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Abstract: In this research, the aim relates to the material characterization of high-energy lithium-
ion pouch cells. The development of appropriate model cell behavior is intended to simulate two
scenarios: the first is mechanical deformation during a crash and the second is an internal short circuit
in lithium-ion cells during the actual effect scenarios. The punch test has been used as a benchmark to
analyze the effects of different state of charge conditions on high-energy lithium-ion battery cells. This
article explores the impact of three separate factors on the outcomes of mechanical punch indentation
experiments. The first parameter analyzed was the degree of prediction brought about by experiments
on high-energy cells with two different states of charge (greater and lesser), with four different sizes
of indentation punch, from the cell’s reaction during the indentation effects on electrolyte. Second,
the results of the loading position, middle versus side, are measured at quasi-static speeds. The third
parameter was the effect on an electrolyte with a different state of charge. The repeatability of the
experiments on punch loading was the last test function analyzed. The test results of a greater than
10% state of charge and less than 10% state of charge were compared to further refine and validate
this modeling method. The different loading scenarios analyzed in this study also showed great
predictability in the load-displacement reaction and the onset short circuit. A theoretical model of the
cell was modified for use in comprehensive mechanical deformation. The overall conclusion found
that the loading initiating the cell’s electrical short circuit is not instantaneously instigated and it is
subsequently used to process the development of a precise and practical computational model that
will reduce the chances of the internal short course during the crash.

Keywords: lithium-ion; high energy pouch cell; state of charge; electrolyte; load position; modeling

1. Introduction

In recent decades, energy derived from fossil fuels has become harmful to the climate
and its sources are decreasing with time [1]; that is why electric vehicles are expected to
replace vehicles in which gasoline is used as an energy source. To overcome that deprivation
of this energy in the future, batteries are considered to be one of the significant methods
of storing energy that is being produced by different sources. Lithium-ion batteries have
proven to be very profitable, and they are used in many electronic gadgets [2]. Moreover,
they are also not used in various electric sources, such as mobile phones, laptops, and
cameras, but are widely used as energy storage systems in electric vehicles due to their
high capacity, low self-discharge, long life, high energy density, and low climatic effect
characteristics. In some conditions, lithium batteries have also proven to be the cause of
thermal runaway, mechanical abuse, and release of toxic gases [2–5]. Thus, interest in
lithium-ion batteries from researchers has increased in recent years [6–11]. Electrochemical
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technologies are particularly significant in present society, and it is an exciting time for
researchers that are active in this sector [12]. This is a vital topic for research for electric
vehicles, specifically when considering the massive operational range that electric vehicles
would be subjected to [13–15].

Sony Ericson established the first battery in 1991, and a lithium-ion battery was
later commercially introduced [16,17]. Since then, millions of cells are in the market
with their different specifications [18–20]. For many years, customer’s demand and best
purposes have persisted in maintaining more extended battery running time. To meet
customer’s needs, producers have appropriately responded to increase battery performance
by changing the cell’s chemistry, which directly affects its memory loss and high electric
density. Different li-ion cells include various types of materials, and the material containing
titanium [21–23], silicon, and graphite oxide for the negative electrode, LiMOy, in which
oxides, manganese oxide (MOy), cobalt oxide, and ferrous phosphate, etc. can be used as a
metal oxide [24]. Direct contact between electrodes can cause a short circuit. A separator is
used for this type of short circuit to make a cell safe [25–27]. A separator is made of different
materials, such as polypropylene, for a lithium polymer cell. Still, in the lithium-ion cell, SEI
(Solid Electrolyte Interphase) usually consists of Li2O (Lithium Oxide) [28,29], LiF (Lithium
Fluoride) [30], Li2CO3 (Lithium Carbonate) [31], and polyolefin [32–34]. The electrolyte
depicted in this study consists of a conductive salt, e.g., lithium hexafluorophosphate
(LiPF6), and a solvent dimethyl carbonate (DMC), and ethylene carbonate (EC), diethyl
carbonate (EC), or ethyl methyl carbonate (EMC) [35]. The use of metallic lithium leads
to safety hazards [36] and low cycle efficiency due to lithium’s reactivity with ordinary
liquid electrolytes [37]. The energy density of a lithium-ion battery is higher than other
battery sources. In the pouch/prismatic cells, one thing that is more common is that
the electrodes/separator assembly is not wrapped in its mount. The length to thickness
ratio, rather than the actual dimensions, is the thing that matters; the prismatic battery is
regarded as an-isotropic multi-layered thick plate [38–40].

