia Oriental 81.85% 7.79 1.1

Northeast Asia 59.99% 5.33 0.5

China 59.99% 5.33 0.5

China Oriental 59.99% 5.33 0.5

Hong Kong 0.00% 0 ?

Hong Kong Oriental 0.00% 0 ?

South Asia 75.38% 7.4 0.81

India 74.99% 7.35 0.8

India Asian 74.99% 7.35 0.8

Pakistan 1.18% 0.09 0.81

Pakistan Asian 1.45% 0.12 0.81

Pakistan Mixed 0.00% 0 0

Sri Lanka 0.00% 0 ?

Sri Lanka Asian 0.00% 0 ?

Southeast Asia 56.98% 4.98 0.46

Borneo 49.02% 4.03 0.39

Borneo Austronesian 49.02% 4.03 0.39

Indonesia 47.84% 4.4 0.38

Indonesia Austronesian 47.84% 4.4 0.38

Malaysia 57.99% 5.34 0.48

Malaysia Austronesian 55.38% 5.12 0.45

Malaysia Oriental 70.35% 6.57 0.67

Philippines 28.56% 2.52 0.28
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Philippines Austronesian 28.56% 2.52 0.28

Singapore 65.78% 6.04 0.58

Singapore Austronesian 65.78% 6.04 0.58

Singapore Oriental 0.00% 0 ?

Taiwan 67.88% 6.13 0.62

Taiwan Oriental 67.88% 6.13 0.62

Thailand 63.90% 5.92 0.55

Thailand Oriental 63.90% 5.92 0.55

Vietnam 54.44% 4.43 0.44

Vietnam Oriental 54.44% 4.43 0.44

Southwest Asia 43.93% 3.65 0.36

Iran 64.22% 5.65 0.56

Iran Kurd 55.78% 4.74 0.45

Iran Persian 65.72% 5.83 0.58

Israel 68.79% 6.4 0.64

Israel Arab 67.51% 6.2 0.62

Israel Jew 69.65% 6.51 0.66

Jordan 52.88% 4.56 0.42

Jordan Arab 52.88% 4.56 0.42

Lebanon 70.46% 6.48 0.68

Lebanon Arab 70.46% 6.48 0.68

Lebanon Mixed 0.00% 0 ?

Oman 0.00% 0 ?

Oman Arab 0.00% 0 ?

Saudi Arabia 80.14% 8.31 1.01

Saudi Arabia Arab 80.14% 8.31 1.01

United Arab Emirates 32.92% 0.66 0.3

United Arab Emirates Arab 32.92% 0.66 0.3

Europe 85.83% 8.88 1.41

Austria 93.34% 10.8 2.82
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Austria Caucasoid 93.34% 10.8 2.82

Belarus 43.81% 3.55 1.25

Belarus Caucasoid 43.81% 3.55 1.25

Belgium 79.39% 7.16 0.97

Belgium Caucasoid 79.39% 7.16 0.97

Bulgaria 57.23% 4.95 0.47

Bulgaria Caucasoid 57.23% 4.95 0.47

Bulgaria Other 0.00% 0 ?

Croatia 66.71% 5.89 0.6

Croatia Caucasoid 66.71% 5.89 0.6

Czech Republic 86.21% 9.23 1.45

Czech Republic Caucasoid 88.76% 9.66 1.78

Czech Republic Other 64.14% 6.4 0.56

Denmark 88.98% 9.04 1.81

Denmark Caucasoid 88.98% 9.04 1.81

England 93.48% 10.49 2.74

England Caucasoid 93.48% 10.49 2.74

England Jew 0.00% 0 ?

England Mixed 0.00% 0 0

Finland 51.14% 4.24 0.41

Finland Caucasoid 51.14% 4.24 0.41

France 88.54% 9.29 1.74

France Caucasoid 88.54% 9.29 1.74

Georgia 75.05% 7.09 0.8

Georgia Caucasoid 75.05% 7.09 0.8

Georgia Kurd 0.00% 0 ?

