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Cornstalks show promise as a raw material for polysaccharide production through xylanase. Rapid and
accurate prediction of polysaccharide yield can facilitate process optimization, eliminating the need for
extensive experimentation in actual production to refine reaction conditions, thereby saving time and
costs. However, the intricate interplay of enzymatic factors poses challenges in predicting and optimizing
polysaccharide yield accurately. Here, we introduce an innovative data-driven approach leveraging
multiple artificial intelligence techniques to enhance polysaccharide production. We propose a machine
learning framework to identify highly accurate polysaccharide yield prediction modeling methods and
uncover optimal enzymatic parameter combinations. Notably, Random Forest (RF) and eXtreme Gradient
Boost (XGB) demonstrate robust performance, achieving prediction accuracies of 93.0% and 95.6%,
respectively, while an independently developed deep neural network (DNN) model achieves 91.1% ac-
curacy. A feature importance analysis of XGB reveals the enzyme solution volume's dominant role
(43.7%), followed by time (20.7%), substrate concentration (15%), temperature (15%), and pH (5.6%).
Further interpretability analysis unveils complex parameter interactions and potential optimization
strategies. This data-driven approach, incorporating machine learning, deep learning, and interpretable
analysis, offers a viable pathway for polysaccharide yield prediction and the potential recovery of various
agricultural residues.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, there has been a notable focus on the efficient utili-
zation of cornstalk [1], owing to its substantial annual production
[2] and the potential for significant economic and environmental
benefits. Polysaccharide is a highly economically worth product
obtained from cornstalk by hydrolysis by xylanase [3,4]. Poly-
saccharide has many possible uses in the biomedical field, such as
stimulating the growth of probiotics [5], reducing the risk of colon
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cancer [5,6], promoting immunomodulatory [7], and protecting
skin [8]. The current research on pretreatment techniques [9,10]
has improved polysaccharide production efficiency, while the
polysaccharide enzymatic production system still suffers from
weak operational stability and high cost. A polysaccharide yield
prediction model monitoring polysaccharide production and opti-
mizing parameters combination can be developed by exploring
interactions among enzymatic parameters. However, many enzy-
matic reaction parameters, such as temperature and pH, influence
the enzymatic process as a biochemical reaction process [11]. Since
biochemical reaction processes are usually nonlinear and complex,
linear models' prediction accuracy decreases with increasing input
parameters. Although multivariate statistical methods can assist
[12e14], capturing complex interactions in high-dimensional data
is still tricky.

Fortunately, multiple artificial intelligence techniques, such as
machine learning (ML) [15e17], deep learning (DL), and interpret-
ability analysis, have made it possible to overcome this difficulty. In
recent years, machine learning has benefited the development of
biomanufacturing, wastematerial utilization [18], materials science
ety for Environmental Sciences, Harbin Institute of Technology, Chinese Research
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tianys@neau.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ese.2023.100321&domain=pdf
www.sciencedirect.com/science/journal/26664984
www.journals.elsevier.com/environmental-science-and-ecotechnology/
www.journals.elsevier.com/environmental-science-and-ecotechnology/
https://doi.org/10.1016/j.ese.2023.100321
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ese.2023.100321


Y. Tian, X. Yang, N. Chen et al. Environmental Science and Ecotechnology 19 (2024) 100321
[19e22], drug discovery [23,24], and pollutant treatment [25e28].
Various machine learning models, including linear regression [29],
random forests [30e32], support vector machines [33,34], and
extreme gradient boost [35,36], have been used in architectural
engineering, genetics, materials chemistry, and other disciplines.
For example, XGB [37] was used to predict algal biochar yield and
its composition with an R2 of 0.84 on the testing dataset. While
these studies demonstrated the applicability of machine learning
methods and provided valuable insights through interpretable
analysis, the unsatisfactory predictive accuracy and the small
number of models explored may have hindered the discovery of
better modeling approaches. Apart from the traditional machine
learning models, advanced deep learning methods [38,39],
including deep neural networks, convolutional neural networks,
and recurrent neural networks, show great power [40e42]. For
instance, a long short-term memory (LSTM) neural network [43]
was established to predict the concentrations of three representa-
tive pollutants in the effluent of a practical large-scale constructed
wetland with an R2 above 0.9. A neural network [22] was designed
to predict the stiffness and critically resolved shear stress of CoN-
iCrFeMn alloys with a relative error of 2.77% and 2.17%. These in-
vestigations highlighted the potential for leveraging developers'
experience to design the structure of deep learning models and
improve prediction accuracy. However, constructing deep learning
models is considerably more challenging than machine learning
models due to the complexmodel structure, which is challenging to
conduct interpretability analysis on deep learning models
(Table S1).

