Received 1 June 2017
Accepted 8 June 2017

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; 3-methyl-6-propy-nyloxymethyl-1,4-dioxane-2,5-dione; lactide; synthesis.

CCDC reference: 1555000

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and characterization of 3-methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione

Igor Elkin, ${ }^{\text {a }}$ Thierry Maris ${ }^{\text {b }}$ and Patrice Hildgen ${ }^{\text {a }}$

${ }^{\text {a Faculty of Pharmacy, Université de Montréal, } 2900 \text { Edouard-Montpetit Blvd, Montreal, Quebec, H3T1J4, Canada, and }}$ ${ }^{\text {b }}$ Department of Chemistry, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, Quebec, H3T1J4, Canada. *Correspondence e-mail: patrice.hildgen@umontreal.ca

The number of known asymmetrically substituted hemilactides, important precursors for obtaining regular derivatives of polylactide polymers, is still limited and structural characterization of most of them is incomplete. In the title racemic 1,4-dioxane-2,5-dione derivative, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}$, the hemilactide heterocycle exhibits a twist-boat conformation. The bulkier propynyloxymethyl group is in an axial position with a gauche conformation for the $\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}$ segment. In the crystal, molecules are linked by pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming inversion dimers. The dimers are linked by further $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, forming a three-dimensional structure.

1. Chemical context

Cyclic dilactides, or hemilactides, close structural analogs of 1,4-dioxane-2,5-dione (glycolide) with methyl- or methylenecontaining substituents at the $s p^{3} \mathrm{C}$ atoms, are the most important precursors for obtaining polylactide polymers, which are widely employed in biodegradable plastics and in the food and biomedical industries due to their intrinsic biocompatibility and biodegradability (Gerhardt et al., 2006). Well-tuned architectures of substituted hemilactides lead to the creation of new polylactide materials with regular structures that allow clarification of polymer behaviour at the supramolecular level, as well as achieving new useful properties (Fuoco et al., 2016; Trimaille et al., 2007; Zhang \& Song, 2014). Nevertheless, the further development of the field is hampered by the fact that asymmetrically substituted hemilactides still constitute a very limited group of compounds, the structural characterization of most of which remains incomplete. In this context, the goal of the present study was to elaborate a reliable protocol for obtaining 3-methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione, $\mathbf{1}$.

OPEN \bigodot ACCESS

The atom-numbering diagram of the molecule of $\mathbf{1} . \mathrm{C}$ and O atoms are shown as displacement ellipsoids at the 50% probability level and H atoms are shown as spheres of arbitrary radius.

2. Structural commentary

The molecule of the final product (Fig. 1) possesses a 1,4-dioxane-2,5-dione six-membered ring, as well as the two different substituents, i.e. methyl and propynyloxymethyl groups, linked to atoms C1 and C3, respectively, determining the aimed architecture of $\mathbf{1}$. In general, the bond lengths and angles are in normal ranges for organic carbohydrates. The hemilactide heterocycle exhibits a twisted boat conformation, where atoms $\mathrm{C} 1, \mathrm{C} 2$ and O 1 are in one plane and atoms C 1 , $\mathrm{C} 3, \mathrm{C} 4$ and O 2 are in another plane; the planes are inclined at a dihedral angle of $27.9(2)^{\circ}$. The values of the observed puckering parameters $\left[\theta=84.8(3)^{\circ}\right.$ and $\left.\varphi=308.2(3)^{\circ}\right]$ deviate slightly from those corresponding to an ideal boat conformation $\left(\theta=90^{\circ}\right.$ and $\varphi=300^{\circ}$). Two stereocentres represented by the C 1 and C 3 atoms have opposite chirality, i.e. R, S (and S, R in the centrosymmetric counterpart), the substituents at which adopt a trans configuration with respect to the ring, by minimizing repulsive interactions. The bulkier propynyloxymethyl

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 4^{\text {i }}$	0.92 (2)	2.60 (2)	3.247 (3)	127.8 (16)
C3-H3 . O 5	0.92 (2)	2.49 (2)	3.033 (2)	118.1 (16)
C6-H6B $\cdots \mathrm{O}^{\text {ii }}$	0.99 (3)	2.47 (2)	3.369 (3)	151.0 (19)
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3^{\text {iii }}$	0.98 (2)	2.66 (2)	3.627 (3)	169.1 (18)
C9-H9 . . $\mathrm{O}_{4}{ }^{\text {iv }}$	0.88 (3)	2.58 (3)	3.412 (3)	156 (2)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $-x+1,-y,-z+1$.
group is located above the ring, i.e. in the axial position with a gauche conformation for the $\mathrm{C} 6-\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8$ segment, at a dihedral angle of $71.3(2)^{\circ}$. A similar conformation has been observed in meso-3,6-dipropargyloxymethyl-1,4-dioxane-2,5dione (Zhang et al., 2015).