Germany 91.14% 10.14 2.26

Germany Caucasoid 91.14% 10.14 2.26

Greece 66.92% 6.29 0.6

Greece Caucasoid 66.92% 6.29 0.6
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Ireland Northern 94.65% 10.58 2.89

Ireland Northern Caucasoid 94.65% 10.58 2.89

Ireland South 93.15% 10 2.51

Ireland South Caucasoid 93.15% 10 2.51

Italy 85.90% 5.93 1.42

Italy Caucasoid 85.90% 5.93 1.42

Macedonia 66.53% 6.2 0.6

Macedonia Caucasoid 66.53% 6.2 0.6

Netherlands 83.44% 8.33 1.21

Netherlands Caucasoid 83.44% 8.33 1.21

Norway 94.71% 10.56 3.01

Norway Caucasoid 94.71% 10.56 3.01

Poland 84.46% 8.85 1.29

Poland Caucasoid 84.46% 8.85 1.29

Portugal 78.00% 7.74 0.91

Portugal Caucasoid 78.00% 7.74 0.91

Romania 0.00% 0 ?

Romania Caucasoid 0.00% 0 ?

Russia 77.62% 7.24 0.89

Russia Caucasoid 88.52% 9.81 1.74

Russia Mixed 0.00% 0 0

Russia Other 85.01% 9.2 1.33

Russia Siberian 78.83% 7.14 0.94

Scotland 90.82% 10.1 2.2

Scotland Caucasoid 90.82% 10.1 2.2

Serbia 0.00% 0 ?

Serbia Caucasoid 0.00% 0 ?

Slovakia 18.28% 0.37 0.24

Slovakia Caucasoid 18.28% 0.37 0.24

Slovenia 84.85% 8.74 1.32
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Slovenia Caucasoid 84.85% 8.74 1.32

Spain 80.51% 8.28 1.03

Spain Caucasoid 80.84% 8.34 1.04

Spain Jew 0.00% 0 ?

Spain Other 6.30% 0.57 0.96

Sweden 88.07% 9.13 1.68

Sweden Caucasoid 88.07% 9.13 1.68

Switzerland 0.00% 0 ?

Switzerland Caucasoid 0.00% 0 ?

Turkey 76.19% 7.3 0.84

Turkey Caucasoid 76.19% 7.3 0.84

Ukraine 50.64% 4.17 1.42

Ukraine Caucasoid 50.64% 4.17 1.42

United Kingdom 0.00% 0 0

United Kingdom Caucasoid 0.00% 0 0

Wales 0.00% 0 0

Wales Caucasoid 0.00% 0 0

East Africa 68.30% 5.65 0.63

Kenya 0.00% 0 0

Kenya Black 0.00% 0 0

Uganda 0.00% 0 0

Uganda Black 0.00% 0 0

Zambia 0.00% 0 ?

Zambia Black 0.00% 0 ?

Zimbabwe 68.30% 5.65 0.63

Zimbabwe Black 68.30% 5.65 0.63

West Africa 65.23% 6.13 0.58

Burkina Faso 0.00% 0 ?

Burkina Faso Black 0.00% 0 ?

Cape Verde 80.38% 8.1 1.02
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Cape Verde Black 80.38% 8.1 1.02

Gambia 0.00% 0 0

Gambia Black 0.00% 0 0

Ghana 0.00% 0 ?

Ghana Black 0.00% 0 ?

Guinea-Bissau 71.16% 7.04 0.69

Guinea-Bissau Black 71.16% 7.04 0.69

Ivory Coast 0.00% 0 ?

Ivory Coast Black 0.00% 0 ?

Liberia 0.00% 0 0

Liberia Black 0.00% 0 0

Nigeria 0.00% 0 0

Nigeria Black 0.00% 0 0

Senegal 30.28% 2.32 0.29

Senegal Black 30.28% 2.32 0.29

Central Africa 62.71% 5.17 0.54

Cameroon 49.87% 3.31 0.4

Cameroon Black 49.87% 3.31 0.4

Central African Republic 82.69% 6.47 1.16

Central African Republic Black 82.69% 6.47 1.16

Congo 68.66% 5.93 0.64

Congo Black 68.66% 5.93 0.64

Equatorial Guinea 47.58% 3.55 0.38

Equatorial Guinea Black 47.58% 3.55 0.38

Gabon 41.78% 3.84 1.2

Gabon Black 41.78% 3.84 1.2

Rwanda 62.79% 5.38 0.54

Rwanda Black 62.79% 5.38 0.54

Sao Tome and Principe 66.50% 4.89 0.6

Sao Tome and Principe Black 66.50% 4.89 0.6

(continued)

134 Hiba Siddig Ibrahim and Shamsoun Khamis Kafi



Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

North Africa 75.06% 7 0.8

Algeria 77.15% 7.25 0.88

Algeria Arab 77.15% 7.25 0.88

Ethiopia 83.00% 8.71 1.18

Ethiopia Black 83.00% 8.71 1.18

Mali 0.00% 0 ?

