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Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor
and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used
in a variety of biological processes, including photosynthesis and respiration. While
it is the fourth most abundant metal in the Earth’s crust, iron is often limiting for
growth in oxic environments because it is readily oxidized and precipitated. Much of
our understanding of how microorganisms compete for and utilize iron is based on
laboratory experiments. However, the advent of next-generation sequencing and surge
in publicly available sequence data has made it possible to probe the structure and
function of microbial communities in the environment. To bridge the gap between our
understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome
formation in model microorganisms and the plethora of sequence data available
from environmental studies, we have created a comprehensive database of hidden
Markov models (HMMs) based on genes related to iron acquisition, storage, and
reduction/oxidation in Bacteria and Archaea. Along with this database, we present
FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as
input and uses our comprehensive HMM database to annotate provided datasets with
respect to iron-related genes and gene neighborhood. An important contribution of this
tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron
reduction, which have been largely overlooked by standard annotation pipelines. We
validated FeGenie against a selected set of 28 isolate genomes and showcase its utility
in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human
oral biofilms, and 17 genomes from candidate organisms, including members of the
candidate phyla radiation. We show that FeGenie accurately identifies iron genes in
isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the
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iron gene repertoire and abundance of each environment is correlated with iron richness.
While this tool will not replace the reliability of culture-dependent analyses of microbial
physiology, it provides reliable predictions derived from the most up-to-date genetic
markers. FeGenie’s database will be maintained and continually updated as new genes
are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.

Keywords: hidden Markov model (HMM) database, iron transport, iron storage, iron oxidation, iron reduction, iron
gene regulation, magnetosome, siderophore

INTRODUCTION

Iron is the fourth most abundant element in the Earth’s crust
(Morgan and Anders, 1980), where it occurs primarily as
ferrous [Fe(II)] or ferric [Fe(III)] iron. Under circumneutral pH
and aerobic conditions, ferrous iron spontaneously oxidizes to
its ferric form, which precipitates and settles out of solution
becoming highly limiting to microbial life (Emerson, 2016).
Nonetheless, microorganisms have evolved mechanisms to deal
with this limitation, as evidenced by the variety of known
enzymes responsible for iron scavenging (Barry and Challis,
2009), transport (Wyckoff et al., 2006; Toulza et al., 2012; Fillat,
2014; Lau et al., 2016), and storage (Smith, 2004; Rivera, 2017).
While iron is limiting in many natural ecosystems, environments
exist where iron concentrations are high enough to support
communities of microorganisms capable of deriving energy from
iron oxidation (Emerson and Moyer, 2002; Jewell et al., 2016).
These environments can also be inhabited by microorganisms
capable of using ferric iron, usually in the form of a mineral,
as a terminal electron acceptor in electron transport chains
(Gao et al., 2006; Emerson, 2009; Elliott et al., 2014; Quaiser
et al., 2014). While various marker genes, based on the study
of a few model organisms, have been inferred, relatively little is
known about the genetics behind iron oxidation and reduction
(He et al., 2017).

Microbial iron metabolisms (Figure 1) and
acquisition/transport pathways (Figure 2) play significant roles
across a wide range of environments. Indeed, the prevalence
of iron as a necessary cofactor (Ayala-Castro et al., 2008)
and the dependence of life on iron, with the exception of a
group of homolactic bacteria (Pandey et al., 1994), suggests
that life evolved in an iron-rich world. Moreover, the variety
of microorganisms in the archaeal and the bacterial domains
capable of using iron as an electron donor or acceptor (Nealson
and Saffarini, 1994; Weiss et al., 2007; Hedrich et al., 2011; Ilbert
and Bonnefoy, 2013; Fullerton et al., 2017) suggests that these
metabolisms were either adopted very early in the history of
life or benefited from horizontal gene acquisition. There are
examples of organisms that are considered “iron-free” and do not
appear to encode genes associated with iron homeostasis, such
as Borrelia burgdorferi (Andrews et al., 2003) and Treponema
pallidum (Posey and Gherardini, 2000). However, as pointed out
by Andrews et al. (2003), since these Bacteria are intracellular
parasites, their genomes are small (∼1 Mbp) and encode only
a subset of genes required for bacterial growth and survival;

reliance on host iron-dependent metabolic processes likely
resulted in these parasites losing iron-associated genes.

Over the past few decades, almost three hundred genes
involved in iron transport, metabolism, and transformation of
iron and iron-containing minerals (e.g., magnetite, hematite,
ferrihydrite, olivine, etc.) have been identified. Only a small
proportion of these genes are thought to be involved in
dissimilatory iron reduction and the energy-deriving process of
iron oxidation. These are generally not annotated as such by
established gene annotation pipelines, such as RAST (Overbeek
et al., 2014), GhostKOALA (Kanehisa et al., 2016), MAPLE (Arai
et al., 2018), and InterProScan (Quevillon et al., 2005). There
are also no publicly available hidden Markov models (HMMs)
for genes involved in iron oxidation and reduction, with the
exception of mtrB (TIGR03509) and mtrC (TIGR03507), which
have HMMs available within the TIGRFAMS HMM database.
Moreover, many iron-related gene operons contain genes that are
not exclusive to iron metabolism, but, nonetheless, within that
operon, play an important role in acquiring or transporting iron
(e.g., asbC in the siderophore synthesis gene operon asbABCDEF
is annotated as an AMP-binding enzyme by the Pfam database).
Herein, we make a publicly available set of HMMs based on
current knowledge of iron acquisition, storage and respiratory
oxidation/reduction mechanisms, and integrate that with HMMs
based on all available genetic markers for iron acquisition,
storage, and redox cycling in Bacteria and Archaea.

We present FeGenie, a new bioinformatics tool that comes
with a curated and publicly available database of profile HMMs
for enzymes involved in iron acquisition, storage, and redox-
cycling in prokaryotes. FeGenie is available as a command-line
tool, installed manually or via Conda configuration1. Users can
submit genomes and metagenomes (in the form of contigs, amino
acid gene sequences, or GenBank format files) for identification
of known iron-related pathways. FeGenie consists of 208 protein
families representing 12 iron-related functional categories
(summarized in Table 1 and Supplementary Table S1). These
functions are distributed across five overarching categories: iron
acquisition/transport, iron storage, iron gene regulation, iron
redox reactions, and magnetosome formation. HMMs were
either manually constructed or taken from Pfam/TIGRFAMS.
The advantage of using HMMs, as compared to local sequence
alignments, is the rapid and sensitive identification of distantly
related homologs to genes of interest (Eddy, 2004). This is

1https://conda.io/projects/conda/en/latest/
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FIGURE 1 | Scheme of known iron-oxidizers and iron-reducers. There are several different types of iron-oxidizers known, with more information on Gram-negative
(A) bacteria compared to Gram-positive (B) bacteria (note: the acidophilic aerobic iron-oxidizers can use either a copper protein or cytochrome c to transfer
electrons in the periplasm). (C) For iron-reducers, there are only two mechanisms known and under anaerobic conditions. The genes identified by FeGenie are in
boxes above each type, with the exception of Cyt b573, which has yet to be confirmed for iron oxidation (White et al., 2016). FeGenie does not include pili and
flavin-related genes since these genes are commonly associated with other functions/metabolisms. Modified from White et al. (2016) and Wang et al. (2019). OM,
outer membrane; P, periplasm; and CM, cytoplasmic membrane.

particularly important in the analysis of large environmental
datasets with uncultivated and/or novel microorganisms.

To validate FeGenie, we tested the program against 28
microbial genomes (Supplementary Table S2) with established
pathways for iron acquisition, iron oxidation, and iron
reduction. These genomes are comprised of model organisms,
including siderophore-producers, magnetotactic bacteria, iron-
reducers, as well as known and suspected iron-oxidizers. We
demonstrate that this tool efficiently identifies iron-related genes
and potential operons present within selected representative
genomes, accurately identifying iron oxidation and reduction
genes in known and potential iron-oxidizers and iron-reducers,
respectively. FeGenie was also used to analyze members of the
recently discovered Candidate Phyla Radiation (CPR) (Brown
et al., 2015) and other candidate taxa, as well as 27 publicly-
available metagenomes, representative of a range of habitats that
include iron-rich and iron-poor marine and terrestrial systems
(Table 2). We present the results of these analyses and establish

FeGenie as a straightforward and simple tool for the identification
of iron-related pathways in genomes and metagenomes.