There is a need to overcome these internal short circuits due to mechanical failure
which is due to accidents, according to the International Energy Agency [40–43]. Un-
fortunately, manufacturers could not provide the reasons and mechanisms of internal
structural failure. Detailed computational modeling of the battery can explain the origins
of failure, mechanisms of failure, and their implications to the battery pack design; thus, it
can provide suitable enhancements in format [44]. Some previous studies are improving
their mechanical and electrical performance by changing their material structures [45]. As
a result, this led to battery-pack designs in EV (Electric Vehicle). Battery protection was
examined [46]. Researchers observed changes by applying different loading conditions on
lithium-ion battery cells, and they investigated the effects on cells while using the load
in various conditions [47–49]. Suppose that an accident or mishap occurs in an electric
vehicle. In that case, it can also harm the battery pack by intruding on external objects,
which can lead to the mechanical deformation of lithium-ion cells. These external objects
can occur from various directions, e.g., in-plane loading, which can compress the cell’s
narrow border, and out-of-plane indentation, which can punch a vast surface of pouch
cell perpendicularly [50–52]. Electricity, thermal, and mechanical integrities are the three
main factors that are mutually related to battery protection [53,54]. Crash experiments of
an EV provide a lesson from where it was once found that, instead of minor intrusion into
a battery pack, a disastrous result was produced [55–57]. However, its overcharging also
includes one of the most severe safety issues for applications of lithium-ion batteries [30,58].
Analysis of outcomes from quasi-static loading states on the reaction of the cell and most
of the primary research and modeling work were done [58–60].

Several quasi-static indentation tests were carried out on lithium-ion pouch cells.
These indentation tests were prompted at the onset of the internal short circuit. The
location of fracture occurs before catastrophic failure of the entire pouch cell with unusual
local damage, and accretion appears precisely on the layers. The transient breach occurs
in the higher portion of the covered layers, the main force drops, and the synchronous
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strike of an inner short circuit occurs within the sac cell, while the down part of the
pouch cell comprehensively stays. During the indentation tests process, for lithium pouch
cells, the common structural unyielding increases at first before its final drop, and it
then enters a stagnant condition. After the curvature point, a load of indentation makes
the viscid forces stronger. It aggravates the separator into constituent layers and the
particles of graphite de-coat from the anode [61]. The overall performance of the lithium-
ion battery can be understood when researchers also investigated the status of mechanical
stress on a lithium-ion battery, which is mainly caused by external stress. A variety of
different mechanical models have been established to investigate the effects on lithium-ion
battery packs by applying mechanical loads, which is one of the prominent reasons for
the internal short circuit [62,63]. A collective numerical, analytical, and experimental
approach was performed to develop a new cell failure model and to understand the
primary mechanism of failure. As soon as the large format pouch cells were subjected to
indentation leading to failure, an examination of failure regions demonstrated a fracture
surface angle to the battery plane [64,65]. The research combined both experimental and
computational studies [66,67]. Dynamic finite element simulations were performed to
study pouch cells’ mechanical behavior, such as internal interfacial behavior, loading,
and boundary conditions, which shows a direct interaction between cell boundaries and
impactor leading to the significant change in the residual velocity [68,69].

This research will focus on complete cell indentation tests on a specific model of
high-energy pouch lithium-ion cells to facilitate the exploration of buckling response under
various confinement levels. It also focuses on determining the effects on electrolytes while
applying a different type of load by changing the punch size and punch position with the
other soc. It will help to identify a model for battery cells when different mechanical loads
are applied to it. Taking some measures can improve the application of lithium-ion batteries
in different technologies. These measures can include strengthening the batteries’ walls,
the storage chambers, material strength, compartment ventilation for fire suppression, and
ingress and egress points. This indicates that cell battery model will help to build blocks
for developing a battery pack model, as shown in Figure 1. It is a homogenized form of
the battery cell where all five distinctive materials are smudged into one homogenized
medium in the battery pack. Theoretically, even though provisional imperfections or modal
patterns may be added, such a homogenized model will not simulate realistic buckling
patterns because the battery’s actual configuration is anisotropic.
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The comprehensive computational modeling will offer valuable information in the al-
location to close the design feedback loop, leading to a robust design overall and providing
the best solution.
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2. Materials and Methods
2.1. Mechanical Indentation

The mechanical indentation test has been used in this study, including information
regarding the physical and mechanical properties, the electrochemical characteristics, and
the operating properties of the cells. Manufacturers are requested to discharge the cell of
no more than 10% state of charge to avoid extreme reactions at the point of indentation
tests. The other two cells have more than 10% state of charge with preventive measures to
maintain the environment from severe reactions.