Mali Black 0.00% 0 ?

Morocco 83.44% 8.14 1.21

Morocco Arab 85.07% 8.25 1.34

Morocco Caucasoid 79.75% 8.07 0.99

Sudan 60.56% 4.52 0.51

Sudan Arab 0.00% 0 ?

Sudan Black 0.00% 0 0

Sudan Mixed 60.56% 4.52 0.51

Tunisia 74.26% 6.82 0.78

Tunisia Arab 74.97% 6.78 0.8

Tunisia Berber 74.47% 7.43 0.78

South Africa 32.10% 1.11 0.29

South Africa 32.10% 1.11 0.29

South Africa Black 32.10% 1.11 0.29

South Africa Other 0.00% 0 ?

West Indies 69.22% 6.67 0.65

Cuba 85.48% 9.66 1.38

Cuba Caucasoid 0.00% 0 ?

Cuba Mixed 85.48% 9.66 1.38

Cuba Mulatto 0.00% 0 ?

Jamaica 27.41% 2.28 0.28

Jamaica Black 27.41% 2.28 0.28

Martinique 74.51% 7.17 0.78

Martinique Black 74.51% 7.17 0.78

(continued)
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Trinidad and Tobago 0.00% 0 ?

Trinidad and Tobago Asian 0.00% 0 ?

North America 87.89% 9.12 1.65

Canada 38.41% 2.21 0.32

Canada Amerindian 38.41% 2.21 0.32

Mexico 55.04% 4.3 0.44

Mexico Amerindian 42.59% 3.09 0.35

Mexico Mestizo 68.51% 5.97 0.64

United States 88.10% 9.17 1.68

United States Amerindian 42.79% 3.31 0.35

United States Asian 78.84% 8.03 0.95

United States Austronesian 58.09% 5.47 0.48

United States Black 71.50% 6.44 0.7

United States Caucasoid 90.15% 9.68 2.03

United States Hispanic 72.95% 6.9 0.74

United States Mestizo 72.23% 6.78 0.72

United States Polynesian 73.18% 5.87 0.75

Central America 49.91% 4.06 0.4

Costa Rica 24.31% 2.21 0.26

Costa Rica Mestizo 24.31% 2.21 0.26

Guatemala 49.16% 3.37 0.39

Guatemala Amerindian 49.16% 3.37 0.39

South America 58.59% 4.77 0.48

Argentina 62.67% 5.36 0.54

Argentina Amerindian 45.78% 3.4 0.37

Argentina Caucasoid 80.65% 7.85 1.03

Bolivia 77.82% 5.97 0.9

Bolivia Amerindian 77.82% 5.97 0.9

Brazil 63.80% 5.16 0.55

Brazil Amerindian 48.60% 3.23 0.39
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Brazil Caucasoid 84.39% 8.81 1.28

Brazil Mixed 77.50% 6.94 0.89

Brazil Mulatto 74.09% 6.89 0.77

Brazil Other 0.00% 0 ?

Chile 67.08% 5.82 0.61

Chile Amerindian 72.65% 6.09 0.73

Chile Hispanic 0.00% 0 0

Chile Mixed 52.65% 4.39 0.42

Colombia 54.02% 4.34 0.43

Colombia Amerindian 47.40% 3.65 0.38

Colombia Black 65.25% 5.28 0.58

Colombia Mestizo 56.31% 4.8 0.46

Ecuador 52.17% 3.75 1.25

Ecuador Amerindian 52.17% 3.75 1.25

Ecuador Black 0.00% 0 0

Paraguay 4.90% 0.29 0.63

Paraguay Amerindian 4.90% 0.29 0.63

Peru 49.87% 3.47 0.4

Peru Amerindian 49.87% 3.47 0.4

Peru Mestizo 0.00% 0 0

Venezuela 3.01% 0.06 0.21

Venezuela Amerindian 0.00% 0 0

Venezuela Caucasoid 0.00% 0 ?

