organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[3-(2-Benzyloxy-6-hydroxy-4-methylphenvl)-5-[3.5-bis(trifluoromethvl)phenyl]-4,5-dihydro-1H-pyrazol-1-yl]propane-1-one

U. H. Patel,^a* S. A. Gandhi,^a V. M. Barot^b and N. V. S. Varma^b

^aDepartment of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat 388 120, India, and ^bP. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215, India Correspondence e-mail: u_h_patel@yahoo.com

Received 24 February 2013; accepted 30 April 2013

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.070; wR factor = 0.246; data-to-parameter ratio = 12.8.

In the title compound, $C_{28}H_{24}F_6N_2O_3$, the mean plane of the central pyrazoline ring forms dihedral angles of 2.08 (9) and $69.02 (16)^{\circ}$ with the 2-benzyloxy-6-hydroxy-4-methylphenyl and 3,5-bis(trifluoromethyl)phenyl rings, respectively. The dihedral angle between the mean planes of the pyrazoline and 3,5-bis(trifluoromethyl)phenyl rings is 68.97 (9)°. An intramolecular $O-H \cdots N$ hydrogen bond is observed, which forms an S(6) graph-set motif. In the crystal, pairs of weak C-H...F halogen interactions link the molecules into inversion dimers while molecular chains along [100] are formed by C- $H \cdots O$ contacts.

Related literature

For pharmacalogical and anticancer properties of pyrazoline derivatives, see: Smith et al. (2001). For graph-set motifs, see: Bernstein et al., (1995). For related structures, see: Patel et al. (2007, 2012).

Experimental

Crystal data

C28H24F6N2O3 V = 2569.97 (18) Å³ $M_r = 550.49$ Z = 4Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 4.8822 (2) Å $\mu = 0.12 \text{ mm}^$ b = 23.4752 (9) Å T = 273 Kc = 22.4311 (9) Å $0.54 \times 0.34 \times 0.10 \text{ mm}$ $\beta = 91.494 (2)^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.951, \ T_{\max} = 0.988$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	352 parameters
$wR(F^2) = 0.246$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
4514 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
O16−H16···N2	0.82	1.84	2.568 (3)	147
C31-H31···O9 ⁱ	0.93	2.67	3.490 (4)	148
C21-H21···F37 ⁱⁱ	0.93	2.72	3.488 (6)	140
C29-H29···F33 ⁱⁱⁱ	0.93	2.64	3.490 (5)	152

Symmetry codes: (i) x + 1, y, z; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iii) -x, -y + 1, -z + 2.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

We are thankful to the DST (New Delhi) FIST facility for providing the single-crystal diffractometer at the Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat. SG is also thankful to UGC, New Delhi, for the financial support (RFSMS) to carry out this research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2162).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2008). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA
- Patel, U. H., Gandhi, S. A., Barot, V. M. & Patel, M. C. (2012). Acta Cryst. E68, 02926-02927.
- Patel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337-o339. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-109.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

19610 measured reflections

 $R_{\rm int} = 0.075$

4514 independent reflections

2491 reflections with $I > 2\sigma(I)$

supplementary materials

Acta Cryst. (2013). E69, o840 [doi:10.1107/S160053681301180X]

1-[3-(2-Benzyloxy-6-hydroxy-4-methylphenyl)-5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-1*H*-pyrazol-1-yl]propane-1-one

U. H. Patel, S. A. Gandhi, V. M. Barot and N. V. S. Varma

Comment

Pyrazoline derivatives, prominent nitrogen containing heterocyclic compounds, play an important role in medicinal chemistry. These derivatives are found to possess antidepressant, antioxidant, anti- inflammatory (Smith *et al.*, 2001), anticonvulsant, antimicrobial, antiviral, monoamine oxidase (MAO-A and MAO-B) inhibitor, and anticancer activity. Our on-going research is focused on the synthesis and crystal structures of related pyrazoline derivatives of these types of heterocyclic compounds (Patel *et al.* 2007, Patel *et al.* 2012). We report here the synthesis and crystal structure of the title compound, $C_{28}H_{24}N_2O_3F_6$, (I).