The lack of practical experience in utilizing artificial intelligence
(AI) for exploring complex polysaccharide production systems
prompted this study to introduce a novel data-driven approach
(Fig. 1). By applying various AI techniques, this study aimed to
enhance the efficiency of xylanase in the polysaccharide production
from cornstalk. Based on this approach, this study explored the
prediction accuracy of multiple ML models for polysaccharide yield
and performed global and local interpretability analysis by Shapley
additive explanations (SHAP) on the accurate model. The findings
revealed that ensemble machine learning and deep learning neural
network models exhibited better prediction accuracy. Additionally,
we investigate the interpretability of the polysaccharide yield
prediction model, shedding light on potential enzymatic parameter
optimization solutions by analyzing the importance and interaction
of enzymatic parameter features.
Fig. 1. The workflow diagram in this study. The whole research process began with the
cornstalk pretreatment for preparing the suitable cornstalk. Subsequently, a reaction
system was constructed for polysaccharide production by digesting the cornstalk with
xylanase, obtaining a dataset from the experimental results of this reaction system.
The third phase involved data preprocessing, ML model building, and model prediction
performance evaluation. To address concerns regarding the black-box nature of most
ML models and to mitigate trust risks in real-world applications, the whole process
ended with an interpretability analysis of these models using the SHAP library. This
diagram was created with BioRender.com.
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2. Material and methods

2.1. Cornstalk pretreatment

In preparation for the experiment, the cornstalk underwent a
pretreatment process. Initially, it was crushed to a size suitable for
passage through a 40-mesh sieve. Then, it was heated in a water
bath at 60 �C for 1 h with a 1.5% NaOH solution at the material-to-
liquid ratio of 1:10 (w/v). Once the pretreatment was completed,
the cornstalk was dried and ready for subsequent experiments.

2.2. Dataset creation

In this research, a dataset was created by gathering data from
xylanase hydrolysis experiments conducted on cornstalks. The
dataset included several input variables such as temperature
(TEMP, �C), pH, time (TIME, min), substrate concentration (SC, g
L�1), and enzyme solution volume (ESV, mL). The target variable was
the polysaccharide yield (PY, mg) of xylanase enzymatic hydrolysis
of cornstalk. A total of 179 data points were collected as the primary
dataset. Xylanase hydrolysis polysaccharide yield was measured by
3,5-dinitro salicylic acid (DNS) assays [5], and more detailed
configuration methods can be found in the supplementary
materials.

2.3. Developing machine learning modeling framework

This section introduces a machine learning modeling frame-
work to construct highly accurate polysaccharide yield prediction
models. The strategy involves a gradual increase in the model
complexity, transitioning from linear to nonlinear and from low to
high integration, thereby achieving enhanced prediction accuracy.
We constructed one linear and three nonlinear machine learning
models to implement this approach and independently designed a
deep learning model using a deep neural network.

2.3.1. Constructing machine learning models
The data preprocessing began with Pearson's correlation coef-

ficient (PCC) analysis. Correlation analysis is commonly used to
determine the statistical association between two or more vari-
ables and further analyze the association's strength and direction.
All input variables in this experiment are continuous, and the linear
dependence among variables can be measured using PCC [26] in
equation (1):

rxy¼
Pn

i¼1ðxi � xÞPn
i¼1ðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sn
i¼1ðxi � xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
i¼1ðyi � yÞ2

q (1)

where rxy refers to the PCC value between two variables. Mean-
while, x and y are the means of the variable x and the variable y,
respectively. rxy varies from �1 to 1, where 0 indicates no linear
correlation, and a large positive or negative value indicates a strong
positive or negative linear correlation [26].