Venezuela Mestizo 0.00% 0 ?

Venezuela Mixed 3.17% 0.06 0.21

Oceania 59.87% 5.38 0.5

American Samoa 0.00% 0 ?

American Samoa Polynesian 0.00% 0 ?

Australia 33.15% 2.21 0.3

Australia Australian Aborigines 33.15% 2.21 0.3

(continued)
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Table 11
(continued)

Population/Area

Class II

Coveragea Average hitb PC90c

Australia Caucasoid 0.00% 0 ?

Chile 67.08% 5.82 0.61

Chile Amerindian 72.65% 6.09 0.73

Cook Islands 78.59% 6.44 0.93

Cook Islands Polynesian 78.59% 6.44 0.93

Fiji 79.87% 7.5 0.99

Fiji Melanesian 79.87% 7.5 0.99

Kiribati 10.89% 0.85 0.22

Kiribati Micronesian 10.89% 0.85 0.22

Nauru 38.66% 3.4 0.33

Nauru Micronesian 38.66% 3.4 0.33

New Caledonia 81.41% 8.44 3.77

New Caledonia Melanesian 81.41% 8.44 3.77

New Zealand 84.46% 6.76 1.29

New Zealand Polynesian 84.46% 6.76 1.29

Niue 77.82% 4.27 0.9

Niue Polynesian 77.82% 4.27 0.9

Papua New Guinea 69.15% 7.16 0.65

Papua New Guinea Melanesian 69.15% 7.16 0.65

Samoa 80.86% 7.29 1.04

Samoa Polynesian 80.86% 7.29 1.04

Tokelau 55.11% 2.82 0.45

Tokelau Polynesian 55.11% 2.82 0.45

Tonga 71.91% 6.12 0.71

Tonga Polynesian 71.91% 6.12 0.71

Average 51.14% 4.7 ?

(Standard deviation) �32.55% �3.35 (?)

aProjected population coverage
bAverage number of epitope hits/HLA combinations recognized by the population
cMinimum number of epitope hits/HLA combinations recognized by 90% of the population
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Trypanosoma cruzi Dm28c, Strigamia maritime, and Nocardioides
dokdonensis; besides some species of Mycobacteria, Salmonella,
Streptococcus, these may mean the presence of these peptides in
those organisms had a relationship with respiratory disease but
still needs to go deeper to confirm this suggestion, other things
we can easily synthesis the desired peptides in laboratory by using
one of these organisms (cloning techniques) because it is easy and
no risk from acquired a very dangers infections beside determina-
tion of the peptide sequences impact on immune system via injected
laboratory animals with those selected peptide sequences from any
organisms.

3.7 AllerHunter:

Cross-Reactive

Allergen Prediction

Program

Any sequence can be considered as a cross-reactive allergen if its
probability is ≧0.06. The results considered that envelope
(E) protein, spike (S) glycoprotein, and modified S glycoprotein
are potential non-allergens with scores of 0.01, 0.0, and 0.0,
respectively, while modified E protein sequence was too short for
prediction (AllerHunter predicted the query sequence as a potential
allergen with score of 0.07). According to the FAO/WHO, E and
modified E protein sequences are classified as a non-allergen
because they do not meet the criteria set by the FAO/WHO
evaluation scheme for cross-reactive allergen prediction, but in S
and modified S glycoprotein, they are classified as a potential aller-
gen based on the FAO/WHO evaluation scheme because query
sequence matches at least one sequence in the AllerHunter data set
with at least 35 percent identity over 80 amino acids.

3.8 AlgPred:

Prediction

of Allergenic Proteins

and Mapping of IgE

Epitopes

AlgPred showed non-allergen for all four sequences (S, E, modified
S and E proteins) as follows:

1. Prediction by mapping of IgE epitope: The protein sequence
does not contain experimentally proven IgE epitope.

2. MAST RESULT: No Hits found; NON ALLERGEN.

3. BLAST results of ARPS: No hits found, NON-ALLERGEN.

4. Prediction by hybrid approach: NON-ALLERGEN/
ALLERGEN.

There were slightly differences between the four sequences in
SVM prediction methods according to amino acid composition/
dipeptide composition as in Tables 12 and 13.