In (I), propionaldehyde, 3-benzyloxy-5-methyl-phenol and 1,3-bis-trifluro methyl benzene are bonded to N1, C3 and C5 of the pyrazoline ring, respectively. The dihedral angles between the mean planes of the pyrazoline ring and the 3-benzyl-oxy-5-methyl-phenol (C10—C15) and 1,3-bis-trifluro methyl benzene rings (C26—C31) are 2.03 (15)° and 69.02 (16)° respectively. An intra-molecular O16—H16···N2 hydrogen bond (Fig.1) forms an S1,1(6) graph set motif configuration (Bernstein *et al.*, 1995). The mean plane of the propionaldehyde group (C6—C8/O9) is inclined by 12.56 (13)° to the meam plane of the pyrazoline ring. Weak C—H···F Halogen intermolecular interactions are observed that form inversion dimers (Fig. 2).

Experimental

1-[2-benzyloxy-6-hydroxy-4-methyl phenyl]-3-(3, 5-bis (trifluoromethyl) phenyl)prop-2-en-1-one (5 g m, 0.01 mole), hydrazine hydrate (0.70 g m, 0.014 mole) and butanoic acid (20 ml) were heated to 115–120 °C for 4 h. The resulting solution was concentrated and allowed to cool and then poured into ice. The resulting solid was filtered, washed with water, dried and rystallized from methanol as pale yellow needles.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93Å, 0.98Å (CH) or 0.96Å (CH₃) and O—H lengths of 0.82Å. The isotropic displacement parameters for these atoms were set to 1.19 to 1.20 (CH, CH₂), 1.50 (CH₃) or 1.49 (OH) times U_{eq} of the parent atom.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Molecular structure of the title compound, showing the atom labeling scheme with 50% probability displacement ellipsoids. The dashed line represents an O—H…N intramolecular hydrogen bond which forms an S1,1(6) graph set motif.

Figure 2

Molecular packing diagram the title compound. Dashed lines indicate weak C—H…F halogen intermolecular interactions which are displayed as inversion dimers. H atoms not involved with these weak intermolecular interactions have been deleted for clarity.

1-[3-(2-Benzyloxy-6-hydroxy-4-methylphenyl)-5-[3,5-bis(trifluoromethyl)phenyl]-4,5-dihydro-1*H*-pyrazol-1-yl]propane-1-one

Crystal data $C_{28}H_{24}F_6N_2O_3$ $M_r = 550.49$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 4.8822 (2) Å b = 23.4752 (9) Å c = 22.4311 (9) Å $\beta = 91.494$ (2)° V = 2569.97 (18) Å³ Data collection Bruker Kappa APEXII CCD diffractometer Radiation source: sealed X-ray tube

Z = 4 F(000) = 1136 $D_x = 1.423 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ $\theta = 2.9-27.7^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 273 K Needle, white $0.54 \times 0.34 \times 0.10 \text{ mm}$

CCD scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.951, T_{\max} = 0.988$

Graphite monochromator

19610 measured reflections	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.9^\circ$
4514 independent reflections	$h = -5 \rightarrow 5$
2491 reflections with $I > 2\sigma(I)$	$k = -27 \rightarrow 27$
$R_{\rm int} = 0.075$	$l = -26 \rightarrow 26$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1524P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.56 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.41 \text{ e } \text{Å}^{-3}$

