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Abstract
Background Esophageal cancer is a common malignant tumor of digestive tract with esophageal squamous cell carci-
noma (ESCC) being the main histological subtype. This study aimed to identify potential hub gene associated with the 
pathophysiology of ESCC through bioinformatics analysis and experiment validation.
Methods Three microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. The overlap-
ping differentially expressed genes (DEGs) were analyzed by GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes (KEGG) pathway analyses were performed to predict the potential functions of DEGs. Nine hub genes were 
identified using protein–protein interaction (PPI) network and Cytoscape software. We selected RAD51-associated pro-
tein 1 (RAD51AP1) for further research because of its poor prognosis and it has not been sufficiently studied in ESCC. 
The effects of RAD51AP1 on proliferation, apoptosis, migration and invasion of ESCC cells were determined by in vitro 
functional assays.
Results RAD51AP1 expression was significantly upregulated in ESCC tissues compared with normal tissues by using 
The Cancer Genome Atlas (TCGA) database. High expression of RAD51AP1 was associated with worse survival in ESCC 
patients. RAD51AP1 expression was positively associated with the enrichment of Th2 cells and T helper cells. Furthermore, 
CCK-8 and colony formation assays showed knockdown of RAD51AP1 inhibited the proliferation of ESCC cells. Flow 
cytometry analysis indicated knockdown of RAD51AP1 induced cell cycle arrest and apoptosis in ESCC cells. Transwell 
assay revealed knockdown of RAD51AP1 suppressed the migration and invasion of ESCC cells.
Conclusions Finally, our results demonstrated that RAD51AP1 silencing significantly inhibited cell proliferation and inva-
sion in ESCC, thereby highlighting its potential as a novel target for ESCC treatment.
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ssGSEA  Single-sample gene set enrichment analysis
shRNA  Short hairpin RNA
qPCR  Quantitative real-time PCR
CCK-8  Cell counting kit-8
PI  Propidium iodide
BP  Biological processes
CC  Cellular components
MF  Molecular functions

1  Background

Esophageal cancer represents one of the most common malignancies of upper digestive tract, ranking as the 6th leading 
cause of cancer-related mortalities all over the world [1]. One of the main histological subtypes is esophageal squamous 
cell carcinoma (ESCC), which accounts for over 90% of the Chinese esophageal cancer patients [2]. Despite continuous 
improvements in therapeutic method, the survival time of patients with esophageal cancer remains unsatisfied because 
of late diagnosis and rapid metastasis [3]. It has been reported that ESCC patients has an overall 5-year survival rate of 
under 30% [4]. A better exploitation of molecular mechanisms underlying the initiation and development of ESCC may 
help identify novel therapeutic targets and effective diagnostic biomarkers.

RAD51-associated protein 1 (RAD51AP1) is one kind of accessory protein for RAD51 that can vastly improve the 
activity of recombinase and stimulate the joint molecule formation, playing a crucial role in the repair of chromosome 
damage mediated by homologous recombination [5]. The silencing of RAD51AP1 leads to genomic instability and defec-
tive homologous recombination in human somatic cells [6]. A number of studies have demonstrated that RAD51AP1 is 
overexpressed and serves as an carcinogenic role in several tumors, including ovarian cancer [7], lung cancer [8], breast 
cancer [9], as well as hepatocellular carcinoma [10]. However, the functional role of RAD51AP1 in ESCC progression has 
not been studied.

Recently, sequencing technology and bioinformatic analyses were increasingly applied in screening genetic alterations, 
and further discovered potential tumor biomarkers [11]. In this research, 3 microarray datasets were firstly downloaded 
from the Gene Expression Omnibus (GEO) database, and RAD51AP1 was identified as a hub gene in ESCC. Multiple 
bioinformatics methods were then used to explore its related functions and molecular mechanisms underlying carcino-
genesis. Furthermore, several experimental assays were performed to study the influences of RAD51AP1 on cell growth 
and metastasis of ESCC. This study initially indicated that RAD51AP1 could act as a novel biomarker for diagnosis and 
prognosis, and a potential therapeutic target for ESCC.

2  Methods

2.1  Bioinformatic analysis

Microarray datasets (GSE20347, GSE29001 and GSE38129) were downloaded from GEO database (https:// www. ncbi. nlm. 
nih. gov/ geo/), including 17 ESCC tissues and 17 normal esophageal tissues, 21 ESCC tissues and 24 normal esophageal 
tissues, 30 ESCC tissues and 30 normal esophageal tissues, respectively.