3.9 VaxiJen v2.0 VaxJen servers showed three protein sequences out of two, consid-
ered as probable antigens, as illustrated below:

S glycoprotein: threshold for this model, 0.4; overall antigen
prediction, 0.4827 (probable ANTIGEN).

Modified S glycoprotein: threshold for this model, 0.4; overall
antigen prediction, 0.4907 (probable ANTIGEN).
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E protein: threshold for this model, 0.4; overall antigen pre-
diction, 0.3811 (probable NON-ANTIGEN).

Modified E protein: threshold for this model, 0.4; overall
antigen prediction, 0.4417 (probable ANTIGEN).

4 Discussions

Today, there are so many different ways to develop MERS-CoV
vaccine; some of them partially succeed but the others failed while
the remaining nor succeed neither failed because it depends on
software program for different reasons and still need to go under
vaccine protocols processing, in those studies that consist with S1
protein subunit especially RBD (the most mutable region that
containing mutation sites which define antibody escape variants)
was considered the basis for several MERS-CoV vaccine candidates
in many studies such as using RBD with aluminum salt or oil-in-
water adjuvants; can elicited neutralizing antibodies of high
potency across multiple viral strains by Modjarrad [4] and Wang

Table 12
SVM prediction methods based on amino acid composition for the four protein sequences

Types of protein
sequence

SVM prediction based
on amino acid
composition Score Threshold

Positive
predictive
value

Negative
predictive
value

S glycoprotein Allergen 0.014762929 �0.4 70.05% 80.74%

Modified S
glycoprotein

Allergen 0.0065929692 �0.4 70.05% 80.74%

E protein Allergen �0.3638541 �0.4 47.13%/ 89.71%

Modified E protein Non-allergen �1.08932 �0.4 15.19% 94.18%.

Table 13
Illustrates SVM prediction methods based on dipeptide composition for the four protein sequences

Types of protein
sequence

SVM prediction based
on amino acid
composition Score Threshold

Positive
predictive
value

Negative
predictive
value

S glycoprotein Allergen �0.04096577 �0.2 63.1% 85.56%

Modified S
glycoprotein

Allergen �0.059498832 �0.2 63.1% 85.56%

E protein Non-allergen �0.7511982 �0.2 13.26% 74.19%

Modified E protein Non-allergen �0.65278098 �0.2 13.26% 74.19%
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et al. [6] said that the full-length S DNA and a truncated S1 subunit
glycoprotein can elicit a higher titer of neutralizing antibodies; this
kind of immunization protected non-human primates (NHPs)
from severe lung disease after intratracheal challenge with MERS-
CoV injection; in another study that was done in Iran by Poorin-
mohammad et al. [15] [NetCTL 1.2 (Larsen et al., 2007), EpiJen
(Doytchinova et al, 2006), and NHLApred (Bhasin and Raghava,
2007), they were selected computational prediction tools with
PEPstr server for modeling (Kaur et al., 2007)] to identify cyto-
toxic T-lymphocyte epitopes presented by the human leukocyte
antigen (HLA)-A∗0201; as this is the most frequent HLA class I
allele among Middle Eastern populations with this selected RBD
for their study, they showed LLSGTPPQV, ILDYFSYPL
ILATVPHNL, NLTTITKPL, LQMGFGITV, and FSNPTCLIL
as selected epitopes but LLSGTPPQV and FSNPTCLIL were con-
sidered as real epitope due to the following: peptides with binding
orientations closer to the native structure and lower binding free
energy scores are ranked higher in having the potential to be real
epitopes reverse another study were done by Shi J et al. [19] by
using the Immune Epitope Database, that said: the nucleocapsid
(N) protein of MERS-CoV might be a better protective immuno-
gen with high conservancy and potential eliciting both neutralizing
antibodies and T-cell responses when compared with spike
(S) protein; in addition 71 peptides were identified as helper
T-cell epitopes, 34 peptides were identified as CTL epitopes; just
top 10 helper T-cell epitopes and CTL epitopes based on maximum
HLA binding alleles, can elicit protective cellular immune responses
against MERS-CoV were considered as MERS vaccine candidates
and they are covering 15 geographic regions [19].