These types of cells are typical of those that can be found in electric vehicle applications
or an energy storage system due to their incredible efficiency and high capacity [38,39].
These cells also have a stackable geometry and packaging. Lithium-ion cells provide
compelling advantages to manufacturers. Any desired shape can be produced according
to the requirement of the customer. Space and weight requirements can be met for mobile
devices and notebook computers [70,71]. Testing on four pouch-type cells of li-ion is
conducted in this work. The following sections describe the equipment, preparation, and
results from those tests. Firstly, the Punch Indentation testing results are described after
the battery component descriptions.

In this study, High-energy lithium-ion pouch cells GPLFP (Gee Power LiFe Polymer
Battery (Cell Manufacturing Company Guangdong, China) 11192320ES-50 Ah have been
used, as depicted in Figure 2. Lithium-ion accumulators have 95% high discharge efficiency,
which also shows low self-emit when compared to rechargeable cells, such nickel-cadmium
and nickel manganese accumulators. There is an energy density of more than 200 W-h/kg
for the commercially available lithium-ion battery.
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Lithium presents advantageous properties, such as greater battery life, being present
in many weights, reliability, foolproof safety, more energy repository, balance, and com-
patibility [18]. Figure 2 shows the major specifications of this cell. The online information
sheet for this cell is provided in [72] to the interested reader and it is also shown in Table 1.
Lithium pouch cells consist of stacked layers of anodes, separators, and cathodes that
are sandwiched between the laminated film layers. These pouch cells can be created in
customized sizes and shapes. Pouch cells are then linked in sequence and parallel to accu-
mulate the preferred voltage and capacity. In a pouch cell configuration, “S” in the number
specifies how many are in the series, and the “P” specifies the number of pack assemblies.
For example, if you have a 4s4p pack, this would be a total of sixteen cells—four packs of
four batteries each.
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Table 1. Model: GPLFP 11192320ES-50 Ah.

Cell Specifications Values

Nominal Capacity. 50 Ah
Nominal Voltage 3.2 V

Width 193 mm max
Length 320 mm max

Thickness 11.3 mm max
Weight 1300 g

Tab width 50 ± 0.5 mm
Electrolyte lithium hexafluorophosphate (LiPF6)

Center 100 ± 2.0 mm
Test cell specifications [72].

2.2. Indentation Test

Before testing, the cells have been discharged to the preferred discharge cut-off voltage
of 2.5 V [72] to stop intense reactions all through the testing scenarios. Two cells have been
on more than 10% soc and two cells have been kept on less than 10% soc. A complete
test application has been performed to complete the calibration process and validate the
corresponding models. Figure 3 presents four types of punch used in experiments that
were carried out on the lithium-ion battery. Table 2 represents total number of punch tests
applied on each cell. The cells were tested using the universal testing machine (UTM)
loading frame that was equipped with a 200 kN load cell in the whole experiment, as
shown in Figure 4. The first test of each cell included voltage monitoring in determining
the onset of the internal electric short circuit. The punches have been placed in the center
and on edges of the cell lengthwise and widthwise. All of these punches are used for all
four cells. No punch is specified for any specified cell. Each cell used to be subjected to
10 consecutive indentation tests using three sizes of hemispherical punches-small (12 mm
diameter), medium (28 mm diameter), and massive (44 mm diameter), and a flat cylindrical
punch (25 mm diameter) [9,72], as can be seen in Figure 3.
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Table 2. Number of tests on each cell.