direct methods Special details

Refinement

Refinement on F^2

 $wR(F^2) = 0.246$

4514 reflections

352 parameters 0 restraints

S = 1.00

Least-squares matrix: full

Primary atom site location: structure-invariant

 $R[F^2 > 2\sigma(F^2)] = 0.070$

Experimental. IR (cm⁻¹): 2929 (C—H str. (*asym*) alkyl), 1458 (C—H def (*asym*)alkyl), 1387(C—H def (*sym*) alkyl), 3072 (C—H str.arom.), 1593. (C=Cstr. arom.), 1128 (C—H i.p.def arom.), 847 (C—H o.o.p.def.arom.), 1272 (C—O—C (*sym*) ether), 1066 (C—O—C (*asym*) ether), 3380(OH_{str}. phenol). 1659 (N—CO¬ CH₂CH₃), 1379 (N-COCH₂CH₃ def., pyrazoline), 1588 (C=N str., pyrazoline), 2863 (C—H ring (str.), pyrazoline), 682 (C—H def. of CH₂, pyrazoline), 1197 (C—N str., pyrazoline), 1117 (C—F str.).

1H NMR (CDCl₃) *b*p.m.: 0.96 (trip, 3H, J=7.3 &7.2 Hz), 1.70 (Qur, 2H),2.31(s,3*H*), 3.36 (dd, 1H, J=15.3 & 3.5 Hz), 3.83 (dd, 1H, J=11.7 & 7.2 Hz), 5.02 (s, 2H), 5.32 (trip, 1H, J= 3.1 & 8.08 Hz), 6.33 (S, 1H), 6.52 (S,1H), 7.16–7.23(m, 8H), 11.24 (s, 1H).

¹³C NMR (CDCl₃) *δ*p.p.m.: 21.98(C-1, CH₃), 70.91 (C-2,CH₂ C6 H5), 159.37(C-3,Pyrazoline), 46.49 (C-4,Pyrazoline), 57.92 (C-5, Pyrazoline), 170.03(C-6,CO CH₂ CH₃), 36.15 (C-7,CO CH₂ CH₃), 13.83 (C-8, CO CH₂ CH₃), 124.44(C-9, CF₃), 124.44 (C-10, CF₃).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	$U_{iso}*/U_{eq}$	
	0 1214 (5)	0 55900 (10)	0 66924 (11)	0.0539(7)	
N2	0.3088 (5)	0.58603 (11)	0.63303 (10)	0.0543 (7)	
C3	0.3815 (6)	0.63423 (12)	0.65664 (13)	0.0496 (8)	
C4	0.2432 (7)	0.64580 (13)	0.71404 (14)	0.0579 (8)	
H4A	0.135	0.6804	0.7115	0.069*	
H4B	0.3757	0.6492	0.7468	0.069*	
C5	0.0589 (6)	0.59313 (13)	0.72178 (13)	0.0515 (8)	
Н5	-0.1338	0.6048	0.7195	0.062*	
C6	-0.0355 (7)	0.51471 (13)	0.64937 (14)	0.0543 (8)	
C7	0.0403 (7)	0.48937 (15)	0.59035 (15)	0.0658 (9)	
H7A	0.2281	0.476	0.5933	0.079*	
H7B	0.0315	0.519	0.5602	0.079*	