In this study that consists of two parts reference and modified
sequence of both S glycoprotein and E protein, I found that the
most common B-cell epitope that passed all B-cell prediction meth-
ods [IEDB prediction tool] for E protein is YVKFQDS in position
69 and for modified E they are VYVPQQD, YVPQQDS, and
PPLPED/PPLPEDV epitopes at positions 68, 69, and 77 sequen-
tially; while for S and modified S, they are DVGPDSV, PDSVKSA,
DSVKSAC, PRPIDVS, HTPATDC, AKPSGSV, KPSGSVV,
SGTPPQV, GTPPQVY, TPPQVYN, QLSPLEG, YGPLQTP,
PRSVRSV, RSVRSVP, SVKSSQS, VKSSQSS, SQSSPII, and
SLNTKYV at positions 23, 26, 27, 48, 211, 371, 372, 393,
394, 395, 547, 707, 750, 751, 856, 859 (857 in modified S
glycoprotein), and 1202 sequentially, but QVDQLNS and
VDQLNSS epitopes at positions 772 and 773 are only found in S
glycoprotein, while LTPTSSY, TPTSSYV, PTSSYVD, TSSYVDV,
DHGDYYV, YSQDVKQ, ANQYSPC, NQYSPCV, and YYRKQLS
epitopes at positions 15, 16, 17, 18, 83, 108, 523, 524, and 543 are
only found in modified S glycoprotein; according to my study, I
found that the results of S and modified S glycoprotein they are
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partially agree with the study that was done in Africa city of
Technology-Khartoum, Sudan by Badawi et al, [16] in those epi-
topes GTPPQVY in position 391–397 and LTPRSVRSVP in posi-
tion 745–754, may be do you to different numbers of selected
MERS-CoV protein sequence.

Prediction of cytotoxic T-lymphocyte epitopes and their inter-
action with MHC Class I, the results showed ILDYFSYPL was
similar according my study, Badwai et al [16] and Poorinmoham-
mad and Mohabatkar [15] studies; partially similarity with Iranian
study [15] in LLSGTPPQV, ILATVPHNL, LQMGFGITV, and
FSNPTCLIL epitopes were noticed except NLTTITKPL epitope
that was absent from my study in S and modified S sequence;
FSNPTCLIL represents the only epitope that is found in my
study in S and modified S sequence; FSFGVTQEY have a high
affinity to bind to many alleles and these findings agree with Badawi
et al. [16] in addition to ITYQGLFPY in my study through S
glycoprotein sequence, but still there are differences in the numbers
of selected epitopes that reacted with MHC-I which were higher
than that in Badawi et al. [16], while in E protein FIFTVVCAI
epitope has a higher allele affinity followed by ITLLVCMAF,
IVNFFIFTV, and LVQPALYLY reverse modified E protein;
LVQPALSLY epitope has shown high affinity and then followed
by LYMTGRSVY, WFIPNFFDF, YMTGRSVYV, ITLLVCTAF,
FVQERIGWF, FLTATHLCV, and CMTGFNTLL, the last epi-
tope which is common between E and modified E protein
sequences.

Prediction of T-helper cell epitopes and their interactions with
MHC Class II showed FNLTLLEPVSISTGS epitope that was
considered as the most suitable epitope with a high affinity to
26 alleles in Badawi et al. [16]; this epitope was actually found in
S and modified S sequence of my study, but the difference is that it
cannot considered that the most suitable epitope with a high bind-
ing affinity to different alleles like in in Badawi et al, [16] study.

There is no research results related to E protein and modified E
and S glycoprotein epitope vaccine instead of partial similarity that I
found between S and modified S glycoprotein.