MATERIALS AND METHODS

Algorithm Overview
FeGenie is implemented in Python 3, with three required
dependencies: HMMER v. 3.2.1 (Johnson et al., 2010), BLASTp v.
2.7.1 (Madden, 2013), and Prodigal v. 2.6.3 (Hyatt et al., 2010).
External installation of these dependencies is not required if
FeGenie is configured using Conda2. There are two optional
dependencies, which must be installed externally: R (R Core
Team, 2013) and Rscript (R Core Team, 2013). R packages used
in FeGenie include argparse (Davis, 2018), ggplot2 (Wickham,
2009), ggdendro (de Vries and Ripley, 2016), reshape (Wickham,

2https://conda.io/projects/conda/en/latest/
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FIGURE 2 | Scheme of known iron acquisition, storage, and regulation pathways. Gram-negative (A) and Gram-positive (B) bacteria have different mechanisms to
uptake iron due to differences in the cell membrane structure. Iron(II)/(III) uptake can also be mediated extracellularly by redox cycling secondary metabolites, such as
phenazine-1-carboxylic acid (Cornelis and Dingemans, 2013). OM, outer membrane; P, periplasm; and CM, cytoplasmic membrane. Modified from Anzaldi and
Skaar (2010); Caza and Kronstad (2013), Contreras et al. (2014); Kranzler et al. (2014), Lau et al. (2016). *Fe(III) release from siderophores intracellularly could include
Fe(III) reduction (e.g., fpvG, Ganne et al., 2017) or modification/hydrolysis of the siderophore (e.g., esterase, Brickman and McIntosh, 1992).

2007), reshape2 (Wickham, 2007), grid (R Core Team, 2013),
ggpubr (Kassambara, 2017), tidyverse (Wickham, 2017), and
Pvclust (Suzuki and Shimodaira, 2006); users need to install
these packages independently using Rscript (detailed instructions
on this are available within the FeGenie Wiki3). The overall
workflow of FeGenie is outlined in Figure 3. User-provided input
to this program includes a folder of genomes or metagenomes,
which must all be in FASTA format, comprised of contigs or
scaffolds. Users can also submit amino acid gene sequences

3https://github.com/Arkadiy-Garber/FeGenie/wiki/Installation

in FASTA or GenBank format. First, Prodigal (Hyatt et al.,
2010) is used to predict open-reading frames (ORFs). A custom
library of profile HMMs (library described in section “HMM
Development: Building and Calibrating HMMs”) is then queried
against these ORFs using hmmsearch (Johnson et al., 2010),
with custom bit score cutoffs for each HMM. Additionally,
genes shown to be involved in dissimilatory iron reduction but
lacking sufficient homologs in public repositories (precluding
us from building reliable HMMs) are queried against the
user-provided dataset using BLASTp (Madden, 2013) with a
default e-value cutoff of 1E-10. These genes include the S-layer
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TABLE 1 | Summary of iron-related protein families that are represented as pHMMs in FeGenie.

Category Function Protein Families

Iron acquisition Iron(II)/(III) transport EfeUOB1, FbpABC2, SfuABC3, YfuABC4, FeoAB(C)5, FutA16, FutA26, FutB6, FutC6, YfeABCD7

Heme oxygenase ChuS8, ChuZ9, HemO10,11, PigA10,11, HemRSTUV12, HmoB13, HmuO14, HugZ15, HupZ16,
Isd-LmHde17, IsdG18, IsdI19, MhuD20, PhuS21 (in PhuRSTUVW)

Heme transport HasRADE(B)F22, HmuRSTUV22, HmuY23, HmuY’23, HutZ24, HxuCBA25, IsdX126, IsdX226,
PhuRSTUVW21, Rv020327

Transferrin/Lactoferrin TbpAB (LbpAB)28, SstABCD29

Siderophore synthesis AcsABCDEF30, AmoA31, AngR32, AsbABCDEF33, DhbACEBF34,
entD-fepA-fes-entF-fepECGDB-entCEBA-ybdA35, IroD in IroNBCDE36, IucABCD37,38, IutA37,38,
MbtIJABCDEFGH35, LbtA39 (in LbtUABC), PchABCDREFGHI35, PvdQAPMNOFEDJIHLGS40,
PvsABCDE41, VenB42, Vab genes in VabR-fur-vabGA-fur-VabCEBSFH-fur-fvtA-vabD43, Vib genes
in VibB-vibEC-vibA-vibH-viuPDGC-vibD and viuAB-vibF44−46, RhbABCDEF-rhrA-rhtA47

Siderophore transport BesA48, CbrABCD49, TonB-ExbB-ExbD50, FatABCD51, FecIRABCDE52, FeuABC-yusV53,
FhuACDB54−56, FhuF54−56, FptABCX57, FpuAB58, FpuC58, FpuD58,
FpvIR-FpvA-FpvGHJKCDEF59, FvtA in VabR-fur-vabGA-fur-VabCEBSFH-fur-fvtA-vabD43,
HatCDB37, IroNBCDE36, LbtUABC39, PirA60, PiuA60, PvuABCDE41, Viu genes in
VibB-vibEC-vibA-vibH-viuPDGC-vibD and viuAB-vibF44−46, YfiZ-yfhA61, YfiY61, YqjH62, ybdA and
Fep genes in entD-fepA-fes-entF-fepECGDB-entCEBA-ybdA35

Iron Gene regulation Transcriptional regulation DtxR63, FecR (in FecIRABCDE)52, FeoC in FeoAB(C)5, Fur64, IdeR65, YqjI62, RhrA in
RhbABCDEF-rhrA-rhtA47

Iron oxidation and
reduction

Iron oxidation Cyc166,67, Cyc266,67,68, FoxABC69, FoxEYZ70, Sulfocyanin71, PioABC72

Probable iron oxidation and
possible iron reduction

MtoAB73, Cyc2 (cluster 3)

Dissimilatory iron reduction CymA74, MtrCAB75, OmcF76, OmcS76, OmcZ76, FmnA-dmkA-fmnB-pplA-ndh2-eetAB-dmkB77,
DFE_0448-0451, DFE_0461-046578

Probable iron reduction MtrCB, MtrAB, MtoAB-MtrC

Iron storage Iron storage Bfr79, DpsA80, Ftn81

Magnetosome-related Magnetosome formation MamABEKLMOPQI82,83 (Note: These genes are found in all known magnetotactic microorganisms,
except for mamL which is found in magnetite-producing magnetotactic microorganisms81)

Bolded and underlined HMMs are derived from Pfam or TIGRFAMs databases. Other HMMs were created by using select sequences. See Supplementary Table S1 for
more information, including the corresponding Pfam or TIGRFAMs families and the sequences used to create the HMMs. 1Miethke et al., 2013, 2Adhikari et al., 1996,
3Angerer et al., 1990, 4Gong et al., 2001, 5Lau et al., 2016, 6Katoh et al., 2001, 7Bearden et al., 1998, 8Suits et al., 2006, 9Zhang et al., 2011, 10Friedman et al., 2003,
11Friedman et al., 2004, 12Schneider et al., 2006, 13Park et al., 2012, 14Matsui et al., 2005, 15Hu et al., 2011, 16Sachla et al., 2016, 17Duong et al., 2014, 18Reniere et al.,
2010, 19Skaar et al., 2004, 20Graves et al., 2014, 21Ochsner et al., 2000, 22Tong and Guo, 2009, 23Wójtowicz et al., 2009, 24Liu X. et al., 2012, 25Morton et al., 2007,
26Honsa et al., 2014, 27Tullius et al., 2011, 28Gray-Owen et al., 1995, 29Morrissey et al., 2000, 30Carroll and Moore, 2018, 31Barghouthi et al., 1991, 32Wertheimer et al.,
1999, 33Oves-Costales et al., 2007, 34May et al., 2001, 35Crosa and Walsh, 2002, 36Hantke et al., 2003, 37Suzuki et al., 2006, 38Martínez et al., 1994, 39Cianciotto,
2015, 40Lamont and Martin, 2003, 41Tanabe et al., 2003, 42Tan et al., 2014, 43Balado et al., 2008, 44Wyckoff et al., 2001, 45Keating et al., 2000, 46Wyckoff et al., 1999,
47Lynch et al., 2001, 48Miethke et al., 2006, 49Mahé et al., 1995, 50Garcia-Herrero et al., 2007, 51Lemos et al., 2010, 52Braun, 2003, 53Peuckert et al., 2011, 54Köster
and Braun, 1989, 55Coulton et al., 1987, 56Braun et al., 2002, 57Youard et al., 2011, 58Dixon et al., 2012, 59Brillet et al., 2012, 60Moynie et al., 2017, 61Ollinger et al.,
2006, 62Wang et al., 2011, 63Guedon and Helmann, 2003, 64Escolar et al., 1998, 65Rodriguez et al., 2002, 66Castelle et al., 2008, 67Barco et al., 2015, 68McAllister
et al., 2019, 69Bathe and Norris, 2007, 70Croal et al., 2007, 71 Ilbert and Bonnefoy, 2013, 72Liu J. et al., 2012, 73Jiao and Newman, 2007, 74Castelle et al., 2015, 75Pitts
et al., 2003, 76Santos et al., 2015, 77Light et al., 2018, 78Deng et al., 2018, 79Grossman et al., 1992, 80Grant et al., 1998, 81Andrews, 1998, 82Uebe and Schuler, 2016,
83Kolinko et al., 2016.