C8	-0.1418 (8)	0.44063 (16)	0.57049 (18)	0.0830 (12)
H8A	-0.0827	0.4265	0.5327	0.124*
H8B	-0.3277	0.4537	0.5665	0.124*
H8C	-0.1307	0.4106	0.5995	0.124*
09	-0.2171 (5)	0.49645 (10)	0.68000 (10)	0.0699 (7)
C10	0.5820 (6)	0.67000 (13)	0.62685 (13)	0.0532 (8)
C11	0.6938 (7)	0.65374 (13)	0.57238 (14)	0.0571 (8)
C12	0.8825 (7)	0.68729 (15)	0.54402 (15)	0.0654 (9)
H12	0.9499	0.6755	0.5076	0.079*
C13	0.9730 (7)	0.73805 (15)	0.56867 (17)	0.0640 (9)
C14	0.8683 (7)	0.75504 (14)	0.62281 (16)	0.0657 (10)
H14	0.9278	0.7889	0.6402	0.079*
C15	0.6766 (7)	0.72210 (14)	0.65103 (15)	0.0605 (9)
O16	0.6203 (5)	0.60455 (10)	0.54461 (10)	0.0770 (8)
H16	0.5078	0.5877	0.5646	0.115*
C17	1.1739 (8)	0.77503 (17)	0.53729 (18)	0.0844 (12)
H17A	1.2123	0.8083	0.5609	0.127*
H17B	1.0976	0.7863	0.4992	0.127*
H17C	1.3404	0.7542	0.5317	0.127*
O18	0.5648 (6)	0.73696 (10)	0.70381 (11)	0.0824 (8)
C19	0.6523 (9)	0.78764 (16)	0.73329 (19)	0.0842 (12)
H19A	0.6385	0.8197	0.7061	0.101*
H19B	0.842	0.7839	0.7467	0.101*
C20	0.4748 (8)	0.79714 (18)	0.78508 (18)	0.0758 (11)
C21	0.3242 (9)	0.8464 (2)	0.7888 (2)	0.0907 (13)
H21	0.3401	0.8733	0.7586	0.109*
C22	0.1532 (11)	0.8579 (3)	0.8341 (3)	0.1063 (15)
H22	0.0572	0.8921	0.8352	0.128*
C23	0.1262 (10)	0.8189 (3)	0.8770 (3)	0.1106 (17)
H23	0.0065	0.8262	0.9077	0.133*
C24	0.2689 (13)	0.7684 (3)	0.8775 (2)	0.1151 (17)
H24	0.2502	0.742	0.908	0.138*
C25	0.4458 (10)	0.7582 (2)	0.8295 (2)	0.0996 (14)
H25	0.5438	0.7242	0.8283	0.12*
C26	0.1172 (6)	0.56381 (12)	0.78105 (13)	0.0485 (8)
C27	0.0104 (7)	0.58758 (14)	0.83107 (14)	0.0611 (9)
H27	-0.1031	0.6192	0.827	0.073*
C28	0.0657 (8)	0.56612 (15)	0.88733 (15)	0.0690 (10)
C29	0.2329 (8)	0.51930 (16)	0.89386 (15)	0.0690 (10)
H29	0.2723	0.5044	0.9315	0.083*
C30	0.3422 (7)	0.49453 (13)	0.84349 (15)	0.0603 (9)
C31	0.2878 (6)	0.51677 (13)	0.78742 (14)	0.0546 (8)
H31	0.365	0.5003	0.7541	0.065*
C32	-0.0504 (12)	0.5936 (2)	0.94053 (18)	0.0946 (14)
C36	0.5136 (10)	0.44223 (17)	0.8505 (2)	0.0807 (12)
F37	0.3614 (6)	0.39586 (11)	0.85326 (17)	0.1375 (12)
F38	0.6768 (7)	0.43269 (13)	0.80719 (16)	0.1480 (14)
F39	0.6615 (8)	0.44101 (13)	0.89967 (16)	0.1546 (14)
F33	-0.1600 (12)	0.56096 (17)	0.97657 (17)	0.219 (3)