Cell No. Order & Number in Experiments Performed

1

With >10% soc
Medium (2)

Large (2)
Small (4) one voltage

Cylindrical (2)

2

With >10% soc
Small (4), one voltage

Medium (2)
Large (2)

Cylindrical (2

3

With <10% soc
Large (2),

Medium (2)
Small (4) one voltage

Cylindrical (2)

4

With <10% soc
Cylindrical (2)

Large (2)
Medium (2)

Small (4) one voltagePolymers 2021, 13, x FOR PEER REVIEW 6 of 21 
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2.3. Testing Procedure of Punch Indentation

A complete test application has been performed to complete the calibration process
and validate the corresponding model. In preparation for testing, the cells have been
separately placed in two-gallon Ziploc bags with SOLUSORB® solvent adsorbent to include
any electrolyte leakage that can also occur throughout the testing procedure. The bags
have been then marked to determine appropriately spaced punch locations, such that the
preceding tests would no longer influence the subsequent identical cell indentation test
results. The prepared cell was then positioned on a stable, flat metallic surface under the
loading frame with the suitable test location being found below the hemispherical punch
to be used. For the first test of every cell, voltmeter leads have been linked to positive and
negative cell terminals inside the bag using alligator clips, and the container used to be
semi-sealed around the edges. The punch used is lowered to a point entirely above the
cell’s surface. A fume extractor was placed inside six inches of the setup to remove the
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poisonous fumes released during and post-test. Figure 4 presents a standard, first-run test
setup. The voltmeter was removed in subsequent identical cell test runs.

The following parameters are measured at 1-s intervals using meter view c software:

• The test computing device and displacement over time. In all of these tests, displace-
ment is constant with a fixed rate of 1 mm/min., while related testworks04 software
measured and recorded test machine load and crosshead displacement in 1-s intervals.

• Over time, cell voltage has been determined with a standard voltmeter at the end of
the cell positive and negative electrodes. Voltage measurements have been measured
simultaneously on the first test of each cell using a general voltmeter that is connected
to the cell terminals and have been recorded at 1-s intervals using meter view c
software.

• The outside temperature of a cell over time, as determined by thermo-couple.
• It is also mentioned that all of these tests are carried out at room temperature because,

under intense cold or warm temperatures, the material properties can appreciably
change, and the min-max range of temperature for batteries (−20 ◦C to 60 ◦C) is es-
sential at a variety of variable temperatures above the characterization and evaluation
be carried out.

• Photographs during tests are captured at a rate of average 5 min.
• When one short circuit is achieved, all of these monitoring devices work until these

parameters again come back to their constant state.

Many tests are conducted to achieve fast reduction in force to locate punch on cells
and the voltage readings indicating short circuit of cell. Between identical cell test scenarios,
the loading frame used to be lifted and reset for cell repositioning and punches change-out
when necessary.

3. Results
3.1. Testing Results of Punch Indentation

Observing previous cells’ tests revealed no leakage or pretension of the pouch cells
due to short circuit chemical reactions, and there will be no gas formation because it can
cause an explosion. Nevertheless, a, b, c, d reveal the observational test results following
the completion of all testing, as shown in Figure 5.
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For the initial tests of cells 1, 2, and 3, 4, as shown in Figure 5, both load and voltage
are graphs of a displacement function. The voltage drops when a short circuit occurs in
any of the indentation tests. Figures 6–9 show each cell with greater than 10% soc. It is
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understood that the onset of a short circuit is directly connected with the cell’s mechanical
failure. Test data also revealed, with an increase in punch radius, the beginning of electric
short circuit successively occurred later, starting at time = 180 s, time = 260 s, time = 289 s,
and time = 304 s or small, medium, large, and a flat cylindrical punch sizes, respectively. A
hemispherical punch with 44 mm size did not produce any short circuit or drop in voltage
until 5 kN, as shown in Figure 9.

Figures 6–13 shows that the voltage drop is at the point of a short circuit in all tests.
It can be determined that the cut-off voltage of all punches starts from 2.5, but the drops
in voltage displacement and peak loads are different for both cells for all punch types in
both soc conditions. However, a drop-in voltage of small punch with size 12 mm, medium
punch with size 28 mm, 44 mm, and flat cylindrical punch with size 25 mm goes on an
ending of 1.90, 0.65, −0.42, and 0.75. Nevertheless, a large punch with a size of 44 mm
shows −0.42 voltages at 50 kN load when the load is removed back from the cell, as shown
in Figure 9 for greater than 10% soc.
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Figure 6. Load and voltage vs. displacement 12 mm punch greater than 10% soc.
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Figure 7. Load and voltage vs. displacement 25 mm punch greater than 10% soc.
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Figure 8. Load and voltage vs. displacement 28 mm punch greater than 10% soc.
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Figure 9. Load and voltage vs. displacement 44 mm punch greater than 10% soc.
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Figure 10. Load and voltage vs. displacement 12 mm punch less than 10% soc.
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Figure 11. Load and voltage vs. displacement 25 mm punch less than 10% soc.
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Figure 12. Load and voltage vs. displacement 28 mm punch less than 10% soc.
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Figure 13. Load and voltage vs. displacement 44 mm punch less than 10% soc.