The analysis's second stage involved removing abnormal values,
commonly known as outliers. Outliers are data points that signifi-
cantly deviate from most sample points and may introduce un-
reasonable characteristics into the dataset. Neglecting these
outliers could lead to incorrect conclusions in machine learning
modeling scenarios. The most common forms of identifying out-
liers include graphical methods (e.g., box-line plots, normal dis-
tribution plots) and modeling methods (e.g., linear regression,
clustering algorithms). In this study, outliers were identified using
the box-line plot method. This technique utilizes the data's quan-
tiles to identify points that deviate significantly from the rest and
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has wide application in academic research. Outliers were identified
based on data values that exceeded the upper whisker or less than
the lower whisker of the box-line plot, with the upper and lower
whiskers set at 1.5 times the quartile deviation. The dataset ob-
tained after removing these outliers was referred to as the sub-
dataset.

The third phase involved the application of stratified sampling,
which is one of the standard sampling techniques, alongside
random sampling, holistic sampling, and systematic sampling. Ac-
cording to the PCC calculation, the input variable ESV is highly
correlated with the target variable PY, thus the ideal training and
testing sets should include various types of ESV. Considering the
sample size of this dataset, the study opted for the stratified sam-
pling method to construct the training and testing sets. Pandas was
used to create four ESV types: 0e100 mL for Type 1, 100e200 mL for
Type 2, 200e300 mL for Type 3, and 300e400 mL for Type 4. The
training set comprised 80% of the sub-dataset samples, while 20% of
the data points constituted the testing set which was used for the
final evaluation of the developed models.

(1) Linear Regression (LR) Model

The multiple linear regression (LR) model was applied to
investigate the relationship among variables. This model utilizes a
prediction function based on a linear combination of learned
properties [43], as shown in equation (2):

f ðxÞ¼w1x1 þw2x2 þ…þwdxd þ b (2)

Linear models have many advantages, including their simplified
form and ease of modeling. Based on the assumption of linear
correlation between target and input variables, the LR model pre-
dicts the values of target variables by combining multiple input
variables from the study subject into a linear process. Although the
LR model is proficient at capturing linear relationships among
variables, it lacks the ability to handle nonlinear relationships.
Therefore, the regression prediction of the linear model may not be
as effective as desired. This study also used the LR model as a
control group for nonlinear models.

(2) Decision Tree (Tree) Model

Regarding the four nonlinear models, our initial focus was on
constructing the decision tree model, which serves as the base
model for the other two tree models (RF and XGB). The decision
tree consists of nodes and a directed edge. Each layer corresponds
to a sample feature. The nodes include internal and leaf nodes
(Fig. S2). Internal nodes represent features or attributes, while leaf
nodes correspond to classes. The core principle of the decision tree
model is that similar inputs will produce similar outputs with low
computational complexity and substantial interpretation advan-
tages. The decision tree model outperforms the linear regression
model in interpretation. While constructing this study's decision
tree model, we performed hyperparameter tuning using the grid
search method.

(3) Random Forest (RF) Model

Although the prediction accuracy of the decision treemodel was
higher than that of the linear regression model, it might be weaker
than that of the ensemble learning model. Ensemble learning
methods can combine many decision trees. The algorithms for
ensemble learning models include bagging and boosting. The RF
model is a typical bagging algorithm that trains a weak learner
(base model) by selecting data randomly and with a put-back from
3

the original data (Fig. S3).

(4) eXtreme Gradient Boost (XGB) Model

After completing the construction of the RF model, we con-
structed the XGB model (Fig. S4), a typical machine-learning model
using the boosting algorithm. The core of this algorithm lies in
boosting a weak learner to a strong learner. Distinct from the
bagging algorithm, there are two primary differences. Firstly, in the
bagging algorithm, all weak learners carry equal weight in influ-
encing the result, whereas the boosting algorithm assigns a higher
weight to the weak learner, which achieves a more accurate pre-
diction after each training round. Secondly, the boosting algorithm
modifies the probability distribution of the training set after each
training cycle. This algorithm will increase the weights of samples
incorrectly predicted by the weak learner in the previous training
cycle while decreasing the weights of correctly predicted samples.
Consequently, the process effectively enhances the overall predic-
tion accuracy of the XGB model in subsequent training rounds.