proteins implicated in iron reduction in Thermincola potens JR
(Carlson et al., 2012), as well as porin-cytochrome encoding
operons implicated in iron reduction in Geobacter spp. (Shi
et al., 2014). The results of hmmsearch (Johnson et al., 2010)
and BLAST (Madden, 2013) are then analyzed and candidate
gene neighborhoods identified. Potential for dissimilatory iron
oxidation and reduction is determined based on a set of
rules that are summarized in Supplementary Table S3. Even
though the sensitivity of each HMM has been calibrated
against NCBI’s nr database (see section “HMM Development:
Building and Calibrating HMMs” for details on the calibration
process), we recommend that users take advantage of an
optional cross-validation feature of the program that allows users
to search each FeGenie-identified putative iron gene against
a user chosen database of reference proteins (e.g., NCBI’s

nr, RefSeq). Based on these analyses, FeGenie outputs the
following files:

1. CSV file summarizing all identified putative iron-related
genes, their functional category, bit score (shown in the
context of the calibrated bit score cutoff of the matching
HMM), number of canonical heme-binding motifs, amino
acid sequence, and closest homolog to a user-provided
database (optional; e.g., NCBI nr database).

2. Heatmap summary comparing the number of genes
identified from each iron-related category across the
analyzed genomes/metagenomes.

3. Three plots created with Rscript (optional): (1)
Dendrogram showing the dissimilarity (based on iron-gene
distributions) between provided genomes or assemblies,
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TABLE 2 | Summary of metagenomes analyzed.

Dataset Environment description NCBI Accession No. Predicted ORFs References

Amazon River Plume (Station 3) River/ocean mixing, intermediate
salinity

SAMN02628402 377,266 Satinsky et al., 2017

Amazon River Plume (Station 10) River/ocean mixing, low salinity SAMN02628416 143,340 Satinsky et al., 2017

Amazon River Plume (Station 27) River/ocean mixing, high salinity SAMN02628424 278,301 Satinsky et al., 2017

The Cedars (BS5 2011) Serpentinizing, alkaline
groundwater (shallow source)

GCA_002583255.1 32,646 Suzuki et al., 2017

The Cedars (BS5 2012) Serpentinizing, alkaline
groundwater (shallow source)

GCA_002581825.1 50,323 Suzuki et al., 2017

The Cedars (GPS1 2011) Serpentinizing, alkaline
groundwater (deep source)

GCA_002581705.1 86,466 Suzuki et al., 2017

The Cedars (GPS1 2012) Serpentinizing, alkaline
groundwater (deep source)

GCA_002581605.1 78,321 Suzuki et al., 2017

Jinata Hot Springs Iron-rich groundwater, mixed with
seawater

PRJNA392119 992,695 Ward, 2017

Loihi Seamount (S1) (i.e., Syringe
Sample)

Marine hydrothermal vent Fe
microbial mat (surficial syringe
sample)

SRR6114197 146,898 McAllister et al., 2019

Loihi Seamount (S6) (i.e., Scoop
Sample 1)

Marine hydrothermal vent Fe
microbial mat (bulk scoop sample)

Gp0295815 390,888 McAllister et al., 2019

Loihi Seamount (S19) (i.e., Scoop
Sample 2)

Marine hydrothermal vent Fe
microbial mat (bulk scoop sample)

Gp0295816 827,472 McAllister et al., 2019

Mid-Atlantic Ridge, Rainbow
(664-BS3) (i.e., Syringe Sample 1)

Marine hydrothermal vent Fe
microbial mat (surface syringe
sample)

Gp0295819 414,137 McAllister et al., 2019

Mid-Atlantic Ridge, Rainbow
(664-SC8) (i.e., Scoop Sample)

Marine hydrothermal vent Fe
microbial mat (bulk scoop sample)

Gp0295820 597,486 McAllister et al., 2019

Mid-Atlantic Ridge, TAG
(665-MMA12) (i.e., Syringe Sample
2)

Marine hydrothermal vent Fe
microbial mat (surface syringe
sample)

Gp0295821 255,314 McAllister et al., 2019

Mid-Atlantic Ridge, Snakepit
(667-BS4) (i.e., Syringe Sample 3)

Marine hydrothermal vent Fe
microbial mat (surface syringe
sample)

Gp0295823 422,234 McAllister et al., 2019

Mariana Backarc, Urashima
(801-BM1-B4, S7) (i.e., Scoop
Sample)

Marine hydrothermal vent Fe
microbial mat (surface syringe
sample)

Gp0295817 365,851 McAllister et al., 2019

Arabian Sea metagenome (Tara) Marine surface water PRJNA391943 398,870 Tully et al., 2018

Chile/Peru Coast metagenome
(Tara)

Marine surface water PRJNA391943 375,779 Tully et al., 2018

East Africa Coast metagenome
(Tara)

Marine surface water PRJNA391943 464,070 Tully et al., 2018

Indian Ocean metagenome (Tara) Marine surface water PRJNA391943 178,873 Tully et al., 2018

Mediterranean metagenome (Tara) Marine surface water PRJNA391943 607,005 Tully et al., 2018

North Atlantic metagenome (Tara) Marine surface water PRJNA391943 673,120 Tully et al., 2018

North Pacific metagenome (Tara) Marine surface water PRJNA391943 601,358 Tully et al., 2018

Red Sea metagenome (Tara) Marine surface water PRJNA391943 331,387 Tully et al., 2018

South Atlantic metagenome (Tara) Marine surface water PRJNA391943 735,385 Tully et al., 2018

South Pacific metagenome (Tara) Marine surface water PRJNA391943 1,128,901 Tully et al., 2018

Rifle Aquifer Terrestrial subsurface aquifer Jewell et al., 2016 (Supplementary Data) 203,744 Jewell et al., 2016

The list of 27 previously published metagenomes, representing a wide range of habitats from iron-rich to iron-poor marine and terrestrial systems. Prodigal v. 2.6.3 (Hyatt
et al., 2010) was used to predict the number of open reading frames (ORFs) in each metagenome dataset. See section “Acquisition and assembly of environmental
metagenomes” in the Materials and Methods for more detailed description and acquisition.

(2) scaled heatmap based on the relative distribution of
iron-related genes across genomes/metagenomes, and (3)
dot plot showing the relative abundance of iron genes
across genomes. Using the R package Pvclust (Suzuki
and Shimodaira, 2006), the dendrogram is produced

using Ward’s method and Euclidian distance metric
to hierarchically cluster the data with bootstrapped
probability values for each cluster. This will allow users to
assess the uncertainty in clustering, given that the analyzed
genomes and metagenomes may not necessarily be
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FIGURE 3 | FeGenie algorithm overview. Color-coded to represent various aspects of the program, including external programs/dependencies, optional databases
for cross-reference, and custom Python scripts.

derived from extremely different environments and iron/
redox regimes.