Thus, the values for less than 10% soc drop in the voltage of small, medium punch,
large punch, and flat cylindrical punch are 1.98, 1.01, 0.81, and 0.68. A drop in voltage
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rebound is found after a preliminary drop for punch indentation for all cells, and then the
voltage progressively lowered to 0 to −0.30 over 15 s.

With the exception of the small and medium punch studies, local deformation that can
be securely tolerated from 6 mm (small cell) to 10 mm (medium cell) through the cell levels
and even 12 mm punch also did not produce much deformation, as shown in Figures 6–13.

As predicted, the cells trigger a voltage drop just under the large punch of 44 mm,
as shown in Figure 9 and the displacement graph, and it is considerably deeper and
quicker than other punch indentations. The hassle is pushed through the basic geometry
of a massive punch that is defined in terms of the tip’s central angle and radius. These
findings measure the pattern that is expected in every other situation; those batteries can
safely handle extra blunt object intrusion. For 44 mm punch with less than 10% soc, the
displacements are 6.474 and 6.324, and, for the other two cells with greater than 10%, the
soc displacements are 6.493 and 6.503, respectively, as shown in Figure 17.

This analysis measures the point between two of these similarities and variations.
Moreover, an investigation has been performed in relation to how these materials’ prop-
erties can be changed when indentation moves from the middle to the corners of the cell.
However, in these experiments, the indentation punch position has also been changed from
the mid to corner, and the readings are shown for less and greater than 10% soc.

3.2. Effect of Electrolyte with the State of Charge

Different indentation tests have been performed on less than 10% state of charge cell
to evaluate the electrolyte impact on lithium cells’ loading response. Tests were performed
with more than 10% state of charge cell; all of the experiments have been conducted with
12 mm, 25 mm, 28 mm, and 44 mm diameter punch, and all the experiments have been
completed at a rate of 1 mm/min. loading. All of the punch tests are performed twice,
except for the punch with a 12 mm diameter. These tests have been performed on both soc
cells. The cells with less than 10% soc have a much more rigid reaction and a high force
level, being significantly more than 10% soc. In contrast, for the estimated force for the last
two cells with less than 10% soc, with 28 mm punch, the displacements are 5.466 and 5.316,
and, for the first two cells with greater than 10%, the soc displacements are 5.529 and 5.506,
as shown in Figures 14–17.
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Figure 14. Load vs. displacement 12 mm low to peak loads.
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Figure 16. Load vs. displacement 28 mm low to peak loads.
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The short circuit onset is observed from the voltage decrease in the cell, which has
greater than 10% soc; the punch with a 44 mm diameter starts from 2.14 and ends at −0.42,
which clearly shows a high short circuit.

Thus, short circuit, punch displacements with greater than 10% SOC at onset are
2.952 mm, 3.712 mm, 5.529 mm, and 6.503 mm, and, similarly for less than 10% soc,
3.88 mm, 5.42 mm, 5.94 mm, and 6.92 mm for a small, medium, large, and a flat cylindrical
punch. In less than 10% soc, the flat cylindrical punch has a diameter of 28 mm, in which
the short circuit force initiates no drop in.

However, for a hemispherical punch with 44 mm diameter, the onset of the short
circuit coincides with a load drop, and the resistance is measured, compression is reported,
and a drop in resistance is shown from 900 to 0.

No calculation of the voltage drop is found for the cells with less than 10% soc, which
causes a short circuit. However, the same patterns follow the cell’s homogenized reaction
and become softer in the wet state. Comparing the onset contrast to a cell with less than
10% soc and loss is earlier when a cell with greater than 10% soc is tested.