3. Supramolecular features

In the crystal cell of $\mathbf{1}$ (Fig. 2), all the 1,4-dioxane-2,5-dione rings are located in parallel planes at a distance of approximately $2.0 \AA$, but do not tend to form molecular stacks and organize the rings neither into columns, as reported for hemilactides bearing relatively small substituents, such as 3,6-dimethyl-1,4-dioxane-2,5-dione (van Hummel et al., 1982) and 3-bromo-3,6-dimethyl-1,4-dioxane-2,5-dione and 3-methyl-ene-6-methyl-1,4-dioxane-2,5-dione (Fiore et al., 2010), nor into supramolecular formations where one half of the parallel plane is perpendicular to the other, as reported in the cases of 3-benzyloxymethyl-6-methyl-1,4-dioxane-2,5-dione
(Kooijman et al., 2005) and 3,6-diphenyl-1,4-dioxane-2,5-dione (Lynch et al., 1990). In addition, the crystal packing shows some short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 1) leading to the pairwise molecular binding, i.e. by hydrogen bonds. It is assumed that the packing is mostly determined by the contact involving the acid acetylenyl H9 and ketone O4 atoms (Fig. 2), analogous to the centrosymmetric interactions reported for symmetric meso-3,6-dipropargyloxymethyl-1,4-dioxane-2,5dione (Zhang et al., 2015). It is worthy of note that the unit cell contains no residual solvent-accessible voids.

Figure 2
A view along the b axis of the crystal packing of $\mathbf{1}$. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts involving the acetylenyl H and ketone O atoms are shown as dotted lines.

Figure 3
Scheme of the chemical synthesis of the title compound 3-methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione (1).

4. Database survey

A search in the Cambridge Structural Database (Version 5.38 with two updates; Groom et al., 2016) for pure and functionalized lactides (i.e. glycolides with one methyl substituent) returned 25 entries, including different lactide stereoisomers (Kooijman et al., 2014; Fedushkin et al., 2009; van Hummel et al., 1982) and other derivatives (Zhang et al., 2015; Fiore et al., 2010; Kooijman et al., 2005; Bolte et al.,1994; Lynch et al., 1990).

5. Synthesis and crystallization

The desired product 1 was obtained from the initial rac-1-chloropropane-2,3-diol (2) via a three-step pathway (see Fig. 3) inspired partly by general protocols (Bredikhina et al., 2014; Trimaille et al., 2004; Nagase et al., 2008), comprising the oxidation of 2 to rac-3-chloro-2-hydroxypropanoic acid (3) followed by the etherification with propargyl alcohol to 2-hydroxy-1-(propynyloxymethyl)propanoic acid (4) and the final double esterification of $\mathbf{4}$ with bromopropyonyl bromide. The final purification of $\mathbf{1}$ was performed by auto-flash-chromatography on silica, using chloroform as eluent to give, after evaporation under reduced pressure, a white crystalline solid (see supporting information for more details on the synthesis and structural characterization of the intermediate and final products).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located from Fourier difference maps and fully refined.

Acknowledgements

F. Belanger-Gariepy, M. Cibian and A. Melkoumov are gratefully acknowledged for their help with the elemental and

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}$
$M_{\text {r }}$	198.17
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	100
$a, b, c(\AA)$	6.9774 (5), 6.8273 (5), 19.4895 (14)
β (${ }^{\circ}$)	95.804 (3)
$V\left(\AA^{3}\right)$	923.66 (12)
Z	4
Radiation type	Ga $K \alpha, \lambda=1.34139$ A
$\mu\left(\mathrm{mm}^{-1}\right)$	0.65
Crystal size (mm)	$0.11 \times 0.08 \times 0.08$
Data collection	
Diffractometer	Bruker Venture Metaljet
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
$T_{\text {min }}, T_{\text {max }}$	0.570, 0.752
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	19524, 2055, 1640
$R_{\text {int }}$	0.073
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.652
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.063, 0.183, 1.05
No. of reflections	2055
No. of parameters	168
H -atom treatment	All H -atom parameters refined
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.35,-0.37$

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).
mass analysis, and the auto-flash-chromatography purification, respectively.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds de recherche du Québec - Nature et technologies (FRQNT).