The GEO2R online tool was used to screen differentially expressed genes (DEGs) between ESCC tissues and normal 
esophageal tissues with the cutoff criteria of adjusted P-value < 0.05 and |log FC|> 2 [12]. We then calculated and drew 
custom Venn diagrams (http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/) to find common DEGs among 3 datasets. 
DEGs with logFC > 0 was identified as an up-regulated gene, and DEGs with logFC < 0 was identified as a down-regulated 
gene. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes (KEGG) pathway analysis were performed 
to predict the potential functions of DEGs by using online bioinformatic tool DAVID (https:// david. ncifc rf. gov/) [13]. The 
protein–protein interaction (PPI) network of the identified DEGs was constructed by the STRING database (https:// cn. 
string- db. org/), and was then visualized by the Cytoscape software (version 3.9.0) [14]. Furthermore, the MCODE plugin 
in Cytoscape was applied to look for modules of PPI network (degree cutoff = 2, node score cutoff = 0.2, max. Depth = 100, 
and k-core = 2).

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://david.ncifcrf.gov/
https://cn.string-db.org/
https://cn.string-db.org/
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The mRNA expression level of RAD51AP1 was validated by using data from The Cancer Genome Atlas (TCGA) database 
(https:// portal.gdc.cancer.gov/). The association between RAD51AP1 expression and overall survival was assessed by 
Kaplan–Meier potter (http:// kmplot. com). The single-sample gene set enrichment analysis (ssGSEA) was performed 
to access infiltration levels of 24 immune cells by using GSVA package in R software (version 4.0.3) [15]. Correlations 
between RAD51AP1 expression and infiltration levels of immune cells were calculated by Spearman correlation analysis.

2.2  Cell culture and transfection

Human ESCC cell lines (KYSE70, KYSE150, TE-1, and EC-1) and esophageal epithelial cell line (Het-1A) were purchased 
from the American Type Culture Collection. Cell lines were cultured in RPMI 1640 medium (containing 10% FBS, 100 U/
mL penicillin, and 100 U/mL streptomycin) in an incubator at 37 °C with 5%  CO2.

Lentiviral vector-mediated short hairpin RNA (shRNA) targeting RAD51AP1 (5′-AGT GAT GGT GAT AGT GCT A-3′) and nega-
tive control shRNA (5′-TTC TCC GAA CGT GTC ACG T-3′) were obtained from the GeneChem Corporation (Shanghai, China). 
The vectors were transfected into KYSE150 and TE-1 cell lines by Lipofectamine 2000.

2.3  RNA extraction and quantitative real‑time PCR (qPCR)

Total RNA was extracted by the Trizol reagent (Invitrogen, Shanghai, China) following manufacturer’s protocols. RNA 
concentration was detected by using a spectrophotometer at the wavelength of 260 nm. RNA purity was determined by 
calculating the ratio of A260/A280, and a purified RNA between 1.8 and 2.0 was used in this study. The RNA was reverse 
transcribed into cDNA by the M-MLV Reverse Transcription Kit (Promega, USA). The qPCR was conducted by the SYBR 
Master Mixture kit (Takara, Japan) on LightCycler 480 II real-time PCR instrument (Roche, NJ, USA). The qPCR procedures 
were as follows: an initial denaturation cycle of 30 s at 95 °C, followed by 40 cycles of 5 s at 95 °C and 30 s at 60 °C, and a 

Fig. 1  Identification of DEGs. A–C Volcano plots of DEGs in GSE20347, GSE29001 and GSE38129 datasets. D, E Venn plots of overlapping 
DEGs among GSE20347, GSE29001 and GSE38129 datasets. DEGs, differentially expressed genes

http://kmplot.com
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final cycle of 15 s at 95 °C, 30 s at 60 °C and 15 s at 95 °C for melting curve analysis. Sequences of primers are as follows: 
RAD51AP1 forward, 5′-TGG TGG TGT TCA AGG GAA AAG-3′, reverse, 5′-AGG TGC AAA GTC TGG TTC AGT-3′; ACTB forward, 5′- 
GCG TGA CAT TAA GGA GAA GC-3′, reverse, 5′- CCA CGT CAC ACT TCA TGA TGG-3′. Relative expression level was normalized to 
ACTB, and finally calculated using the  2−ΔΔCT comparative method.