3.3. Loading Positions with Different State of Charge

This experiment has been conducted to explore the impact of changing load positions
on cells. For this purpose, two cells are manufactured with a soc less than 10%, and two
cells are more than 10% soc to check the effects of a short circuit; on the other hand, during
experiments, all of the cells are kept in two-gallon zip-lock bags [70]. All of these cells are
subjected to the punch indentation loads, and variations in the cells’ response have been
examined. Tests are performed on lithium-ion cells with pouch cover. However, previ-
ous researches have demonstrated that not applying thin foil fused aluminum/polyester
of pouch cover, under these loading conditions and not adding power or strength to
the cell and calculated data of the cell explicitly represent the electrode/separator stack
properties [69].

The hemispherical punch loading has been extended to a pointed matrix, starting
from the cell center and moving towards the corners, and then the findings are compared.
The quasi-static is tested at a 1 mm/min. rate loading time, checking. Apart from this, the
results are consistent with the experiments. For this purpose, indentation testing with four
different types of diameters punches has been carried out. Several hemispherical and flat
cylindrical punch experiments have been conducted equally on greater than 10% and less
than 10% soc cells at different locations. Several punches have been made on four cells.
The measurement is placed in the middle of the cell between 30 mm–55 mm from the long
edge of the cell. These are punches with a different punch diameter, and the distance is
different on all cells, between 50 mm–60 mm from the long edge in the second test, and
10–15 mm from the long edge in the third. A fourth is conducted on the corner of the cell.
All of the tests are conducted in this measurement, but the sizes of punch are different, and
variability has been established from the multiple experiments.

Figure 5a–d presents the coordinates of the punch. Some tests are in the middle,
some are on the corner, and some are between the hub and center to check the maximal
measurement of force with greater than 10% soc (with 44 mm punch diameter) regarding a
crosshead of 7.21 mm, 50 kN. Some of the tests are performed with a hemispherical punch
with a 44 mm diameter on the corner of the cell, and some are performed in the middle
of the cell. The center of cell tests has a great deal of lower maximum power, which is
predicted from the cell’s edge containing less substance than the middle of the cell.

Figures 18–21 show the peak load and deformation depth at short circuit versus all
four cells and different punch diameters. It is fascinating to observe that the short circuit’s
peak load should almost linearly grow high with an extended punch diameter. In this
experiment, a punch diameter of 44 mm creates a large voltage drop with greater than 10%
soc, as shown in the graph presented in Figure 9. Nevertheless, the load increases with
the increase in the punch’s diameter, as shown in Figures 18–21, and high displacements
are shown in Figures 14–17. The peak loads and displacements differential between
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less than 10% soc and greater than 10% soc with hemispherical punches are applied.
The hemispherical punch with 28 mm diameter shows maximum force measurements
of 40–45 kN with lesser and greater than 10% soc. The 44 mm diameter punch shows
50 kN with lesser and greater than 10% soc. Tables A1–A4 (Appendix A) show force-
displacement readings.

This allows researchers to use a single cell for running several tests without the fear
that the punch’s position would impact the results and only the punch diameter can change
it. This study discusses which variables in similar experiments can be carefully regulated
and left accessible for operator convenience. Tables A1–A4 (Appendix A) the test readings
on each cell.
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Figure 20. Cell 3 peak loads and displacements.
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The involvement of electrolytes has been shown to have a direct effect on the cell’s
reaction. When a load is applied to the cell, with an increasing load, electrolyte structure
also changes because of this internal short circuit that changes the cell’s condition. In
all indentation punch filling cases, the pouch cells with an electrolyte with less than
10% soc have soc in all types of diameters. Therefore, researchers should pay particular
attention while testing a cell’s mechanical reaction. During the indentation process, the
local deformation of each separator before the commencement of the short circuit is another
indirect evidence of the fracture sequence. For this reason, separators between each of the
four electrode pairs from the pouch cell subjected to 45 kN indentation were investigated
using SEM, as shown in Figure 22. The depletion of the thickness separator in the area just
below the indenter (center) was compared to the area further out from the indenter (the
margin area) as shown in Figure 23.
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4. Conclusions

This research investigates findings from three related major study areas: material
description of Lithium cells used in experiments, the inner short circuit in lithium-ion
battery cell starting point when the load is being applied, and the maximum reaction of
cell load-carrying capacity. Performance characteristics for the lithium-ion pouch battery
are calculated in different conditions.

Four types of hemispherical punch indentation tests have been used to obtain better
results to build a computational model pouch-type lithium-ion battery cells. The force-
displacement curves and the internal short circuits for these experiments operating at a
rate of 1 mm/min. have been very compatible with the results found in this analysis, and
they have validated these results.