References

Bolte, M., Beck, H., Nieger, M. \& Egert, E. (1994). Acta Cryst. C50, 1717-1721.
Bredikhina, Z. A., Pashagin, A. V., Kurenkov, A. V. \& Bredikhin, A. A. (2014). Russ. J. Org. Chem. 50, 535-539.

Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Fedushkin, I. L., Morozov, A. G., Chudakova, V. A., Fukin, G. K. \& Cherkasov, V. K. (2009). Eur. J. Inorg. Chem. pp. 4995-5003.
Fiore, G. L., Jing, F., Young, V. G. Jr, Cramer, C. J. \& Hillmyer, M. A. (2010). Polym. Chem. 1, 870-877.

Fuoco, T., Finne-Wistrand, A. \& Pappalardo, D. (2016). Biomacromolecules, 17, 1383-1394.
Gerhardt, W. W., Noga, D. E., Hardcastle, K. I., Garcia, A. J., Collard, D. M. \& Weck, M. (2006). Macromolecules, 7, 1735-1742.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hummel, G. J. van, Harkema, S., Kohn, F. E. \& Feijen, J. (1982). Acta Cryst. B38, 1679-1681.

Kooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. \& Spek, A. L. (2005). Acta Cryst. E61, o901-o903.
Kooijman, H., Leemhuis, M., van Nostrum, C. F., Hennink, W. E. \& Spek, A. L. (2014). Private communication (refcode NAHNOZ01). CCDC, Cambridge, England.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lynch, V. M., Pojman, J., Whitesell, J. K. \& Davis, B. E. (1990). Acta Cryst. C46, 1125-1127.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Nagase, R., Iida, Y., Sugi, M., Misaki, T. \& Tanabe, Y. (2008). Synthesis, 2008, 3670-3674.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Trimaille, T., Gurny, R. \& Möller, M. (2007). J. Biomed. Mater. Res. A, 80, 55-65.
Trimaille, T., Möller, M. \& Gurny, R. (2004). J. Polym. Sci. A Polym. Chem. 42, 4379-4391.
Zhang, Q., Ren, H. \& Baker, G. L. (2015). Polym. Chem. 6, 12751285.

Zhang, J. \& Song, J. (2014). Acta Biomater. 10, 3079-3090.

supporting information

Acta Cryst. (2017). E73, 1044-1047 [https://doi.org/10.1107/S2056989017008581]
Synthesis and characterization of 3-methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione

Igor Elkin, Thierry Maris and Patrice Hildgen

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

3-Methyl-6-[(propynyloxy)methyl]-1,4-dioxane-2,5-dione

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}$

$M_{r}=198.17$
Monoclinic, $P 2{ }_{1} / c$
$a=6.9774$ (5) A
$b=6.8273$ (5) \AA
$c=19.4895(14) \AA$
$\beta=95.804$ (3) ${ }^{\circ}$
$V=923.66(12) \AA^{3}$
$Z=4$

Data collection

Bruker Venture Metaljet diffractometer
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source
Helios MX Mirror Optics monochromator
Detector resolution: 10.24 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.183$
$S=1.05$
2055 reflections
168 parameters
0 restraints
$F(000)=416$
$D_{\mathrm{x}}=1.425 \mathrm{Mg} \mathrm{m}^{-3}$
Ga $K \alpha$ radiation, $\lambda=1.34139 \AA$
Cell parameters from 9932 reflections
$\theta=4.0-60.8^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Chunk, clear light colourless
$0.11 \times 0.08 \times 0.08 \mathrm{~mm}$

$$
T_{\min }=0.570, T_{\max }=0.752
$$

19524 measured reflections
2055 independent reflections
1640 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.073$
$\theta_{\text {max }}=60.9^{\circ}, \theta_{\text {min }}=4.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-8 \rightarrow 8$
$l=-25 \rightarrow 25$

Hydrogen site location: difference Fourier map
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1166 P)^{2}+0.2436 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.37$ e \AA^{-3}

supporting information

Extinction correction: SHELXL2016
(Sheldrick, 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0045 (17)