2.4  Western blot assay

Proteins were firstly extracted with the RIPA lysis buffer. Protein concentration was measured using BCA protein assay kit 
(Pierce, USA). 40 μg of protein sample was separated using 10% SDS-PAGE, followed by being transferred onto the PVDF 
membrane. After being blocked with 5% skimmed milk at room temperature for 1 h, membrane was next incubated by 
the primary antibody (anti-RAD51AP1, 1:2000, Abcam, ab88370; anti-β-Actin, 1:1000, Abcam, ab8226) at 4 °C overnight. 
In addition, membrane was incubated by the horseradish peroxidase (HRP)-conjugated IgG secondary antibody (1:2000, 
Abcam, ab6721) for 1 h. Results were finally detected by the chemiluminescence detection system.

2.5  Cell proliferation assay

Cell counting kit-8 (CCK-8) assay was conducted to evaluate cell proliferation [16]. Transfected cells were seeded into a 
96-well plate at the density of 2 ×  103 cells, and cultured for 1, 2, 3, 4, or 5 days. 10 μl CCK-8 reagent was added into every 
well. The absorbance was finally detected at 450 nm with the microplate reader.

2.6  Cell cycle and apoptosis assays

For the analysis of cell cycle distribution, transfected cells were fixed in ice-cold 70% ethanol overnight, and stained with 
propidium iodide (PI) added with RNase A for half an hour. Cell cycle was then examined with FACSCalibur flow cytometer 
(BD Bioscience, CA, USA). Cell apoptosis was detected by using Annexin V Apoptosis Detection kit (eBioscience, CA, USA). 
Transfected cells were collected, and resuspended in binding buffer. Annexin V-APC was next added into the suspension, 
and incubated for 15 min. Cell apoptosis was analyzed with the flow cytometry.

2.7  Colony formation assay

Transfected cells were added into the 6-well plate with a density of 1 ×  103 cells, culturing in RPMI 1640 medium sup-
plemented with 10% FBS. After observing the colonies (10 days), we terminated the culture. Then the cells were fixed in 
4% paraformaldehyde and stained with 0.5% crystal violet. Number of colonies (> 50 cells/colony) were finally counted 
with the fluorescence microscope (Olympus, Tokyo, Japan).

2.8  Transwell migration and invasion assays

Cell migratory and invasive abilities were detected with the 24-well transwell chamber with 8-μm pore size polycarbonate 
membrane (Corning, USA) [17]. For cell migration, 1 ×  105 cells suspended in 100 µL serum-free RPMI 1640 medium was 
seeded into upper chamber, while 600 µL medium containing 20% FBS was added to lower chamber. For cell invasion, 
cells in serum-free medium were seeded into upper chamber coated with Matrigel (BD Bioscience, USA). After 24 h, cells 
on lower surface of filter were fixed with 4% paraformaldehyde and stained with 0.5% crystal violet. Results were finally 
counted in 5 randomly fields by using the fluorescence microscope.

Fig. 2  RAD51AP1 was identified as a targeted gene associated with poor prognosis in ESCC. A The GO functional analysis of overlapping 
DEGs. B The KEGG pathway analysis of overlapping DEGs. C The PPI network of hub genes obtained using the MCODE plugin with a total 
of 9 hub genes being identified in the submodule. D RAD51AP1 was overexpressed in ESCC tissues compared to normal tissues based on 
TCGA database. E RAD51AP1 was overexpressed in ESCC tissues compared to matched normal tissues. F The expression of RAD51AP1 in 
diverse cancer types. G High expression of RAD51AP1 was significantly associated with worse survival in ESCC patients. H The ROC curve of 
RAD51AP1 expression in ESCC. DEGs, differentially expressed genes; ESCC, esophageal squamous cell carcinoma; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes; PPI, protein–protein interaction; ROC, receiver operating characteristic. *p < 0.05; **p < 0.01, ***p < 0.001
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2.9  Statistical analysis

Statistical analyses were conducted with SPSS (version 22.0). Data was presented as mean ± SD from 3 independent 
experiments. The data downloaded from TCGA database was converted to transcripts per million reads (TPM) format. 