The overall conclusion is that the cell’s electrical short circuit is not instigated instan-
taneously when loading begins. These data can feed into numerical models and help to
determine nominal battery pack loading conditions for improved staff protection under
an optimal cell with optimization conditions. These results will further define the initial
requirements in a previously developed successful modeling tool and enable the model to
more accurately predict individual cell behavior in crash scenarios.
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Appendix A

Table A1. Peak force and associated displacement for punch test cell 1 (C1).

12 mm
Load
(N)

25 mm
Load
(N)

28 mm
Load
(N)

44 mm
Load
(N)

C1-12
mm-
T1

C1-12
mm-
T2

C1-12
mm-
T3

C1-12
mm-
T4

C1-25
mm-
T1

C1-25
mm-
T2

C1-28
mm-
T1

C1-28
mm-
T2

C1-44
mm-
T1

C1-44
mm-
T2

0 0 0 0 0.0 0 0 0 0 0 0 0 0 0
350 1000 3000 5000 1.37 1.24 1.42 1.44 0.5 0.25 2.5 2.25 3.475 3.225
650 2500 8000 10,000 1.716 1.586 1.766 1.786 0.89 0.64 4.1 3.85 4.845 4.595

1000 5000 15,000 20,000 1.97 1.84 2.02 2.04 1.19 0.94 5.03 4.78 6.005 5.755
2300 10,000 20,000 25,000 2.45 2.32 2.5 2.52 1.76 1.51 5.29 5.04 6.265 6.015
3600 15,000 25,000 30,000 2.65 2.52 2.7 2.72 2.57 2.32 5.48 5.23 6.455 6.205
4900 20,000 30,000 35,000 2.79 2.66 2.84 2.86 3.67 3.42 5.65 5.4 6.625 6.375
6200 25,000 35,000 40,000 3.013 2.883 3.063 3.083 4.57 4.32 5.786 5.536 6.761 6.511
7500 30,000 40,000 45,000 3.27 3.14 3.32 3.34 5.56 5.31 6.087 5.837 7.062 6.812
8800 35,000 45,000 50,000 3.89 3.76 3.94 3.96 6.256 6.006 6.38 6.13 7.355 7.105
8000 32,000 40,000 40,000 4.1 3.97 4.15 4.17 6.512 6.262 6.786 6.536 8.101 7.851
7500 23,000 35,000 35,000 4.15 4.02 4.2 4.22 6.55 6.3 7.042 6.792 8.267 8.017

Table A2. Peak force and associated displacement for punch test cell 2 (C2).

12 mm
Load
(N)

25 mm
Load
(N)

28 mm
Load
(N)

44 mm
Load
(N)

C2-12
mm-
T1

C2-12
mm-
T2

C2-12
mm-
T3

C2-12
mm-
T4

C2-25
mm-
T1

C2-25
mm-
T2

C2-28
mm-
T1

C2-28
mm-
T2

C2-44
mm-
T1

C2-44
mm-
T2

0 0 0 0 0.0 0 0 0 0 0 0 0 0 0
350 1000 3000 5000 1.34 1.21 1.39 1.34 0.35 0.22 2.35 2.22 3.455 3.205
650 2500 8000 10,000 1.686 1.556 1.736 1.686 0.74 0.61 3.95 3.82 4.825 4.575

1000 5000 15,000 20,000 1.94 1.81 1.99 1.94 1.04 0.91 4.88 4.75 5.985 5.735
2300 10,000 20,000 25,000 2.42 2.29 2.47 2.42 1.61 1.48 5.14 5.01 6.245 5.995
3600 15,000 25,000 30,000 2.62 2.49 2.67 2.62 2.42 2.29 5.33 5.2 6.435 6.185
4900 20,000 30,000 35,000 2.76 2.63 2.81 2.76 3.52 3.39 5.5 5.37 6.605 6.355
6200 25,000 35,000 40,000 2.983 2.853 3.033 2.983 4.42 4.29 5.636 5.506 6.741 6.491
7500 30,000 40,000 45,000 3.24 3.11 3.29 3.24 5.41 5.28 5.937 5.807 7.042 6.792
8800 35,000 45,000 50,000 3.86 3.73 3.91 3.86 6.106 5.976 6.23 6.1 7.335 7.085
8000 32,000 40,000 40,000 4.07 3.94 4.12 4.07 6.362 6.232 6.636 6.506 8.351 8.196
7500 23,000 35,000 35,000 4.12 3.99 4.17 4.12 6.4 6.27 6.892 6.762 8.517 8.373
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Table A3. Peak force and associated displacement for punch test cell 3 (C3).