HMM Development: Building and
Calibrating HMMs
Collection of iron-related protein sequences occurred between
May 2018 and August 2019. FeGenie’s HMM library includes

genes associated with iron acquisition from the environment,
iron storage, magnetosome formation, and iron redox-cycling.
This tool does not include genes related to downstream
iron utilization pathways, such as a heme and iron-sulfur
cluster synthesis. Moreover, FeGenie’s HMM library does
not include genes associated with small regulatory RNAs.
Sequences corresponding to proteins whose functions have been
characterized in the literature were downloaded from reviewed
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sequences on UniProtKB (The UniProt Consortium, 2017) or
NCBI, excluding proteins that were already represented by Pfam
families (Finn et al., 2016) (Supplementary Table S1). To expand
the diversity of each of the collected proteins, those sequences
were then used as queries in a BLASTp v.2.6.0 (Madden, 2013)
search against NCBI’s RefSeq (Release 89) database (Pruitt et al.,
2007), with a minimum amino acid identity cutoff of 35% (Rost,
1999) over at least 70% of the query length. These search results
were then de-replicated so that each seed sequence is represented
by a unique set of non-overlapping BLAST hits. Using MMseqs2
(Steinegger and Söding, 2017), each seed sequence and its set
of BLAST hits were then collapsed with a 70% amino acid
identity cutoff to remove overrepresented protein sequences,
which would otherwise create biases in resulting HMMs. Each
collapsed set of sequences was then aligned using Muscle v.3.8.31
(Edgar, 2004) and each alignment was manually inspected and
curated. These curated alignments were then used as seeds for
the generation of HMMs using the hmmbuild command from
HMMER (Johnson et al., 2010). To calibrate appropriate bit score
cutoffs for each HMM in the HMM library, each HMM was
queried against NCBI’s nr database (Pruitt et al., 2007) using
hmmsearch. By manually inspecting each hmmsearch result, we
identified bit score cutoffs that optimally delineated between true
and false positives among hits from nr. Thus, each HMM in
the FeGenie library received its own custom bit score cutoff.
This library represents the most comprehensive set of proteins
associated with iron metabolisms and pathways available at the
time of collection. This database will be updated as new genes
relevant to iron are discovered.

HMM Development: Iron
Oxidation/Reduction
For determination of iron oxidation potential, we included
the candidate iron oxidase from acidophilic and neutrophilic
iron-oxidizing bacteria, Cyc2 (Barco et al., 2015). As shown
by McAllister et al. (2019), Cyc2 is represented by three
phylogenetically distinct clusters; thus, we constructed three
different HMMs, specific to each cluster. Cluster 1 includes
sequences from most known, well-established neutrophilic iron-
oxidizers but is yet to be genetically or biochemically verified
as an iron oxidase. Clusters 2 and 3 include sequences from
acidophilic iron-oxidizing bacteria, including two homologs that
have been biochemically verified to catalyze the oxidation of iron:
Cyc2 from Acidithiobacillus ferrooxidans (Castelle et al., 2008)
and Cyt572 from Leptospirillum rubarum (Jeans et al., 2008).

FeGenie also includes MtoA as a possible, but as yet
unconfirmed, indicator for iron oxidation potential (Liu J. et al.,
2012). The function of MtoA is unclear since it is homologous to
the iron-reducing enzyme, MtrA, of Shewanella oneidensis MR-1,
but nonetheless it is proposed to be involved in iron oxidation by
Liu J. et al. (2012), even though there is a lack of supporting gene
expression data. Indeed, MtoA has been shown to rescue 1mtrA
mutants of MR-1, partially recovering the ability to reduce ferric
iron (Liu J. et al., 2012). Nonetheless, phylogenetic analysis shows
a separation between the mtrA genes utilized by known iron-
reducing bacteria (particularly within the Alteromonadaceae and

Vibrionaceae families), and mtoA homologs encoded by known
and suspected iron-oxidizing bacteria (Garber, 2018), including
members of the Gallionellaceae (Supplementary Figure S1).
Thus, two separate HMMs were constructed, one for MtrA
homologs encoded by known iron-reducers and one for MtoA
homologs encoded by known and suspected iron-oxidizers. The
MtoA HMM includes PioA, which has been genetically (Jiao
and Newman, 2007) and experimentally (Gupta et al., 2019)
verified to be necessary for iron oxidation in Rhodopseudomonas
palustris TIE-1. Moreover, the mtrA-encoding operon in iron-
reducing bacteria typically encodes mtrC, an outer-membrane
cytochrome thought to participate in dissimilatory iron reduction
(Lower et al., 2007). MtrC is not encoded by iron-oxidizing
bacteria (Shi et al., 2014), supporting its use as an additional
indicator for iron-reducing potential. In light of these ambiguities
in the function of MtoA, identification of MtoAB by FeGenie
is treated with caution as a potential iron oxidase/reductase.
Other HMMs used for determination of iron oxidation potential
include genes from iron-oxidizing Archaea: sulfocyanin (Castelle
et al., 2015), foxABC (Bathe and Norris, 2007), and foxEYZ
(Croal et al., 2007).

Determination of iron reduction potential is dependent on the
identification of homologs to various porin-cytochrome operons,
including mtrCAB (Pitts et al., 2003), as well as two operons
from Desulfovibrio ferrophilus (Deng et al., 2018), various porin-
cytochrome operons identified in Geobacteraceae (Shi et al.,
2014), and genes encoding S-layer-associated proteins implicated
in iron reduction in Thermincola potens JR (Carlson et al.,
2012). Additionally, we included the flavin-dependent operon
that was implicated in iron reduction in Listeria monocytogenes
(Light et al., 2018).

Seed sequences for MtrA, MtoA, and Cyc2 were manually
curated, aligned using Muscle, and used for the building of
HMMs. Due to the highly divergent nature of the porin domain
in Cyc2, identification of Cyc2 is dependent upon the presence
of a heme-binding motif and length of at least 375 amino acids,
which is considered long enough to encode an outer membrane
porin (Tamm et al., 2004).

HMM Development: Siderophore
Synthesis
FeGenie can also be used to identify siderophore synthesis genes
and potential operons. Siderophores are microbially produced
products (500–1200 Da) that have a preference for binding
ferric iron (up to 10−53 M) (Ehrlich and Newman, 2008),
enabling microorganisms to obtain this largely insoluble iron
form. There are over 500 identified siderophores, categorized
as catecholates, hydroxamates, or hydroxycarboxylic acids (Kadi
and Challis, 2009). Microorganisms can synthesize siderophores
via the NRPS (non-ribosomal peptide synthetase) or NIS
(NRPS-independent siderophore) pathways (Carroll and Moore,
2018). The NRPSs are megaenzymes that consist of modular
domains (adenylation, thiolation, and condensation domains) to
incorporate and sequentially link amino acids, keto acids, fatty
acids, or hydroxy acids (Gulick, 2017). The NRPSs are highly
selective and predictable based on the product produced, and
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FeGenie will identify these putative siderophore synthesis genes
based on the genomic proximity of each identified gene (Table 1).
In contrast, the NIS pathway consists of multiple enzymes that
each have a single role in the production of a siderophore,
such as aerobactin, which was the first siderophore discovered
to be synthesized by this pathway (Kadi and Challis, 2009).
The operon involved in aerobactin biosynthesis is iucABCD,
and homologs of the genes iucA and iucC (which are included
in FeGenie) are indicators of siderophore production via the
NIS pathway (Carroll and Moore, 2018). The HMM library that
represents siderophore synthesis consists of HMMs derived from
the Pfam database, as well as those constructed here (Table 1).
Because many different siderophore synthesis pathways share
homologous genes, we developed HMMs that were sensitive to
the entirety of each gene family, rather than for each individual
siderophore. Supplementary Data Sheet S1 summarizes the
gene families from which HMMs were built and includes gene
families for siderophore export, iron uptake and transport, and
heme degradation. Although FeGenie cannot predict the exact
siderophore produced, FeGenie enables users to identify putative
(and potentially novel) siderophore synthesis operons, which can
then be confirmed by external programs, such as antiSMASH
(Weber et al., 2015), a bioinformatics tool to identify biosynthetic
gene clusters.

HMM Development: Siderophore and
Heme Transport
Similar to siderophore synthesis, transport genes
for siderophores, heme/hemophores, and iron from
transferrin/lactoferrin are represented by HMMs specific to
gene families. HMMs used by FeGenie to infer siderophore and
heme transport include both custom-made and Pfam models
(Table 1 and Supplementary Table S1). In Gram-positive
bacteria, siderophores are delivered to an ATP-binding cassette
(ABC) importer from a receptor protein (Brown and Holden,
2002) while hemes, hemophores, and iron from transferrin
and lactoferrin are delivered via a receptor protein and a series
of cell-wall chaperone proteins (Contreras et al., 2014). In
comparison, for Gram-negative bacteria, the Ton system (TonB-
ExbB-ExbD protein complex) is the commonly used transport
mechanism located in the cytoplasmic membrane (Figure 2)
(Krewulak and Vogel, 2011; Contreras et al., 2014). Because the
Ton system can uptake other metabolites (e.g., vitamin B12),
the identification of this transport pathway suggests only the
potential for the transport of siderophores, hemes, and iron from
transferrin/lactoferrin; it is the sole system known to transport
these iron-bearing molecules, thus far, in Gram-negative bacteria
(Faraldo-Gómez and Sansom, 2003; Caza and Kronstad, 2013).
For example, Pseudomonas aeruginosa PAO1 encodes 34
different TonB-dependent receptors, including PiuA and PirA
(Luscher et al., 2018). While this diversity of TonB-dependent
receptors reflects, in part, an ability to uptake multiple types
of siderophores, it also indicates that these receptors are also
likely utilized for purposes outside of iron metabolism. Thus,
it is possible that FeGenie overestimates the potential for the
transport of iron-bearing compounds. In light of this potential

for overestimation, caused by ambiguity related to the substrate
targeted by TonB-dependent transport systems, we urge users to
further investigate identified TonB-dependent receptors and not
immediately interpret their presence as evidence of transport of
siderophores, hemes, and/or iron from transferrin/lactoferrin.