Fig. 3  The correlation between RAD51AP1 expression and immune filtration level in ESCC. A The correlation between infiltration level of 
immune cells and RAD51AP1 expression in ESCC. B–D RAD51AP1 expression was positively associated with the enrichment of Th2 cells, T 
helper cells, and Treg cells. E–G RAD51AP1 expression was negatively associated with the enrichment of Mast cells, Neutrophils cells and 
Th17 cells
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Student’s t-test and one-way ANOVA were performed to compare difference between groups. A P value of less than 0.05 
was considered statistically significant.

3  Results

3.1  Identification of DEGs

We firstly identified DEGs in ESCC through comparing tumor tissues and normal adjacent tissues from GEO database. 
Volcano plots of DEGs in GSE20347, GSE29001 and GSE38129 were depicted in Fig. 1A–C. Finally, 150 DEGs were found, 
containing 44 upregulated and 106 downregulated genes (Fig. 1D, E).

3.2  Gene enrichment analyses of DEGs

GO functional analysis was used to explore potential biological roles of DEGs in ESCC, including Biological Process (BP), 
Cellular Component (CC), as well as Molecular Function (MF). For BP, DEGs were mainly enriched in skin development, 
epidermis development, epidermal cell differentiation, keratinocyte differentiation and cornification. For CC, DEGs were 
significantly enriched in collagen-containing extracellular matrix, apical plasma membrane, cornified envelope, banded 
collagen fibril and fibrillar collagen trimer. For MF, DEGs were obviously enriched in extracellular matrix structural constitu-
ent, peptidase regulator activity, serine-type peptidase activity, endopeptidase inhibitor activity and serine-type endo-
peptidase inhibitor activity (Fig. 2A). We then conducted KEGG enrichment analysis to find pivotal signaling pathways 
associated with DEGs. The results revealed that DEGs were significantly enriched in protein digestion and absorption, 
relaxin signaling pathway, amoebiasis, AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, 
and ECM-receptor interaction (Fig. 2B).

3.3  PPI network construction and hub gene identification

The PPI network of DEGs was constructed by STRING database and was visualized in Cytoscape software. One module of 
the PPI network was obtained using the MCODE plugin, the hub genes were CEP55, RAD51AP1, BUB1, KIF4A, DLGAP5, 
ECT2, ATAD2, KIF23, and AURKA (Fig. 2C). Existing literature indicated that RAD51AP1 has been poorly studied in ESCC. 
Therefore, RAD51AP1 was selected for our subsequent research. The transcriptional expression level of RAD51AP1 in 
pan-cancer was firstly analyzed by using RNA-seq data from TCGA database. The results revealed that RAD51AP1 was 
significantly upregulated in almost all tumor types, including ESCC (Fig. 2D–F). We then evaluated the prognostic value 
of RAD51AP1 in ESCC. As shown in Fig. 2G, high expression of RAD51AP1 was associated with worse survival in ESCC. 
RAD51AP1 expression also showed good diagnostic predictive ability, as the ROC curve exhibited that the expression 
of RAD51AP1 in ESCC was 0.954 (95% CI: 0.909–0.999) (Fig. 2H).

3.4  The correlation between RAD51AP1 expression and immune infiltration

The relationship between the RAD51AP1 mRNA expression and the infiltration level of immune cells were further ana-
lyzed (Fig. 3A). The results showed that RAD51AP1 mRNA expression was positively associated with the enrichment of Th2 
cells (r = 0.625, P < 0.001, Fig. 3B), T helper cells (r = 0.413, P < 0.001, Fig. 3C) and Treg cells (r = 0.224, P = 0.044, Fig. 3D). In 
addition, RAD51AP1 mRNA expression was negatively associated with the enrichment of Mast cells (r = − 0.246, P = 0.026, 
Fig. 3E), Neutrophils cells (r = − 0.239, P = 0.031, Fig. 3F) and Th17 cells (r = − 0.236, P = 0.033, Fig. 3G). In summary, these 
findings partially supported that RAD51AP1 participated in the immune response in ESCC tumor microenvironment.