12 mm
Load
(N)

25 mm
Load
(N)

28 mm
Load
(N)

44 mm
Load
(N)

C3-12
mm-
T1

C3-12
mm-
T2

C3-12
mm-
T3

C3-12
mm-
T4

C3-25
mm-
T1

C3-25
mm-
T2

C3-28
mm-
T1

C3-28
mm-
T2

C3-44
mm-
T1

C3-44
mm-
T2

0 0 0 0 0.0 0 0 0 0 0 0 0 0 0
350 1000 3000 5000 1.4 1.27 1.45 1.47 0.53 0.28 2.53 2.28 3.505 3.255
650 2500 8000 10,000 1.746 1.616 1.796 1.816 0.92 0.67 4.13 3.88 4.875 4.625

1000 5000 15,000 20,000 2 1.87 2.05 2.07 1.22 0.97 5.06 4.81 6.035 5.785
2300 10,000 20,000 25,000 2.48 2.35 2.53 2.55 1.79 1.54 5.32 5.07 6.295 6.045
3600 15,000 25,000 30,000 2.68 2.55 2.73 2.75 2.6 2.35 5.51 5.26 6.485 6.235
4900 20,000 30,000 35,000 2.82 2.69 2.87 2.89 3.7 3.45 5.68 5.43 6.655 6.405
6200 25,000 35,000 40,000 3.043 2.913 3.093 3.113 4.6 4.35 5.816 5.566 6.791 6.541
7500 30,000 40,000 45,000 3.3 3.17 3.35 3.37 5.59 5.34 6.117 5.867 7.092 6.842
8800 35,000 45,000 50,000 3.92 3.79 3.97 3.99 6.286 6.036 6.41 6.16 7.385 7.135
8000 32,000 40,000 40,000 4.13 4 4.18 4.2 6.722 6.292 6.996 6.566 8.071 7.881
7500 23,000 35,000 35,000 4.18 4.05 4.23 4.25 6.87 6.33 7.252 6.822 8.237 8.047

Table A4. Peak force and associated displacement for punch test cell 4 (C4).

12 mm
Load
(N)

25 mm
Load
(N)

28 mm
Load
(N)

44 mm
Load
(N)

C4-12
mm-
T1

C4-12
mm-
T2

C4-12
mm-
T3

C4-12
mm-
T4

C4-25
mm-
T1

C4-25
mm-
T2

C4-28
mm-
T1

C4-28
mm-
T2

C4-44
mm-
T1

C4-44
mm-
T2

0 0 0 0 0.0 0 0 0 0 0 0 0 0 0
350 1000 3000 5000 1.35 1.22 1.4 1.42 0.48 0.23 2.48 2.23 3.455 3.205
650 2500 8000 10,000 1.696 1.566 1.746 1.766 0.87 0.62 4.08 3.83 4.825 4.575

1000 5000 15,000 20,000 1.95 1.82 2 2.02 1.17 0.92 5.01 4.76 5.985 5.735
2300 10,000 20,000 25,000 2.43 2.3 2.48 2.5 1.74 1.49 5.27 5.02 6.245 5.995
3600 15,000 25,000 30,000 2.63 2.5 2.68 2.7 2.55 2.3 5.46 5.21 6.435 6.185
4900 20,000 30,000 35,000 2.77 2.64 2.82 2.84 3.65 3.4 5.63 5.38 6.605 6.355
6200 25,000 35,000 40,000 2.993 2.863 3.043 3.063 4.55 4.3 5.766 5.516 6.741 6.491
7500 30,000 40,000 45,000 3.25 3.12 3.3 3.32 5.54 5.29 6.067 5.817 7.042 6.792
8800 35,000 45,000 50,000 3.87 3.74 3.92 3.94 6.236 5.986 6.36 6.11 7.335 7.085
8000 32,000 40,000 40,000 4.08 3.95 4.13 4.15 6.632 6.242 7.106 6.516 8.351 8.196
7500 23,000 35,000 35,000 4.13 4 4.18 4.2 6.77 6.28 7.332 6.772 8.517 8.373
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