HMM Development: Iron Uptake
FeGenie also features a set of genes implicated in the transport of
ferrous and ferric iron ions. Some examples of these include futA1
and futA2 (Katoh et al., 2001), which bind both ferrous and ferric
iron (Kranzler et al., 2014), although there is preference for Fe(II)
(Koropatkin et al., 2007). Some iron transporters may also work
in conjunction with the transport of heme, siderophore, or iron
from transferrin/lactoferrin, such as the iron transport operon
EfeUOB. Other genetic markers for iron transport encompassed
by FeGenie’s HMM library include feoABC (Lau et al., 2016),
fbpABC (Adhikari et al., 1996), and others listed in Table 1 and
Supplementary Table S1.

HMM Development: Heme Transport and
Lysis
Heme oxygenase and transport genes define another strategy
that microorganisms, especially pathogens, use to obtain iron
from their environment. In particular, heme oxygenases enable
pathogens to obtain iron from a host through oxidative
cleavage of heme, thereby releasing iron (Wilks and Heinzl,
2014). Heme oxygenases are categorized into two groups: (1)
“canonical” heme oxygenases (HmuO, PigA, and HemO), which
degrade heme to biliverdin and carbon monoxide, and (2)
“non-canonical” heme oxygenases (IsdG, IsdI, MhuD, and Isd-
LmHde), which degrade heme to products like staphylobilin
(IsdG and IsdI) and mycobilin (MhuD) (Wilks and Heinzl, 2014).
All these heme oxygenase genes are included in FeGenie’s HMM
library. Similarly, orthologs to known heme transport genes are
also identified by FeGenie, including the five bacterial heme
transport systems (Contreras et al., 2014): IsdX1, IsdX2, HasA,
HxuA, and Rv0203.

HMM Development: Regulation
Regulation of iron uptake and storage is an important aspect
of iron homeostasis. Microorganisms often reside in ever-
changing conditions and must sense and respond to their outside
environment with respect to iron transport. To this end, genes
encoding transcriptional regulators modulate the expression
of various genes relevant to iron acquisition. We included
these genes in FeGenie’s HMM library. These transcriptional
regulators include FeoC, which functions as an iron sensor
and repressor of the feo operon (Lau et al., 2016). Another
important transcriptional regulator is ferric uptake regulator Fur,
which binds ferrous iron and represses siderophore synthesis and
iron uptake. Fur is also thought to control expression of genes
involved in reactive oxygen species neutralization (Troxell and
Hassan, 2013). Other regulators represented in FeGenie’s HMM
library include PchR (Heinrichs and Poole, 1996), DtxR (Brune
et al., 2006), and YqjH (Wang et al., 2011).
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Extracytoplasmic-function (ECF) sigma factors are sensitive
to signals from outside of the cell, and they bind and recruit
RNA-polymerase to specific regions of the genome (Brooks
and Buchanan, 2008). Two such ECF sigma factors, PvdS and
FpvI, are included in FeGenie’s HMM library. PvdS controls
expression of genes for pyoverdine biosynthesis, while FpvI
controls expression of a TonB-dependent siderophore receptor
(Reinhart and Oglesby-Sherrouse, 2016). In addition, we also
included the FecR regulatory protein, which signals an (ECF)
sigma factor to promote the expression of genes responsible for
ferric citrate transport (Stiefel et al., 2001).

Acquisition of Representative Genomes
From RefSeq and Candidate Taxa
Genome sequences were downloaded from the NCBI RefSeq
and GenBank database (Pruitt et al., 2007) on November 4,
2017. Genomes from the Candidate Phyla Radiation and other
candidate taxa were obtained using the NCBI accession IDs
found in Hug et al. (2016). All NCBI accessions are listed in
Supplementary Table S2, as well as Supplementary Data Sheets
S2, S3, S10, S11.

Acquisition and Assembly of
Environmental Metagenomes
• Loihi Seamount, Mid-Atlantic Ridge, and Mariana Backarc

Iron microbial mats: Eight iron mat metagenomes, three
from Loihi Seamount, four from the Mid-Atlantic Ridge,
and one from the Mariana Backarc, were sequenced and
assembled (details in McAllister et al., 2019). Syringe
samples represent active samples from the edge of
iron mats. Scoop and slurp samples represent bulk
samples, which include deeper mat material. Assembly
data available from JGI Sequence Project IDs Gp0295814-
Gp0295821 and Gp0295823.
• The Cedars, a terrestrial serpentinite-hosted system:

Metagenome assemblies were downloaded from the NCBI
GenBank database (BioProject Accession ID: PRJDB2971):
GCA_002581605.1 (GPS1 2012), GCA_002581705.1
(GPS1 2011), GCA_002581825.1 (BS5 2012), and
GCA_002583255.1 (BS5 2011) (Suzuki et al., 2017). GPS1
(Grotto Pool Springs) is sourced by deep groundwater
while BS5 (Barnes Springs 5) is sourced by ∼15% deep
groundwater and ∼85% shallow groundwater. Both
environments host highly alkaline and highly reducing
waters. Two samples were collected from each spring and
represent temporal duplicates taken approximately 1 year
apart. These metagenomes were processed as described in
Suzuki et al. (2017).
• Amazon River plume estuary: Raw metagenome reads were

downloaded from NCBI’s Sequence Read Archive (SRA)
corresponding to BioSamples SAMN02628402 (Station 3),
SAMN02628424 (Station 27), and SAMN02628416 (Station
10); these correspond to samples taken along a salinity
gradient formed as the Amazon River flows into the
Atlantic Ocean (Satinsky et al., 2017). Station 10 represents
water samples taken nearest to the source of river water,

and Station 27 represents the sample taken furthest away
from the river. Raw reads were quality trimmed using
Trimmomatic v.0.36 (Bolger et al., 2014) with a sliding
window of 4 base pairs (bp) and minimum average quality
threshold of 15 (phred33) within that window; reads shorter
than 36 bp were discarded. SPAdes v.3.10 (Bankevich
et al., 2012) with the ‘–meta’ flag (Nurk et al., 2017)
and default k-mers was used for assembly of high-quality
reads into contigs.
• Jinata Hot Springs: This metagenome assembly was

provided by Dr. Lewis Ward and processed as described
by Ward et al. (2019). The assembly is located in the NCBI
database under accession PRJNA392119. Raw metagenome
data are represented by accession numbers SRX4741377-
SRX4741380. This ecosystem represents a hot spring where
low-oxygen and iron-rich fresh groundwater mixes with
oxic and iron-deplete ocean water.
• Rifle Aquifer: ORFs from the assembled Rifle Aquifer

metagenome were downloaded from the supplemental
dataset published by Jewell et al. (2016).
• Tara Oceans: Assembled and published contigs

corresponding to the fraction that was binned into
draft genomes were originally processed and analyzed by
Tully et al. (2018) and downloaded from Figshare4. This
dataset represents a globally distributed set of marine
metagenomes collected from the sunlit portion of the water
column. The global distribution is defined by the Longhurst
geographical provinces.

RESULTS AND DISCUSSION

Validation of FeGenie Against Isolate
Genomes
We validated FeGenie by showing that it accurately identifies
and classifies iron-related genes in representative organisms
known to encode them. A total of 574 representative genomes
from RefSeq were analyzed, and these results are provided
in Supplementary Data Sheets S2, S3. Here, we present
the results from a select set of 28 genomes (Supplementary
Table S2 and Supplementary Data Sheets S4, S5), including
known iron-oxidizers (e.g., Mariprofundus ferrooxydans PV-1
and Rhodopseudomonas palustris TIE-1), iron-reducers (e.g.,
Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA),
magnetotactic bacteria (Magnetospirillum magneticum AMB-1),
siderophore synthesis and uptake model microorganisms (e.g.,
Bacillus anthracis and Pseudomonas aeruginosa), and others (as
listed in Supplementary Table S1). These genomes were chosen
to showcase FeGenie’s capacity to detect key genes relevant to the
microbial iron-cycle (Figure 4).