No previous study illustrates S glycoprotein and E protein
allergic reactions except the study that were done by Shi J et al.
[19] for N protein, but in this study, S and E protein showed no
allergic reaction according to AllerHunter services. Furthermore
Shi J et al. [19] said that, for N protein, the analysis of the surface
accessibility of the predicted peptides showed that the maximum
surface probability value was 6.971 at amino acid position from
363 to 368 (363KKEKKQ368), but the minimum value of surface
probability was 0.074 for 205GIGAVG210 peptides, while in the
analysis of the flexibility of the predicted peptides, they showed that
the maximum flexibility value was 1.160 at amino acid position
from 170 to 176 (167GNSQSSS173) with the minimum value
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0.903 for peptides 97RWYFYYT103; in MHC-II the epitope
329LRYSGAIKL337 interacting with 357 HLA-DR alleles was
considered the epitope that possesses the maximum number of
binding HLA-DR alleles, while 230VKQSQPKVI238 interacting
with 94 HLA-DR alleles is the epitope that possesses the minimum
number of binding HLA-DR alleles, and also the same occurred
with MHC-I; KQLAPRWYF100 had the highest number of bind-
ing HLA-A alleles in MHC-I and then followed by 343NYNKW-
LELL351,72AQNAGYWRR80, and 387RVQGSITQR395 (see
[19]) paper for coverage population); in addition to the above,
the studies that were done by Sharmin and Islam [20] showed
that WDYPKCDRA was considered as a highly conserved epitope
in the RNA directed RNA polymerase of human coronaviruses after
applying multiple sequence alignment (MSA) approach for spike
(S), membrane (M), enveloped (E), and nucleocapsid (N) protein
and replicase polyprotein 1ab to identify which one is highly con-
served in all coronavirus strains, followed by using various in silico
tools to predict consensus immunogenic and conserved peptide.

Furthermore information that were not shown here are that I
used the software below to confirm MHC-II results, and their
results partially agree with IEDB MHC-I results and I do not
know why. EpiDOCK: Molecular docking—based tool for MHC
class II binding prediction (http://epidock.ddg-pharmfac.net/),
EpiTOP1.0 (http://www.pharmfac.net/EpiTOP/index.php),
other things that I do not agree with Shi J et al. [19] when he did
alignments for S, E, M. . . .., with all human coronavirus & said he
just found the most common peptide was N protein alone, because
when I trying to made alignment for S, M, ORFA1,.., I found some
alignments between those proteins and different coronavirus
strains and this may be means presence of some common peptide
but it still needs more studies.

4.1 Conclusions As I mentioned before, software vaccine and drug design became
very important in the first and third world countries to avoid
wasting resources, time, and efforts; for MERS-CoV vaccine, it is
important to design effective vaccine that cannot be protected
against MERS-CoV but also the emergence of new strain besides
the other human coronavirus especially when MERS-CoV vaccines
they are not passed all vaccine design protocols.

In this study I found the following points: Emergence of a new
strains may had a minor change in peptide sequence vaccine espe-
cially when the selected viruses parts nor longer neither smaller in
their length.

In B-cell prediction; mutations can lead to increased numbers
of selected epitopes with very few sequence changes noticed, in
addition to a large number of shared epitopes between reference
and modified sequence; this means mutated sequence has the abil-
ity to elicit the same immune response (IR) (response to virus by
the same antibodies as in first infections).
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Mutations of the virus sequence can change the frequency of
allele and peptide numbers eithers through increased or decreased
these numbers, beside presences or absences of some new/old
alleles or peptides; same alleles had a different peptide sequences
and vice versa.

For MHC-II there were not changed in E & modified E
protein alleles & their frequencies & also in peptide sequences &
their frequencies were noticed, these may be due to short E protein
sequence, while for S & modified S glycoprotein there are minor
difference in some peptide frequency numbers either by adding/
lowering one or two numbers just & same for alleles.

There is an allele similarity between E, S, and modified E and S
proteins in MHC-II, besides presence of a tiny difference in S and
modified S peptide sequences in MHC-II due to the modification
that I was introduced before in S reference sequence.

The absence of very few numbers of peptide sequences from S
reference sequence in modified S sequence leads to the presence of
a new peptide sequences.

In MHC-I a lot of selected peptide sequences that are repre-
sented in S glycoprotein reference sequence are missing from the
modified one reverse E protein reference sequence due to presence
of additional epitopes in E protein modified sequence.

The presence of arginine in some selected peptide sequence
vaccine makes it ineffective, so we need to solve this problem either
by replacing it with other amino acid from the same group or by
finding another ways that make those epitopes visible for immune
system (IS).

The presence of mutated sequence can effect on the coverage
population in MHC-II by presence/absence of some countries,
with the percentage changes, reverse MHC-I no changes were
noticed.
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