3.5  Knockdown of RAD51AP1 inhibited proliferation of ESCC cells

QPCR and western blot analyses were conducted to measure the mRNA and protein expression levels of RAD51AP1 in 
ESCC cell lines (KYSE70, KYSE150, TE-1, and EC-1) and esophageal epithelial cell line (Het-1A). As shown in Fig. 4A, B, the 
mRNA and protein expression of RAD51AP1 were significantly higher in KYSE70, KYSE150, and TE-1 cells compared to 
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Het-1A cells. Therefore, KYSE150 and TE-1 cell lines were selected for subsequent experiments. To explore the potential 
role of RAD51AP1 in ESCC progression, RAD51AP1 shRNA (KD) or negative control (NC) was transfected into KYSE150 
and TE1 cells. The knockdown efficiency was validated by qPCR and western blot assays (Fig. 4C, D).

We further investigated the effect of RAD51AP1 on cell proliferation, and CCK-8 assay revealed that knockdown of 
RAD51AP1 notably decreased the cell proliferative ability of KYSE150 and TE1 cells (Fig. 4E, F). Furthermore, results from 
colony formation assay showed that the colony number of KYSE150 and TE1 cells in KD group were significantly lower 
than that in NC group (Fig. 4G).

Fig. 4  Knockdown of RAD51AP1 inhibited cell proliferation in ESCC. A, B QPCR and western blot analyses of RAD51AP1 mRNA and protein 
expression in ESCC cell lines (KYSE70, KYSE150, TE-1, and EC-1) and esophageal epithelial cell line (Het-1A). C, D QPCR and western blot anal-
yses of KYSE150 and TE-1 cells transfected with RAD51AP1 shRNA and negative control. E, F CCK-8 assay showed knockdown of RAD51AP1 
significantly inhibited cell proliferation in KYSE150 and TE1 cells. G Colony formation assay showed knockdown of RAD51AP1 significantly 
decreased colony number of KYSE150 and TE1 cells. ESCC, esophageal squamous cell carcinoma. *p < 0.05; **p < 0.01, ***p < 0.001
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Fig. 5  Knockdown of RAD51AP1 induced cell cycle arrest and cell apoptosis in ESCC. A Flow cytometry analysis showed that knockdown of 
RAD51AP1 led to cell cycle arrest in KYSE150 and TE1 cells. B Flow cytometry analysis showed that knockdown of RAD51AP1 markedly pro-
moted cell apoptosis in KYSE150 and TE1 cells. ESCC, esophageal squamous cell carcinoma. *p < 0.05; **p < 0.01, ***p < 0.001
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3.6  Knockdown of RAD51AP1 induced cell cycle arrest and promoted cell apoptosis

To determine whether knockdown of RAD51AP1 inhibited ESCC cell proliferation via regulating cell cycle and cell apop-
tosis, we examined cell cycle distribution and cell apoptosis level by using flow cytometry analysis. Our data indicated 
that knockdown of RAD51AP1 led to cell cycle arrest at the G0/G1 phase and G2/M phase in KYSE150 and TE1 cells, 
respectively (Fig. 5A). In addition, the percentage of apoptotic cells was significantly increased in RAD51AP1 knockdown 
group compared with negative control group (Fig. 5B).

3.7  Knockdown of RAD51AP1 suppressed migration and invasion of ESCC cells

Tumor metastasis is the most life-threatening aspect of ESCC. We then detected whether RAD51AP1 influenced the migra-
tory and invasive abilities of ESCC cells through transwell assays. The results demonstrated that knockdown of RAD51AP1 
significantly suppressed cell migration as well as cell invasion in KYSE150 and TE1 cells (Fig. 6A, B). Taken together, our 
data suggested that RAD51AP1 played an important role in regulating the proliferation and invasion of ESCC cells.

4  Discussion

ESCC is the predominant type of esophageal cancer all over the world. A number of ESCC patients are diagnosed at an 
advanced clinical stage owing to the deficiency of effective biomarkers, and the prognosis of ESCC is still poor [18]. There-
fore, looking for more efficient biomarkers for the diagnosis and prognosis of ESCC is urgently required. In the present 
study, bioinformatic analyses were performed by integrating three datasets from the GEO database. A total of 150 over-
lapping DEGs were identified, and 9 hub genes were screened from PPI network by using the MCODE plugin. The survival 
analysis showed that the expression of RAD51AP1 was significantly correlated with the prognosis of esophageal cancer. 
Furthermore, in a series of cellular functional experiments, knockdown of RAD51AP1 inhibited ESCC cell proliferation 
through inducing cell cycle arrest and cell apoptosis. Knockdown of RAD51AP1 was also found to decrease the migratory 
and invasive abilities of ESCC cells. Above of all, our results indicated that RAD51AP1 might act as an oncogene in ESCC.