Putative iron oxidation genes were detected in iron-oxidizing
bacteria, including Sideroxydans lithotrophicus ES-1 (Emerson
et al., 2013), Rhodobacter ferrooxidans SW2 (Croal et al.,
2007), Mariprofundus ferrooxydans PV-1 (Emerson et al., 2007),
Rhodopseudomonas palustris TIE-1 (Jiao et al., 2005), as well as

4http://dx.doi.org/10.6084/m9.figshare.5188273
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FIGURE 4 | Dot plot showing the relative abundance of different iron gene categories within 28 representative isolate genomes. The isolate genomes were selected
as model microorganisms to demonstrate the accuracy of FeGenie for identifying genes involved in iron oxidation and reduction, iron transport (including
siderophores and heme), iron storage, and iron gene regulation. The genomes were obtained from the NCBI RefSeq and GenBank databases and analyzed by
FeGenie. The size of each dot reflects the number of genes identified for each category and normalized to the number of protein-coding genes predicted within each
genome. *This category is reserved for genes related to the mtoAB/pioAB gene family.

in Archaea, including Sulfolobus metallicus (Bathe and Norris,
2007) and Ferroplasma acidarmanus (Golyshina et al., 2000).
S. lithotrophicus is a known iron-oxidizer and was found
to encode mtoAB (Liu J. et al., 2012) and three copies of
cyc2 within its genome (Emerson et al., 2013). Since mtoAB
are homologous to genes also implicated in iron reduction
(mtrAB), FeGenie classified these genes as potentially related
to iron oxidation or iron reduction (i.e., the “possible iron
oxidation/reduction” category).

FeGenie accurately identified iron-reduction genes and
operons in known iron-reducing bacteria. For example,
Shewanella oneidensis MR-1, a model organism for iron
reduction, was found to encode both copies of its porin-
cytochrome module: mtrCAB and mtrDEF (mtrDEF is
homologous to mtrCAB and was identified as such by
FeGenie). Additionally, FeGenie identified two more operons
that each encode only mtrAB, which FeGenie categorizes
as “probable iron reduction” due to the lack of mtrC.
Interestingly, within the mtrCABDEF operon, FeGenie also
identified the ferrous iron transport genes feoAB, which
could be involved in the uptake of ferrous iron that is
generated during iron reduction. This same operon also

encodes a catalase (not included in FeGenie), which is a
heme-containing protein that deals with oxidative stress and
may potentially be expressed together with the iron-reduction
genes to deal with the oxidative stress of high intracellular
iron concentrations (Touati, 2000), likely resulting from
dissimilatory iron reduction.

Some of the identified iron-reducers, for example,
R. ferrireducens (Finneran et al., 2003), G. sulfurreducens
(Lovley and Phillips, 1988) and G. bemidjiensis, also encode
the cluster 3 cyc2, which FeGenie uses as a marker for iron
oxidation. This gene has been confirmed as an iron-oxidase in
Acidithiobacillus ferrooxidans (Castelle et al., 2008) and is also
encoded by neutrophilic, obligate iron-oxidizers (Barco et al.,
2015). We note that only one of these cluster 3-affiliated Cyc2
homologs, Cyt572, has been biochemically characterized and
determined to have iron oxidase activity (Jeans et al., 2008).
It is worth noting that Geobacter metallireducens has been
previously shown to oxidize iron in a biological process known
as nitrate-dependent iron oxidation (Weber et al., 2006) and
does have a cyc2 gene. Our results indicate that there are other
Geobacter spp. that could also be involved in iron oxidation
(either aerobically or anaerobically).
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Magnetospirillum magneticum AMB-1, a known
magnetotactic bacterium (Matsunaga et al., 2005), was positive
for magnetosome formation genes. M. magneticum AMB-1
also encodes mtrAB which FeGenie uses as a marker for
“probable iron reduction.” M. magneticum AMB-1 lacks the
outer-membrane cytochrome (MtrC) that is always found within
the mtrCAB operon of iron-reducing bacteria (Richardson
et al., 2012; White et al., 2016). However, experimental
evidence demonstrated that AMB-1 is an iron-reducing
bacterium (Matsunaga et al., 2005). Without any other
candidate iron reductases in AMB-1’s genome, this indicates
that MtrAB may be utilized in iron reduction without the
outer-membrane component.

FeGenie was also used to identify iron acquisition and
transport genes in model microorganisms, including siderophore
transport and synthesis genes, heme transport and oxygenases,
and Fe(II)/Fe(III) transport. It is worth noting that in
these organisms not linked to respiratory iron oxidation or
dissimilatory iron reduction, FeGenie did not identify genes
related to these metabolisms. In Escherichia coli and Bacillus
subtilis, FeGenie identified three genes that are necessary for
the uptake of iron, efeUOB (Cao et al., 2007), in addition to
other iron transport genes (Supplementary Data Sheet S4).
Iron transport potential was also identified in nearly every
genome analyzed (including the CPR, discussed more in the
section “Case Study: Iron-related genes encoded within the
Candidate Phyla Radiation and other Candidate Bacteria and
Archaea”). This is expected, given that iron is a necessary
micronutrient for the vast majority of life. As an example of
FeGenie’s capability to identify the siderophore gene families,
we will focus on siderophore synthesis by Bacillus anthracis.
B. anthracis is known to produce anthrabactin (bacACEBF)
and petrobactin (asbABCDEF) (Oves-Costales et al., 2007). Both
operons were correctly identified by FeGenie (Supplementary
Data Sheet S5). Since the ORFs from each operon were
annotated according to the gene family that each gene belongs
to (Supplementary Data Sheet S1), users can cross-validate
these genes with Supplementary Data Sheet S1 and confirm
their identity through external pipelines. Further confirmation
of these two operons by antiSMASH (Weber et al., 2015)
(Supplementary Table S4) demonstrates the utility of FeGenie
to identify siderophore synthesis gene operons.

Genes involved in heme transport and lysis were also
identified in some of the model organisms. For example,
in Pseudomonas aeruginosa PAO1, FeGenie identified hasA
downstream to a TonB-dependent heme receptor. The rest of the
hasA operon, however, was identified as part of the siderophore
transport pathway. This is because some of the genes in the
heme-transport operon hasRADEF are related to siderophore
transport genes. This ambiguity in function demonstrates the
weakness of FeGenie (and culture-independent, database-based
approaches in general) and underscores the need to compare
all identified putative iron-related genes against NCBI’s nr or
RefSeq databases to see the annotations associated with the
closest homologs available in public repositories. This step will
add additional confidence that a gene identified as iron-related
is indeed so, based on its closest known annotated homolog.

Moreover, we stress the ambiguity presented by identification
of TonB-dependent receptors. Although the TonB-dependent
transport system is a commonly used mechanism in Gram-
negative bacteria (Krewulak and Vogel, 2011; Contreras et al.,
2014), as discussed in “Materials and Methods”, this family of
proteins could also be utilized for transport of a wide variety of
substrates, many of which are irrelevant to iron homeostasis.

FeGenie identified iron-relevant genes encoded by five
phototrophs, Chlorobium tepidum TLS, Synechocystis IPPAS B-
1465, Prochlorococcus marinus, and two strains of Acaryochloris
marinus. As expected, the five analyzed phototrophs do not show
genetic potential for iron oxidation or reduction. Generally, a
higher number of genes related to iron and siderophore transport
were identified in the anaerobic green-sulfur photoautotroph
C. tepidum TLS, as compared to the freshwater and marine
phototrophs, Synechocystis and Prochlorococcus, respectively.
This may be due to the fact that C. tepidum performs anoxygenic
photosynthesis in anaerobic, sulfide-rich niches (Eisen et al.,
2002), which are often devoid of soluble iron. The lower iron
conditions encountered by C. tepidum may necessitate higher
genetic potential for iron acquisition. Interestingly, the open-
ocean cyanobacterium P. marinus was not found to encode any
genes for transport or synthesis of siderophores. Genes for heme
transport or lysis were also not found in this genome. Indeed,
P. marinus is known for its ability to subsist in low iron regimes,
not through increasing its iron income but through lowering
its iron expenditures (Partensky et al., 1999; Rusch et al., 2010).
Nonetheless, P. marinus seems to encode genes involved in the
storage (ferritin) and transport (yfeAB) of iron, and these gene
were identified by FeGenie.