Special details

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm , and the data collection was carried out in 1024×1024 pixel mode.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.8442(2)$	$0.6986(2)$	$0.38601(7)$	$0.0450(4)$
O2	$0.8604(2)$	$0.3277(2)$	$0.44578(7)$	$0.0445(4)$
O3	$1.0103(2)$	$0.5925(2)$	$0.30315(8)$	$0.0528(5)$
O4	$0.7313(2)$	$0.4446(2)$	$0.53563(7)$	$0.0500(4)$
O5	$0.5693(2)$	$0.3519(2)$	$0.32715(7)$	$0.0433(4)$
C1	$0.8967(3)$	$0.3454(3)$	$0.37415(10)$	$0.0442(5)$
H1	$1.029(4)$	$0.277(3)$	$0.3718(12)$	$0.047(6)^{*}$
C2	$0.9217(3)$	$0.5552(3)$	$0.35135(10)$	$0.0427(5)$
C3	$0.7092(3)$	$0.6521(3)$	$0.43558(10)$	$0.0413(5)$
H3	$0.591(3)$	$0.624(3)$	$0.4123(11)$	$0.033(5)^{*}$
C4	$0.7669(3)$	$0.4688(3)$	$0.47711(10)$	$0.0412(5)$
C5	$0.6982(4)$	$0.8289(4)$	$0.48109(12)$	$0.0490(6)$
H5A	$0.817(4)$	$0.861(4)$	$0.5017(13)$	$0.050(6)^{*}$
H5B	$0.656(4)$	$0.940(4)$	$0.4515(14)$	$0.059(7)^{*}$
H5C	$0.613(4)$	$0.797(4)$	$0.5153(16)$	$0.061(8)^{*}$
C6	$0.7425(3)$	$0.2424(3)$	$0.32707(12)$	$0.0452(5)$
H6A	$0.725(3)$	$0.111(4)$	$0.3442(12)$	$0.041(6)^{*}$
H6B	$0.783(3)$	$0.234(3)$	$0.2801(14)$	$0.047(6)^{*}$
C7	$0.4081(3)$	$0.2573(3)$	$0.28966(11)$	$0.0472(5)$
H7A	$0.299(3)$	$0.349(3)$	$0.2863(11)$	$0.041(6)^{*}$
H7B	$0.440(3)$	$0.222(3)$	$0.2426(14)$	$0.047(6)^{*}$
C8	$0.3455(3)$	$0.0836(3)$	$0.32598(10)$	$0.0437(5)$
C9	$0.2952(3)$	$-0.0550(3)$	$0.35607(12)$	$0.0476(5)$
H9	$0.252(4)$	$-0.157(4)$	$0.3776(15)$	$0.060(8)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0527(9)$	$0.0485(8)$	$0.0346(8)$	$-0.0021(6)$	$0.0088(6)$	$0.0033(6)$
O2	$0.0478(8)$	$0.0505(8)$	$0.0355(8)$	$0.0025(6)$	$0.0065(6)$	$0.0062(6)$
O3	$0.0586(9)$	$0.0640(10)$	$0.0373(8)$	$-0.0117(7)$	$0.0125(7)$	$-0.0011(7)$