Previous studies have reported that RAD51AP1 is dysregulated in various types of cancer. Chudasama et al. found that 
RAD51AP1 was significantly overexpressed in lung as well as ovarian cancer patients in both tissue and blood samples 
compared with healthy controls, and KM plots predicted worse OS in patients with high expression of RAD51AP1 [19]. 
Another study demonstrated that RAD51AP1 mRNA expression was significantly upregulated in tumor tissues compared 
to adjacent tissues in patients with hepatocellular carcinoma, and upregulation of RAD51AP1 expression was associated 
with advanced tumor stage, intrahepatic metastasis, vascular invasion and AFP level elevation [10]. In the present study, 
we consistently showed that RAD51AP1 expression was markedly increased in the ESCC tissues from data in the TCGA 
database and high expression of RAD51AP1 was related to poor prognosis of ESCC patients, suggesting that RAD51AP1 
might be a potential biomarker for the prognosis of ESCC.

Numerous studies have confirmed that tumor immune cell infiltration was significantly correlated with tumor progres-
sion, and have a remarkable impact on immunotherapy, chemotherapy, and prognosis of patients with cancer [20–22]. 
RAD51AP1 was reported to be associated with immune infiltration of ovarian cancer, and upregulation of RAD51AP1 
accompanied by accumulated Th2 cells, but decreased CD4 + T cells and CD8 + T cells [7]. To explore the potential role of 
RAD51AP1 in the tumor microenvironment of ESCC, we assessed the associations between the expression of RAD51AP1 
and the infiltration level of immune cells. The results showed that RAD51AP1 expression was significantly positively cor-
related with the infiltration levels of Th2 cells, T helper cells and Treg cells. Th2 cells and Treg cells were considered as the 
oncogenic immune cells implicated in several types of tumors [23–26]. For example, the infiltration of Th2 cells promote 
tumor progression, and significantly correlates with poor survival in pancreatic cancer [27]. In addition, Lu et al. found 
that the proportion of Treg cells is increased in human gastric cancer and related to bad outcome [28]. In this study, 
Th2 cells and Treg cells were both elevated, which suggested that RAD51AP1 might contribute to mediate the immune 
escape of ESCC.

Fig. 6  Knockdown of RAD51AP1 suppressed cell migration and invasion of in ESCC. A Transwell assay showed that knockdown of 
RAD51AP1 significantly inhibited cell migration in KYSE150 and TE1 cells. B Transwell assay showed that knockdown of RAD51AP1 signifi-
cantly inhibited cell invasion in KYSE150 and TE1 cells. ESCC, esophageal squamous cell carcinoma. *p < 0.05; **p < 0.01, ***p < 0.001
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As mentioned above, high expression of RAD51AP1 might contribute to tumor progression of ESCC. A series of 
cellular functional experiments were then performed to study how RAD51AP1 involved in the development of ESCC. 
The results revealed that downregulation of RAD51AP1 could decrease cell proliferation, induce cell cycle arrest and 
enhance cell apoptosis in ESCC. Similarly, Bridges et al. reported that RAD51AP1 silencing in breast cancer cell lines 
dramatically reduced tumor growth [9]. Furthermore, inhibition of RAD51AP1 by short interfering RNA resulted in 
the cell growth suppression of cholangiocarcinoma [29]. In addition, our data demonstrated that knockdown of 
RAD51AP1 significantly suppressed cell migration and invasion in ESCC. Wu et al. expressed that RAD51AP1 silencing 
restrained the epithelial-mesenchymal transition and metastasis of non-small cell lung cancer [8]. Taken together, 
these findings indicated that RAD51AP1 could regulate cell growth and metastasis to promote the tumor develop-
ment of ESCC in vitro.

5  Conclusions

In summary, we firstly provided evidence that RAD51AP1 was overexpressed in ESCC, and upregulation of RAD51AP1was 
significantly associated with poor survival and immune infiltration. Additionally, our experiments demonstrated that 
knockdown of RAD51AP1 markedly suppressed cell proliferation and invasion in ESCC. Therefore, RAD51AP1 might be 
a potential therapeutic target for ESCC in the future.
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