Using FeGenie, we compared iron gene inventories of two
strains of the cyanobacterium Acaryochloris marina, MBIC11017
and CCMEE 5410. Acaryochloris marina are unique in that they
use chlorophyll d to capture far-red light during photosynthesis
(Swingley et al., 2008), a strategy that may have offered
a competitive edge over other cyanobacteria, and led to
genome expansion and accumulation of an unusually large
number of gene duplicates (Swingley et al., 2008). FeGenie
results demonstrate that strain MBIC11017 encodes more genes
associated with iron acquisition via siderophore synthesis,
iron/siderophore transport, and heme lysis. This is consistent
with the isolation of MBIC11017 from a habitat that is more
iron-deplete than the one from which CCMEE 5410 was
isolated (Miller et al., 2011). Moreover, Miller et al. (2011)
have reported a large number of gene duplicates in strain
MBIC11017 that are predicted to be involved in iron acquisition.
The duplication of genes involved in iron acquisition may be a
strategy used for adaptation to a low-iron niche via increased
gene dosage (Gallagher and Miller, 2018). The detection of these
genomic differences by FeGenie further demonstrates its utility
in genomic studies.

Regulators of iron genes were also detected in nearly all
analyzed isolate genomes, with the exception of Shewanella
oneidensis MR-1 and Aggregatibacter actinomycetemcomitans.
Iron gene regulators are often found within operons encoding
iron-related genes. For example, the feo operon, in addition
to the transporters feoA and feoB, often encodes the regulator
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feoC. However, in some cases, instead of feoC, feoAB are in
the same operon as fur (e.g., Geobacter bemidjiensis) or the
iron efflux gene feoE (Bennett et al., 2015). Two iron-dependent
repressors were also identified adjacent to a gene encoding the
iron reduction protein OmcF in Geobacter bemidjiensis, further
suggesting, as in S. oneidensis, that dissimilatory iron reduction
could be linked to iron uptake. P. aeruginosa appears to encode
the greatest number of iron gene regulators, such as PchR and
Fur, as well as ECF sigma factors FpvI and PvdS, many of which
are encoded in close proximity to genes relevant to siderophore
synthesis and transport.

FeGenie was also used to analyze the genomes of two
intracellular pathogens, which are considered “iron-free”
organisms due to an apparent lack of genes associated with iron
acquisition, storage, and utilization. FeGenie identified only a
few potential iron-related genes. Within the genome of Borrelia
burgdorferi, FeGenie identified a fur-family gene that encodes
BosR, a zinc-dependent transcriptional regulator (Boylan et al.,
2003; Katona et al., 2004), and a ferritin-family gene that encodes
BicA, an iron and copper-binding protein that is thought to
detoxify cells from iron and copper (Wang P. et al., 2012). BicA
is part of a broader Dps (DNA-binding protein from starved
bacteria) family of proteins. It is thought that bicA expression is
regulated by BosR (Boylan et al., 2003). In Treponema pallidum,
FeGenie identified three loci corresponding to candidate iron
genes. In one locus, T. pallidum encodes a Dps-family protein,
which may function to accumulate iron. FeGenie also identified
two genes potentially involved in the transport of siderophores,
hemes, or iron from transferrin/lactoferrin. Indeed, T. pallidum
has been reported to bind host lactoferrin and transferrin
(Alderete et al., 1988), and may do so using the permease and
ATP-binding protein identified by FeGenie (Supplementary
Data Sheet S5). Additionally, FeGenie identified a locus with
three genes, two of which are predicted to be involved in iron
transport and one in gene regulation. The identified gene
regulator, related to diphtheria toxin regulatory protein (DtxR),
encodes TroR, which is activated by Mn2+ instead of Fe2+ (Posey
et al., 1999). Likewise, the identified putative iron transport genes
in that operon may be involved in the transport of Mn2+, rather
than Fe2+, reflecting a strategy to circumvent iron limitation
imposed by the host environment (Posey et al., 1999).

After validating FeGenie against isolate genomes, we
utilized FeGenie to examine the iron-related genes and gene
neighborhoods in environmental metagenomes, human oral
biofilm isolates, and members of the CPR.

Case Study: Iron Redox and Acquisition
in Diverse Environmental Metagenomes
FeGenie was used to analyze 27 metagenomic datasets,
representing a broad range of environments, including
hydrothermal vent iron mats, a river plume, the open ocean,
hot springs, and a serpentinite-hosted ecosystem (see section
“Materials and Methods” and Table 2 for site descriptions).
Generally, FeGenie’s analysis indicate that there are discernable
differences in iron maintenance and metabolism strategies
based on locale, likely due to differential iron availability and

general redox conditions (Figure 5A and Supplementary
Data Sheets S6, S7). For example, where iron oxidation and
reduction gene counts are high, there appears to be fewer
genes for iron acquisition. As expected, the genetic potential
for iron acquisition and storage appears to be more important
in environments where microorganisms are more likely to
encounter iron limitations (Crosa, 1989; Andrews, 1998). This is
supported by hierarchical clustering of the iron gene abundances
across analyzed metagenomes (Figure 5B), an optional step
in FeGenie’s pipeline. This offers support for FeGenie’s ability
to provide meaningful insights into the iron-related genomic
potential in environmental metagenomic datasets.

FeGenie demonstrates the potential for iron oxidation and
reduction in environments that are rich in reduced iron,
including the Rifle Aquifer (Jewell et al., 2016), Jinata Hot
Springs (Ward, 2017; Ward et al., 2019), and iron mats
found at the Loihi Seamount, Mid-Atlantic Ridge, and Mariana
Backarc hydrothermal vent (McAllister et al., 2019). FeGenie also
demonstrates the potential for these metabolisms to occur in
other environments, including the Amazon river plume (Satinsky
et al., 2017) and in the open ocean (Tully et al., 2018) (Figure 5A).
While cyc2 appears to be the most widely distributed gene that is
associated with iron oxidation, other putative iron oxidases are
also identified (e.g., sulfocyanin, mtoAB, foxE). Iron reduction
is predicted from the occurrence of homologs to mtrCAB,
as well as various porin-cytochrome operons homologous to
those encoded by Geobacter and Desulfovibrio species. In
addition, we identified homologs to the cytochrome OmcS from
Geobacter sulfurreducens, thought to be involved in long-distance
extracellular electron transfer (Wang et al., 2019), in Loihi iron
mats and the open ocean. The presence of significant iron
reduction in the open ocean water column is not expected due
to generally low iron concentrations. However, as previously
suggested by Chiu et al. (2017), niche-specific strategies, such
as association with particulate matter or flocs, may take place
in the iron-deplete water column and host microbially mediated
iron cycling.

While iron oxidation and reduction are predicted in a range
of environmental samples analyzed, the greatest number of
iron redox genes are predicted in iron-rich ecosystems. Genes
associated with dissimilatory iron reduction often coincide
with those for iron oxidation. Exceptions to this include the
upper centimeters (i.e., syringe samples) of iron mats from
Loihi and the Mariana Backarc (McAllister et al., 2019); these
samples encode many genes for iron oxidation but have no
genes linked exclusively to iron reduction. This may indicate
that (1) iron reducers form a non-detectable fraction of the
community in those samples, (2) that the geochemical regimes
present there do not favor dissimilatory iron reduction, or
(3) that there are other, currently unknown, mechanisms
for iron reduction occurring. For example, the surficial iron
mat sample from the Loihi Seamount appears to have the
highest number of genes related to iron oxidation, and none
related to iron reduction; it also happens to be the sample
dominated by the iron-oxidizing Zetaproteobacteria at 96%
relative abundance (McAllister et al., 2019). Nonetheless, the
predicted occurrence of iron reduction in most (7 out of 10)
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FIGURE 5 | (A) Dot plot showing the distribution of iron genes on 27 metagenomes and (B) a scaled heatmap with accompanying dendrogram that represents
hierarchical clustering of metagenome datasets based on identified iron genes. The dot plot shows the relative abundance of iron genes across 27 metagenomes.
The size of each dot reflects the number of genes identified for each category, normalized to the number of protein-coding genes predicted within each
metagenome. To generate the dendrogram, Ward’s method for hierarchical clustering was used, along with the Euclidian distance metric. The heatmap was created
from a scaled version of FeGenie’s matrix output, which summarizes the amount of iron genes for each category present in each metagenome assembly. GPS,
Grotto Pool Spring; BS, Barnes Spring. *This category is reserved for genes related to the mtoAB/pioAB gene family.
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of the iron oxidizer-dominated ecosystems indicates potential
interdependence, or even syntrophic interactions, between iron-
oxidizing and iron-reducing microorganisms (Emerson, 2009).