2.3.2. Constructing deep learning model
The process began with data standardization, where the objec-

tive was tomitigate challenges posed by varying value ranges when
feeding data into the neural network. This normalization process
entailed subtracting the variable's mean value and dividing it by the
standard deviation. The normalization eliminated the influence of
magnitude, improved the accuracy of the deep learning model, and
allowed faster convergence during gradient descent. In addition,
the mean and standard deviation used for standardization calcu-
lations of training and testing set datawere also calculated from the
training set data. The data was partitioned, with 80% randomly
selected and labeled as training data, while the remaining 20%
labeled as testing data for the final evaluation of the developed
model.

The second step involved the development of the deep neural
network (DNN) model. To address overfitting, a smaller network
structure was adopted (Fig. S5). Nonlinear properties were intro-
duced to the neural network through the activation function, and
the Rectified Linear Unit (ReLU) function was chosen for this pur-
pose. ReLU mitigated the issue of gradient disappearance and
brought computational simplicity and sparsity to counteract over-
fitting in the hidden layers. Moreover, L1 regularization was added
to hidden layers to limit the complexity of the model. The regula-
rization method added the cost associated with more significant
weight values to the model's loss function. In the L1 regularization,
the cost added was proportional to the absolute value of the weight
coefficients. The final layer of the network was a linear layer with
only one neuron and no activation functions. The DNN model was
compiled using the optimizer “adam".

Subsequently, the method of k-fold cross-validation was used to
evaluate the DNN model during training. Determining the exact
number of epochs required to achieve the lowest validation loss
before training the neural network model poses a challenge. This
problem can be solved using the Keras library's ModelCheckpoint
function, which continuously saves the best model weight co-
efficients obtained throughout the training process.

2.3.3. Error metrics for evaluating models
In general, the loss function of the deep learning model is the

mean square error (MSE) [44], and the mean absolute error (MAE)
[44] was monitored (equations (3) and (4)). The correlation coef-
ficient (R2) [43] and root mean square error (RMSE) [43] are used as
statistical measures to evaluate the model. Higher values of R2 and
lower values of RMSE indicate greater accuracy of the model, as
described in equations (5) and (6).
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MSE¼1
n

Xn
i¼1

ðyi � byiÞ2 (3)

MAE¼1
n

Xn
i¼1

jbyi � yij (4)

R2 ¼1�

Pn
i¼1

ðbyi � yiÞ2

Pn
i¼1

ðyi � yiÞ2
(5)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � byiÞ2
vuut (6)

In equations (3)e(6), byi, yi, and yi are the predicted, actual, and
mean values, respectively.
Fig. 2. Pearson's correlation coefficient (PCC) matric. No significant correlations among
input variables were observed. A value of 0 indicates no linear correlation, and a high
negative or positive value indicates a strong negative or positive linear correlation.
2.4. Interpretability analysis

Machine learning models are often considered black box
models. Despite their high prediction accuracy, understanding the
contribution of each input variable to the target variable remains
challenging, creating trust risks when deploying these models in
real business scenarios. In addition, interpretable analysis helps to
enhance insight into the model, aids in model and feature iteration,
and helps develop optimized algorithms at a later stage. This study
used the SHAP library to perform an interpretability analysis on the
developed model to explore the relationship among the variables.
Before the widespread adoption of SHAP, researchers used feature
importance or partial dependence plot to explain machine learning
models. Although feature importance measured the significance of
each feature in the dataset, the findings often varied significantly
across different models, and interpreting the effect of each feature
on individual predictions proved unfeasible. SHAP has three ideal
properties, namely local accuracy, missingness, and consistency,
interpreting the predicted value of a model as the sum of the
attribution values of each input feature [45] (equation (7)). SHAP is
the consistent individuation feature imputation method. Suppose
consistency does not validate, which indicates that the model does
not necessarily rely more on features with high assigned attribu-
tion. In that case, comparing the attribution importance between
two arbitrary models is impossible. The global and local model
analysis through SHAP assists in understanding the black box al-
gorithm, observes the interaction of each input variable, and per-
forms feature importance analysis. Feature importance hierarchical
clustering plot was used to perform the global analysis of each
feature, while the beeswarm plot and the heatmap were used for
the local analysis of the model. These plots provide valuable in-
sights into the prediction process of the model, discover the in-
teractions between the input variables, and provide guidance for
model debugging and optimization.