O4	$0.0548(9)$	$0.0617(9)$	$0.0338(8)$	$-0.0022(7)$	$0.0066(6)$	$0.0060(6)$
O5	$0.0446(8)$	$0.0472(8)$	$0.0383(8)$	$-0.0030(6)$	$0.0057(6)$	$-0.0039(6)$
C1	$0.0453(11)$	$0.0522(12)$	$0.0367(11)$	$0.0023(9)$	$0.0119(9)$	$0.0025(8)$
C2	$0.0436(11)$	$0.0538(12)$	$0.0310(10)$	$-0.0062(9)$	$0.0050(8)$	$0.0003(8)$
C3	$0.0411(10)$	$0.0519(11)$	$0.0311(9)$	$0.0003(9)$	$0.0048(8)$	$0.0023(8)$
C4	$0.0392(10)$	$0.0520(11)$	$0.0321(10)$	$-0.0041(8)$	$0.0028(8)$	$0.0017(8)$
C5	$0.0534(13)$	$0.0552(13)$	$0.0380(11)$	$0.0041(10)$	$0.0035(10)$	$-0.0019(9)$
C6	$0.0521(12)$	$0.0463(11)$	$0.0390(11)$	$0.0015(9)$	$0.0128(9)$	$-0.0016(8)$
C7	$0.0511(12)$	$0.0557(12)$	$0.0344(10)$	$-0.0038(10)$	$0.0026(9)$	$-0.0012(9)$
C8	$0.0445(11)$	$0.0535(12)$	$0.0327(10)$	$-0.0027(9)$	$0.0019(8)$	$-0.0055(8)$
C9	$0.0503(12)$	$0.0507(12)$	$0.0419(11)$	$-0.0062(10)$	$0.0049(9)$	$-0.0031(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C2	$1.335(3)$	C3-C4	$1.522(3)$
O1-C3	$1.451(2)$	C3-C5	$1.505(3)$
O2-C1	$1.449(3)$	C5-H5A	$0.91(3)$
O2-C4	$1.344(3)$	C5-H5B	$0.9(3)$
O3-C2	$1.203(3)$	C5-H5C	$0.96(3)$
O4-C4	$1.203(3)$	C6-H6A	$0.97(2)$
O5-C6	$1.421(3)$	C6-H6B	$0.99(3)$
O5-C7	$1.432(3)$	C7-H7A	$0.98(2)$
C1-H1	$1.04(2)$	C7-H7B	$1.00(3)$
C1-C2	$1.515(3)$	C7-C8	$1.470(3)$
C1-C6	$1.515(3)$	C8-C9	$1.184(3)$
C3-H3	$0.92(2)$	C9-H9	$0.88(3)$
C2-O1-C3	$119.98(16)$	C3-C5-H5A	$110.8(16)$
C4-O2-C1	$121.22(16)$	C3-C5-H5B	$107.6(15)$
C6-O5-C7	$112.74(16)$	C3-C5-H5C	$107.4(16)$
O2-C1-H1	$104.3(14)$	H5A-C5-H5B	$106(2)$
O2-C1-C2	$113.46(17)$	H5A-C5-H5C	$110(2)$
O2-C1-C6	$111.23(18)$	H5B-C5-H5C	$115(2)$
C2-C1-H1	$106.6(13)$	O5-C6-C1	$107.90(17)$
C6-C1-H1	$110.0(13)$	O5-C6-H6A	$110.3(13)$
C6-C1-C2	$110.91(17)$	O5-C6-H6B	$111.0(14)$
O1-C2-C1	$118.72(18)$	C1-C6-H6A	$109.2(13)$
O3-C2-O1	$120.44(19)$	C1-C6-H6B	$109.7(14)$
O3-C2-C1	$120.83(19)$	H6A-C6-H6B	$108.8(19)$
O1-C3-H3	$109.1(13)$	O5-C7-H7A	$108.0(13)$
O1-C3-C4	$112.30(16)$	O5-C7-H7B	$109.8(14)$
O1-C3-C5	$106.96(18)$	O5-C7-C8	$112.01(17)$
C4-C3-H3	$105.6(13)$	H7A-C7-H7B	$109.8(18)$
C5-C3-H3	$111.0(13)$	C8-C7-H7A	$106.4(13)$
C5-C3-C4	$111.88(17)$	C8-C7-H7B	$110.8(13)$
O2-C4-C3	$117.51(17)$	C9-C8-C7	$179.1(2)$
O4-C4-O2	$119.26(18)$	C8-C9-H9	$177.3(19)$
O4-C4-C3	$123.22(19)$		

$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-31.7(2)$	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3$	$168.81(18)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$149.05(19)$	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$-11.5(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-23.6(3)$	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$30.6(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	$156.06(19)$	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6$	$-95.2(2)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 5$	$70.2(2)$	$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	$-152.00(19)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 4$	$176.43(18)$	$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	$28.8(3)$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$\mathrm{C} 6-\mathrm{O} 5-\mathrm{C} 4-\mathrm{C} 8$	$71.3(2)$	
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$102.4(2)$	
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 5$	$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$	$-77.9(2)$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{O} 5$	$162.14(17)$	$\mathrm{C} 7-\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 1$	$-174.10(17)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 4{ }^{\mathrm{i}}$	$0.92(2)$	$2.60(2)$	$3.247(3)$	$127.8(16)$
C3—H3 $\cdots \mathrm{O} 5$	$0.92(2)$	$2.49(2)$	$3.033(2)$	$118.1(16)$
C6—H6B $\cdots \mathrm{O} 3^{\mathrm{ii}}$	$0.99(3)$	$2.47(2)$	$3.369(3)$	$151.0(19)$
C7—H7A $\cdots \mathrm{O} 3^{\text {iii }}$	$0.98(2)$	$2.66(2)$	$3.627(3)$	$169.1(18)$
C9—H9 $\cdots 4^{\text {iv }}$	$0.88(3)$	$2.58(3)$	$3.412(3)$	$156(2)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2, y-1 / 2,-z+1 / 2$; (iii) $x-1, y, z$; (iv) $-x+1,-y,-z+1$.