Metagenomes from the Cedars (Suzuki et al., 2017), a
hyperalkaline terrestrial serpentinite-hosted site, encodes a
diversity of iron acquisition genes, similar to that observed in
the open ocean, suggesting potential iron-limiting conditions.
Accordingly, we did not detect any genes associated with iron
reduction or oxidation. However, Gibbs energy calculations
suggest that iron oxidation and reduction are both feasible
metabolisms in serpentinite-hosted systems (Cardace et al.,
2015), and electrochemical enrichment of a magnetite-reducer
(Rowe et al., 2017) indicates that dissimilatory iron reduction
may be occurring within the rare biosphere, biofilms on surfaces
of iron-bearing minerals, or iron-containing flocs.

Genes potentially involved in magnetosome formation (mam)
are present in only one of the 27 metagenomes analyzed:
Arabian Sea surface waters (Tully et al., 2018). The one potential
magnetosome-related operon from the Arabian Sea encodes six
of the ten mam markers used (mamMOPAQB). FeGenie strictly
reports potential homologs to the mam operon genes if the
operon is at least 50% complete. Thus, the general lack of
magnetosome formation in the other metagenomes could be
a result of FeGenie’s strict rules. Alternatively, the microbial
communities represented by these metagenomes either (1) do
not have magnetotactic microorganisms present at a detectable
level or (2) magnetotactic microorganisms present within these
communities utilize an unknown strategy for magnetosome
formation and/or magnetotaxis.

Case Study: Iron Acquisition by Bacteria
Living in the Human Oral Biofilm
The microbial capability to uptake iron is critical to
understanding human oral infections (Wang R.K. et al.,
2012). This is because host iron-binding proteins, such as
transferrin, lactoferrin, hemoglobin, and ferritin, maintain
an environment of low free iron concentrations (estimated
10−18 M free iron in living tissues; Weinberg, 1978), inhibiting
bacterial growth (Mukherjee, 1985). Here, we used FeGenie
to analyze four representative strains from the human oral
biofilm community: Aggregatibacter actinomycetemcomitans
Y4, Capnocytophaga ochracea DSM 7271, Porphyromonas
gingivalis W83, and Streptococcus mutans UA159. Given that
these four strains are members of the human oral biofilm (Welch
et al., 2016), their iron acquisition systems may be tailored
toward the specific strategies needed to survive in the human
oral biofilm. Three of these isolates (all except P. gingivalis)
show generally high numbers of genes involved in iron
transport (Figure 4 and Supplementary Data Sheets S4, S5).
A. actinomycetemcomitans and P. gingivalis have potential
genes for heme transport, in line with a previous report of
P. gingivalis being incapable of synthesizing heme, requiring
exogenous iron addition for survival (Roper et al., 2000).
A. actinomycetemcomitans, P. gingivalis, and Streptococcus
mutans also show high genetic potential for siderophore
uptake but have no genes implicated in siderophore synthesis.

This suggests that if they do uptake siderophores, they may
do so as “cheaters” (bacteria that uptake siderophores
produced by other organisms) (Hibbing et al., 2010). In
contrast, C. ochracea encodes both siderophore uptake and
synthesis genes. No genes associated with dissimilatory iron
reduction or oxidation were detected in any of the oral
biofilm isolates.

Case Study: Iron-Related Genes
Encoded Within the Candidate Phyla
Radiation and Other Candidate Taxa
FeGenie was used to identify the iron-related genes encoded
by members of the Candidate Phyla Radiation (CPR) and
other candidate taxa. These candidate taxa have been identified
by metagenome or single-cell genome assemblies, but the
microorganism has yet to be cultivated. Many of the CPR
genomes have previously been reconstructed from a metagenome
from the Rifle aquifer (Anantharaman et al., 2016) and are
largely unexplored with respect to phenotype and role in the
environment (Brown et al., 2015). Nonetheless, CPR members
are defined by relatively small genomes and very limited
metabolic capacity, suggesting that symbiotic lifestyles are likely
prevalent among these phyla (Danczak et al., 2017). While
we present results for only a select set of 17 candidate taxa
(Supplementary Data Sheets S8, S9), all publicly-available
genomes from the CPR and other candidate strains were
analyzed (Supplementary Data Sheets S10, S11). The 17
selected genomes were chosen to demonstrate differences
within these genomes with regard to genomic potential for
iron acquisition, storage, and redox-cycling. The candidate
strains presented here include members of the candidate phyla
OP9 (Caldatribacterium), as well as “Candidatus Rokubacteria,”
“Candidatus Nealsonbacteria,” “Candidatus Zixibacteria,” and the
novel Archaeal phylum AR4.

Genes for siderophore synthesis were detected in only one
of the candidate strains analyzed (Figure 6), while potential
for siderophore transport is found in nearly all of the
genomes. Gene candidates for heme transport genes, specifically
hmuV and hmuY, were found in 4 of the 17 candidate
strains analyzed: ‘Candidatus Raymondbacteria,’ ‘Candidatus
Tectomicrobia,’ ‘Candidatus Nitrospira defluvii,’ and the genome
from candidate division KSB1. Out of the 17 candidate strains
analyzed, none were found to encode genes associated with
heme oxygenases. Interestingly, some CPR genomes, such as
“Candidatus Nealsonbacteria,” do not seem to encode any
genes associated with iron maintenance or metabolism, with
the exception of some putative iron transporters. One possible
reason for this is that these microorganisms, whose genomes
are considerably smaller than typical free-living bacteria, are
obligate symbionts (Hug et al., 2016) and may be obtaining
iron from their host or using the host’s cellular machinery for
iron acquisition and utilization. Alternatively, these understudied
phyla may be utilizing, thus far, undiscovered mechanisms
for iron metabolism, and the genetic underpinnings of these
mechanisms may not bear any homology to the HMMs included
in FeGenie’s database.
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FIGURE 6 | Dot plot showing the relative abundance of different iron gene categories in 17 genomes from the Candidate Phyla Radiation and other candidate taxa.
The genomes were obtained from the NCBI RefSeq and GenBank databases and analyzed by FeGenie. *This category is reserved for genes related to the
MtoAB/PioAB gene family.

‘Candidatus Lindowbacteria,’ ‘Candidatus Rokubacteria,’
‘Candidatus Aminicenantes,’ ‘Candidatus Handelsmanbacteria,’
and ‘Candidatus Nitrospira defluvii’ show genetic potential
for iron oxidation via homologs to either cyc2 or sulfocyanin
genes. ‘Candidatus Nitrospira defluvii,’ a close relative of
the iron-oxidizing Leptospirillum (Lücker et al., 2010) also
encodes aclAB and, thus, may be capable of carbon fixation
via the reverse tricarboxylic acid cycle (rTCA). While this
metagenome-assembled genome was previously reported
as a potential nitrite-oxidizer (Lücker et al., 2010), here
we report that it could potentially contribute to primary
production using energy generated from iron oxidation.
Within the genome of ‘Candidatus Tectomicrobia,’ FeGenie
identified homologs to mtrAB. These iron reduction-related
genes have not been previously reported in this candidate
phylum (Wilson et al., 2014), demonstrating FeGenie’s
ability to help identify biological processes not previously
identified in other reports. ‘Candidatus Zixibacteria,’ ‘Candidatus
Tectomicrobia,’ ‘Candidatus Dadabacteria,’ and ‘Candidatus
Handelsmanbacteria’ also encode genes implicated in iron
reduction via porin-cytochrome operons that share homology
with those encoded by iron-reducing Geobacter spp. Taken
together, these results suggest a potential role in iron cycling

for some of the CPR members and other candidate taxa.
Future culture-dependent, physiological work is needed to
confirm this potential.

CONCLUSION

Here, we describe a new HMM database of iron-related
genes and a bioinformatics tool, FeGenie, that utilizes
this database to analyze genomes and metagenomes. We
validated this tool against a select set of 28 isolate genomes
and demonstrate that FeGenie accurately detects genes related
to iron oxidation/reduction, magnetosome formation, iron
regulation, iron transport, siderophore synthesis, and iron
storage. Analysis of 27 environmental metagenomes using
FeGenie further validated this tool, revealed differences
in iron maintenance and potential metabolic strategies
across diverse ecosystems, and demonstrates that FeGenie
can provide useful insights into the iron gene inventories
across habitats. We also used FeGenie to provide insights
into the iron metabolisms of 17 of the recently discovered
CPR microorganisms and other candidate taxa, and
revealed genetic potential not identified in previous reports.
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FeGenie will be continuously updated with new versions as new
iron-related genes are discovered.
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