Initially, we conducted SHAP analyses on four distinct machine-
learning models: LR, Tree, RF, and XGB. Subsequently, we further
delved into a more comprehensive analysis, focusing on the XGB
model, which exhibited the highest prediction accuracy among the
models under consideration.
4

gðx0Þ ¼∅0 þ
XM
j¼1

∅jx
0
j (7)

In equation (7), g is the explanatory model, ∅0 is the interpretive
model constant for each variable,∅j is the attribution value for each
variable and belongs to the real numbers (∅j 2R), j is any given
variable. x0 2{0, 1}M, M is the number of simplified input variables.
3. Results

3.1. Statistical analysis of model inputs

The descriptive statistical analysis of the input and target vari-
ables based on the raw data from the dataset is given in Table S3. All
means, and standard deviations of these variables show the dis-
tribution pattern of the data collected. Additionally, each variable's
minimum and maximum values are presented, offering a clear
understanding of the parameter range. To further comprehend the
distribution pattern, four quartiles are also provided alongside the
minimum and maximum values of the variables.

A color-order plot is Pearson's correlation coefficient (PCC)
matric (Fig. 2). Darker colors within the plot indicate stronger linear
correlations between variables. By analyzing PCCs between vari-
ables, we can determine the input variable that exhibits the highest
correlation with the predicted target variable and identify the
redundant input variables in the data set. The analysis revealed that
all input variables were retained for building the predictive model,
as their correlations with one another were not strongly correlated
(�0.5 < PCC value < 0.5). In addition, the PCC value of 0.61 for ESV
and PY indicated a strong positive correlation (PCC value > 0.6),
leading to the selection of ESV as the stratified sampling category.

The box line plot (Fig. S6) presents various statistics, including
the median, mean, upper and lower quartiles, and upper and lower
bounds for all 179 data points of PY data values. Outliers were
identified among these data points if they exceeded 1.5 times the
box plot's upper and lower quartile deviation. Subsequently, five
outliers were removed based on the box line plot, leaving 174 data
points in the sub-dataset utilized by the machine learning models.
To ensure sufficient instances of each ESV typewere included in the
training and testing sets, stratified sampling (Fig. S7) was
employed. This sampling method has a more significant potential
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statistical effect and less sample error than simple random
sampling.
3.2. Model prediction

3.2.1. Comparison among models with various input variables
The prediction accuracy of the models could be affected due to

the absence of any variables. In longitudinal comparison, the
models' highest prediction accuracy was consistently achieved
when utilizing all five input variables (Table 1). The XGB model had
the highest prediction accuracy at 0.956 on the testing set with five
input variables, confirming their significance as primary de-
terminants for polysaccharide yield prediction. Moreover, in the
horizontal comparison, nonlinear models generally exhibited
higher prediction accuracy than the linear model.
3.2.2. Evaluation of models with five input variables
The model prediction plots (Fig. 3) depict the comparison be-

tween the predicted and actual data for polysaccharide yield,
illustrating the prediction accuracy of these models across different
numerical scales. Different types of models have very different
prediction results. The R2 fits for LR, Tree, RF, XGB, and DNNmodels
on the training set were 0.514, 0.979, 0.972, 0.999, and 0.987,
respectively. While on the testing data, the R2 values were 0.514
(LR), 0.879 (Tree), 0.930 (RF), 0.956 (XGB), and 0.911 (DNN). Among
these models, XGB outperformed the others, corroborated by its
lowest RMSE of only 0.328 (Table S5). Meanwhile, RF, XGB, and
DNN had R2 above 0.9 on the training and testing sets, indicating
they were not acute overfitting. The predictive accuracy of LR was
poor, primarily due to the predominant nonlinearity among the
data in this study. Consequently, the purely linear modeling
approach does not yield accurate predictions. Compared to the LR
model, the predictive accuracy of the Tree, RF, XGB, and DNN
models was greatly enhanced, further confirming the primary
nonlinear relationships among the variables.