supplementary materials

F34	0.1149 (8)	0.6254 (3)	0.9680 (2)	0.235 (3)
F35	-0.2551 (10)	0.6284 (2)	0.92844 (15)	0.190 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0651 (17)	0.0526 (16)	0.0442 (15)	-0.0098 (13)	0.0082 (12)	0.0046 (12)
N2	0.0614 (16)	0.0565 (17)	0.0448 (15)	-0.0068(13)	0.0004 (12)	0.0073 (12)
C3	0.0554 (18)	0.0452 (18)	0.0480 (18)	0.0006 (14)	-0.0038(14)	0.0049 (14)
C4	0.071 (2)	0.0496 (18)	0.054 (2)	0.0050 (15)	0.0087 (16)	0.0039 (15)
C5	0.0540 (18)	0.0507 (18)	0.0499 (18)	0.0048 (14)	0.0050 (14)	0.0034 (14)
C6	0.0599 (19)	0.0476 (18)	0.055 (2)	-0.0019 (15)	0.0010 (16)	0.0059 (15)
C7	0.074 (2)	0.064 (2)	0.059 (2)	-0.0114 (17)	0.0156 (17)	-0.0002 (16)
C8	0.091 (3)	0.076 (3)	0.083 (3)	-0.017 (2)	0.015 (2)	-0.023 (2)
09	0.0737 (15)	0.0703 (16)	0.0666 (16)	-0.0161 (12)	0.0206 (12)	0.0007 (12)
C10	0.0591 (19)	0.0504 (18)	0.0498 (19)	-0.0019 (15)	0.0004 (15)	0.0066 (14)
C11	0.067 (2)	0.0492 (18)	0.055 (2)	-0.0003 (16)	-0.0012 (16)	0.0047 (16)
C12	0.073 (2)	0.065 (2)	0.059 (2)	-0.0020 (18)	0.0139 (17)	0.0091 (17)
C13	0.062 (2)	0.059 (2)	0.071 (2)	-0.0037 (17)	0.0012 (17)	0.0181 (18)
C14	0.080 (2)	0.0501 (19)	0.067 (2)	-0.0122 (17)	0.0000 (19)	0.0046 (16)
C15	0.066 (2)	0.059 (2)	0.056 (2)	-0.0091 (16)	-0.0026 (16)	0.0033 (16)
O16	0.0990 (19)	0.0673 (16)	0.0659 (16)	-0.0194 (13)	0.0254 (13)	-0.0101 (12)
C17	0.084 (3)	0.077 (3)	0.093 (3)	-0.017 (2)	0.012 (2)	0.022 (2)
O18	0.108 (2)	0.0729 (17)	0.0669 (17)	-0.0386 (14)	0.0217 (14)	-0.0174 (13)
C19	0.094 (3)	0.067 (2)	0.092 (3)	-0.022 (2)	0.011 (2)	-0.020 (2)
C20	0.082 (3)	0.070 (3)	0.075 (3)	-0.015 (2)	-0.001 (2)	-0.019 (2)
C21	0.095 (3)	0.089 (3)	0.089 (3)	-0.005 (3)	0.003 (2)	-0.026 (2)
C22	0.112 (4)	0.104 (4)	0.103 (4)	-0.005 (3)	0.006 (3)	-0.019 (3)
C23	0.100 (4)	0.123 (5)	0.109 (4)	-0.007 (3)	0.007 (3)	-0.048 (4)
C24	0.147 (5)	0.117 (4)	0.081 (4)	-0.023 (4)	0.004 (3)	-0.006 (3)
C25	0.112 (4)	0.094 (3)	0.093 (4)	-0.004 (3)	0.000 (3)	-0.011 (3)
C26	0.0526 (18)	0.0464 (17)	0.0467 (18)	-0.0022 (13)	0.0056 (14)	0.0002 (13)
C27	0.072 (2)	0.0548 (19)	0.057 (2)	0.0073 (16)	0.0118 (17)	0.0005 (16)
C28	0.095 (3)	0.063 (2)	0.050(2)	0.003 (2)	0.0152 (18)	-0.0002 (17)
C29	0.090 (3)	0.069 (2)	0.048 (2)	-0.011 (2)	0.0017 (18)	0.0079 (17)
C30	0.071 (2)	0.0503 (19)	0.060(2)	-0.0009 (16)	0.0009 (17)	0.0112 (16)
C31	0.0609 (19)	0.0533 (19)	0.0497 (19)	0.0025 (15)	0.0049 (15)	0.0012 (15)
C32	0.141 (4)	0.098 (3)	0.046 (2)	0.014 (3)	0.010 (3)	-0.008(2)
C36	0.099 (3)	0.065 (3)	0.078 (3)	0.011 (2)	-0.009 (3)	0.018 (2)
F37	0.136 (2)	0.0594 (16)	0.216 (3)	0.0071 (15)	-0.006(2)	0.0306 (18)
F38	0.167 (3)	0.128 (2)	0.152 (3)	0.088 (2)	0.065 (2)	0.053 (2)
F39	0.187 (3)	0.125 (2)	0.148 (3)	0.057 (2)	-0.078 (2)	0.0105 (19)
F33	0.400 (7)	0.148 (3)	0.119 (3)	0.008 (4)	0.160 (4)	-0.001 (2)
F34	0.156 (3)	0.362 (7)	0.188 (4)	-0.068 (4)	0.061 (3)	-0.206 (5)
F35	0.242 (4)	0.229 (4)	0.102 (2)	0.119 (4)	0.033 (3)	-0.038 (2)