In this study, the DNN model we designed exhibits better pre-
diction accuracy than the LR and Tree models, though it falls
slightly behind the RF and XGB models, suggesting that the deep
neural network is suitable for this research scenario. The DNN
model's performance did not match that of RF and XGB because of
the structured nature of the data. In structured data, some practical
features can be artificially constructed (e.g., numerical features of
the data in this study), which may be more efficiently processed by
machine learning models. With high accuracy, this deep neural
networkmodel could be combinedwith optimization algorithms to
find combinations of input variables that increase the target vari-
able (polysaccharide yield) while minimizing research time and
production costs. Moreover, as a high-order nonlinear model, the
deep neural network model can also be compared with the pre-
diction effects of other nonlinear machine learning models to
Table 1
Experimental design and performance of five models for predicting polysaccharide yield

Parameters LR Tree RF

Training R2 Testing R2 Training R2 Testing R2 Trai

All 0.514 0.514 0.979 0.879 0.97
Except pH 0.514 0.514 0.927 0.846 0.96
Except TEMP 0.509 0.502 0.902 0.798 0.91
Except SC 0.486 0.451 0.950 0.662 0.93
Except TIME 0.453 0.420 0.784 0.723 0.80
Except ESV 0.011 �0.026 0.136 0.052 0.54
ESV þ TIME þ SC 0.509 0.504 0.868 0.783 0.88
ESV þ TEMP þ pH 0.436 0.372 0.721 0.378 0.74
ESV þ SC þ TEMP 0.453 0.420 0.783 0.643 0.79

5

provide various ideas for finding the optimal polysaccharide pre-
diction model.

The backpropagation neural network (BPNN) model was
developed in the previous study [43] for predicting constructed
wetland effluent quality, and the DNN model developed in this
study is based on the complete neural connection network struc-
ture and preprocessing of the dataset. Although both models
exhibit strong performance in their respective research scenarios,
they differ in terms of the number of hidden layers, the number of
neurons, the type of activation function, and the way of data pre-
processing. Hence, adapting the deep learning model structure and
training approaches to suit specific research scenarios is essential.

For selecting the best polysaccharide yield prediction model and
visually comparing the prediction results of different models, we
employed the Taylor diagram (Fig. 4). The Taylor diagram displayed
these five models' similarities and differences. Tree, RF, DNN, and
XGB locations on the Taylor diagram were relatively close, indi-
cating similar prediction performance for these four models. The
location of the LR model on the Taylor diagram was far away from
the other models, mainly due to the lower R2 and standard devia-
tion (Std), along with higher RMSE. Therefore, the XGB model has
the highest prediction accuracy, closely aligning with the obser-
vation point. Meanwhile, the DNN, RF, and Treemodels have similar
prediction accuracy, while the LR model has the lowest prediction
accuracy.
3.3. Influence of input variables on polysaccharide yield

A preliminary SHAP analysis of these models (LR, Tree, RF, and
XGB) was conducted to gain insights into their functionality. The
feature importance ranking of the input variables (Table 2 and
Fig. S8) is almost the same for the four machine learning models,
with only the Tree model being slightly different (SC is larger than
TIME). The predictive contributions of the individual input vari-
ables to the target variable are different in these four models. A
more detailed analysis of the XGB model was performed using the
SHAP library, as this model has the highest prediction accuracy.
3.3.1. Global analysis
The interpretability analysis on the XGB model (five input var-

iables) started from the SHAP global analysis. The feature impor-
tance hierarchical clustering plot (Fig. 5) was used in this section to
assess the input variables' contribution to the model prediction
results and explore the interaction effects among the input vari-
ables. This approach aimed to enhance researchers' better under-
standing of the predictive mechanism of this model. The results
showed that polysaccharide yield was heavily dependent on ESV,
but the effect of pH was low. Furthermore, it was realized that ESV,
TIME, SC, TEMP, and pH contributed 43.7%, 20.7%,15%,15%, and 5.6%
to the target prediction, respectively, based on the resolution of the
.