Geometric parameters (Å, °)

N1-C6	1.360 (4)	С17—Н17С	0.96
N1—N2	1.392 (3)	O18—C19	1.421 (4)

N1—C5	1.464 (4)	C19—C20	1.484 (5)
N2—C3	1.295 (4)	C19—H19A	0.97
C3—C10	1.464 (4)	C19—H19B	0.97
C3—C4	1.495 (4)	C20—C25	1.362 (6)
C4—C5	1.541 (4)	C20—C21	1.374 (6)
C4—H4A	0.97	C21—C22	1.359 (6)
C4—H4B	0.97	C21—H21	0.93
C5—C26	1.517 (4)	C22—C23	1.338 (7)
С5—Н5	0.98	С22—Н22	0.93
С6—О9	1.214 (4)	C23—C24	1.376 (8)
C6—C7	1.506 (5)	С23—Н23	0.93
С7—С8	1.509 (5)	C24—C25	1.418 (7)
C7—H7A	0.97	C24—H24	0.93
С7—Н7В	0.97	С25—Н25	0.93
C8—H8A	0.96	C26—C27	1.368 (4)
C8—H8B	0.96	C26—C31	1.388 (4)
C8—H8C	0.96	C27—C28	1.379 (5)
C10—C11	1.404 (4)	C27—H27	0.93
C10—C15	1.411 (4)	C28—C29	1.374 (5)
C11—O16	1.356 (4)	C28—C32	1.482 (5)
C11—C12	1.380 (5)	$C_{29} - C_{30}$	1.390(5)
C12-C13	1 381 (5)	C29—H29	0.93
С12—Н12	0.93	C_{30} C_{31}	1 381 (4)
C12 - C12	1 389 (5)	C_{30} C_{36}	1.301(1) 1 492(5)
C13 - C17	1 499 (5)	C31—H31	0.93
C14-C15	1 380 (5)	C_{32} F33	1 244 (6)
C14—H14	0.93	C_{32} F34	1.211 (6)
C15-018	1 362 (4)	C_{32} = F_{35}	1.251(0) 1.315(6)
016—H16	0.82	C36—F38	1.313 (0)
C17 H17A	0.02	C_{36} = F_{30}	1.291(5) 1.303(5)
C17 H17R	0.96	C36 F37	1.303(5)
	0.90	C30—1'37	1.520 (5)
C6—N1—N2	122.0 (3)	H17A—C17—H17C	109.5
C6—N1—C5	123.7 (3)	H17B—C17—H17C	109.5
N2—N1—C5	112.0 (2)	C15—O18—C19	119.7 (3)
C3—N2—N1	109.7 (2)	O18—C19—C20	108.4 (3)
N2-C3-C10	119.6 (3)	O18—C19—H19A	110
N2—C3—C4	112.7 (3)	С20—С19—Н19А	110
C10—C3—C4	127.7 (3)	O18—C19—H19B	110
C3—C4—C5	103.3 (2)	C20—C19—H19B	110
C3—C4—H4A	111.1	H19A—C19—H19B	108.4
C5—C4—H4A	111.1	C25—C20—C21	117.1 (4)
C3—C4—H4B	111.1	C25—C20—C19	123.0 (4)
C5—C4—H4B	111.1	C21—C20—C19	119.9 (4)
H4A—C4—H4B	109.1	C22—C21—C20	123.5 (5)
N1—C5—C26	114.8 (2)	C22—C21—H21	118.2
N1—C5—C4	102.3 (2)	C20—C21—H21	118.2
C26—C5—C4	111.5 (2)	C23—C22—C21	118.5 (5)
N1—C5—H5	109.3	C23—C22—H22	120.8

С26—С5—Н5	109 3	C21—C22—H22	120.8
C4—C5—H5	109.3	$C_{22} = C_{23} = C_{24}$	122.4 (5)
09—C6—N1	119.9 (3)	C22—C23—H23	118.8
09—C6—C7	123.9 (3)	C24—C23—H23	118.8
N1—C6—C7	116.2 (3)	C_{23} C_{24} C_{25}	117.3 (5)
C6—C7—C8	113.8 (3)	C23—C24—H24	121.4
C6—C7—H7A	108.8	C25—C24—H24	121.4
С8—С7—Н7А	108.8	C20—C25—C24	121.2 (5)
С6—С7—Н7В	108.8	С20—С25—Н25	119.4
С8—С7—Н7В	108.8	C24—C25—H25	119.4
H7A—C7—H7B	107.7	C27—C26—C31	118.7 (3)
C7—C8—H8A	109.5	C27—C26—C5	117.8 (3)
C7—C8—H8B	109.5	C31—C26—C5	123.3 (3)
H8A—C8—H8B	109.5	C26—C27—C28	122.1 (3)
C7—C8—H8C	109.5	С26—С27—Н27	118.9
H8A—C8—H8C	109.5	С28—С27—Н27	118.9
H8B—C8—H8C	109.5	C29—C28—C27	119.4 (3)
C11—C10—C15	116.1 (3)	C29—C28—C32	120.0 (3)
C11—C10—C3	121.4 (3)	C27—C28—C32	120.6 (4)
C15—C10—C3	122.5 (3)	C28—C29—C30	119.2 (3)
O16—C11—C12	116.5 (3)	С28—С29—Н29	120.4
O16—C11—C10	121.8 (3)	С30—С29—Н29	120.4
C12—C11—C10	121.7 (3)	C31—C30—C29	120.9 (3)
C11—C12—C13	121.2 (3)	C31—C30—C36	120.1 (3)
C11—C12—H12	119.4	C29—C30—C36	119.0 (3)
C13—C12—H12	119.4	C30—C31—C26	119.7 (3)
C12—C13—C14	118.5 (3)	С30—С31—Н31	120.2
C12—C13—C17	121.2 (4)	С26—С31—Н31	120.2
C14—C13—C17	120.3 (3)	F33—C32—F34	109.3 (5)
C15—C14—C13	120.6 (3)	F33—C32—F35	100.3 (5)
C15—C14—H14	119.7	F34—C32—F35	101.9 (5)
C13—C14—H14	119.7	F33—C32—C28	115.8 (4)
O18—C15—C14	123.2 (3)	F34—C32—C28	113.7 (5)
O18—C15—C10	114.9 (3)	F35—C32—C28	114.2 (4)
C14—C15—C10	121.9 (3)	F38—C36—F39	107.1 (4)
C11—O16—H16	109.5	F38—C36—F37	104.6 (4)
C13—C17—H17A	109.5	F39—C36—F37	104.0 (3)
С13—С17—Н17В	109.5	F38—C36—C30	114.8 (3)
H17A—C17—H17B	109.5	F39—C36—C30	113.8 (4)
C13—C17—H17C	109.5	F37—C36—C30	111.6 (4)
N1—C6—C7—C8	-179.7 (3)	C15—O18—C19—C20	173.2 (3)
C14—C15—O18—C19	-2.2 (5)	O18—C19—C20—C21	-120.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O16—H16…N2	0.82	1.84	2.568 (3)	147
C31—H31…O9 ⁱ	0.93	2.67	3.490 (4)	148

			supplementary materials		
C21—H21…F37 ⁱⁱ	0.93	2.72	3.488 (6)	140	
C29—H29…F33 ⁱⁱⁱ	0.93	2.64	3.490 (5)	152	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iii) -*x*, -*y*+1, -*z*+2.