XGB DNN

ning R2 Testing R2 Training R2 Testing R2 Training R2 Testing R2

2 0.930 0.999 0.956 0.987 0.911
8 0.919 0.997 0.954 0.984 0.888
5 0.877 0.937 0.792 0.941 0.793
4 0.789 0.963 0.760 0.969 0.788
9 0.734 0.832 0.783 0.862 0.731
2 0.316 0.573 0.104 0.720 0.138
4 0.842 0.903 0.819 0.920 0.646
4 0.576 0.763 0.586 0.763 0.559
4 0.717 0.815 0.719 0.838 0.722



Fig. 3. The machine learning model prediction plots of polysaccharide yield (PY) for:
aeb, training data (a) and testing data (b) by Linear Regression (LR) model; ced,
training data (c) and testing data (d) by Decision Tree (Tree) model; eef, training data
(e) and testing data (f) by Random Forest (RF) model; geh, training data (g) and testing
data (h) by eXtreme Gradient Boost (XGB) model; iej, training data (i) and testing data
(j) by Deep Neural Network (DNN) model. Red shades indicate 95% confidence in-
tervals for the regression lines on the training and testing points. Gray dashed lines
represent the line of equality (y ¼ x).
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black box model. By hierarchical cluster analysis, ESV and TIME
were classified as one category of impact factors, while TEMP and
pH formed another category. Furthermore, SC formed a large
category with TEMP and pH. The input variables in the same
category are highly correlated and influenced by variables of other
categories, thus reflecting the interaction among input variables.
3.3.2. Local analysis
The SHAP global analysis prioritizes the exploration of feature

importance ranking and the interaction effects between input
variables while disregarding the impact of nonlinearity and higher-
order interactions of individual instances. Consequently, this sec-
tion provides a more in-depth SHAP local analysis for individual
sample predictions using the beeswarm plot (Fig. 6a) and heatmap
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(Fig. 6b) to provide further clarity on these mechanisms.
The beeswarm plot (Fig. 6a) is a local analysis tool for illustrating

the relationship between each variable input value of a single
instance and its impact (positive/negative). This plot presents SHAP
values on the horizontal axis, while each row corresponds to an
input variable. The ESV variable was located at the top of the
density scatter plot, which means ESV was the variable with the
most significant influence on the reaction system. According to the
distribution of the ESV density scatters, the characteristic values of
ESV and the corresponding SHAP values show a positive correlation
in general. However, the SHAP values of ESV data points with
relative typical values (same density scatter color) span a wide
range of values. For example, the SHAP values of purple density
scatter points take values from about�0.6 to 1, and the SHAP values
of red density scatter points take values from about 0 to 2. This
indicates that the interaction of other variables strongly influences
ESV, implying that the marginal utility of ESV on the response
system can be optimized by adjusting other variables. The same
pattern also appears for the TIME variable, confirming the conclu-
sion of the feature importance hierarchical clustering plot (Fig. 5)
that ESV and TIME are variables of the same category. Increasing
the SC characteristic value does not consistently increase its mar-
ginal utility, and as evidenced by the scatter plot distribution,
tremendous SC values reduce utility. Although extensive SC in-
crease xylanase accessibility to the substrate, they also tend to
reach a saturation state, diminishing overall utility. In addition, data
points with high TEMP characteristic values (red density scatters)
have SHAP values less than 0, showing a negative inhibitory effect
on the reaction system. The TEMP data points in the medium
temperature state (purple density scatters) illustrate SHAP values
greater than 0.5, indicating that themedium temperature facilitates
the reaction. Similarly, higher pH values have a negative inhibitory
effect, with lower pH values reaching a maximum SHAP value close
to 0.4, still well below the maximum SHAP values attainable for the
other four variables.

This heatmap (Fig. 6b) revealed the impacts of every input
variable on the target variable (polysaccharide yield) for all in-
stances in the entire sub-dataset and the variation of f ðxÞ. Many
instances of f ðxÞ were below the mean value. The f ðxÞ exhibited a
trend generally consistent with the SHAP value of ESV, with a
declining and then rising pattern towards the end. This observation
suggests that manipulating the remaining four variables when the
SHAP value of ESV is less than 0 could potentially lead to f ðxÞ
exceeding the sample mean. The analysis combined with the
feature importance hierarchical clustering plot (Fig. 5) illustrated
that the marginal contribution of the ESV that has the most sig-
nificant influence on the target variable was only 43.7%. Therefore,
a significant space exists to improve the polysaccharide yield by
adjusting and optimizing these variables. Moreover, when poly-
saccharide yield equals, it is possible to explore lower-cost and
more efficient combinations of input variables.

4. Discussion

The study proposed a data-driven approach to assist in the re-
covery of polysaccharide products from cornstalk. This approach
facilitates the optimization of lower energy and cost production
methods in applications, such as lower temperatures to reduce
energy consumption during production and less enzyme solution
volume to reduce production costs and carbon emissions. In sub-
sequent studies, machine learningmodels can be applied to explore
more energy-efficient combinations of production conditions that
effectively use agricultural waste while protecting the ecological
environment. The experimental focus of this paper lies in recov-
ering polysaccharides from hemicellulose of cornstalk, thus



Fig. 4. Taylor diagram comparing the model prediction accuracy. The red point
(observation) is the benchmark. The x and y axes indicate the standard deviation. The
quarter-circle arc shows the value of the correlation coefficient. The green arcs indicate
the root mean square deviation (RMSD).

Table 2
Interpretability analysis of machine learning models (bar chart).

Input Variable LR Tree RF XGB

ESV 0.96 0.95 0.94 0.93
TIME 0.34 0.4 0.41 0.44
SC 0.24 0.43 0.37 0.32
TEMP 0.13 0.26 0.2 0.32
pH 0 0.11 0.08 0.12

Note: The values of this table are “mean (|SHAP value|)".

Fig. 5. Feature importance hierarchical clustering plot of all input variables by eXtreme
Gradient Boost (XGB) model. The “mean (|SHAP value|)" of the x-axis can represent the
feature importance of input variables, and the right Y-axis shows the hierarchical
clustering results.

Fig. 6. Local analysis of input variables using Shapley additive explanations (SHAP). a,
Beeswarm plot. Each dot represents an instance, where the intensity of the red color
indicates a higher value of the input variable, while a stronger blue color indicates a
lower value. A wider horizontal spread of the instances signifies a more significant
impact of this particular input variable. b, Heatmap. The function f ðxÞ is the sum of the
SHAP values for each instance, representing the level of deviation from the mean; the
black histogram on the right of the y-axis is the sum of the SHAP values of the variable
dimensions. The heatmap represents instances along the horizontal axis and illustrates
the influence of each input variable on those instances along the vertical axis. Colors in
the heatmap indicate the direction and magnitude of each input variable's impact. The
two-dimensional plot of the heatmap showed the SHAP values of every input variable
for all instances.
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xylanase is chosen as the critical component to construct the data
set in the experiment.

The method proposed in this study had an excellent predictive
performance for our experimental data, and it was not dependent
on our specific experimental approach or the objects chosen
(xylanase and cornstalk). This adaptability can be attributed to the
similar physical structure of straws from different crops,
comprising hemicellulose, cellulose, and lignin, albeit with varying
composition percentages. Furthermore, although other species of
straw have different structural or compositional ratios compared
with cornstalk, such variations do not introduce heterogeneity in
data obtained under standard experimental procedures. Various
types of xylanases have different preferences for temperature and
pH, which mainly affect the biological activity of xylanases. In the
7

feature importance analysis, the predictive importance of temper-
ature and pH on the target products was only 20.6% collectively,
implicating that the predictive importance of temperature and pH
would increase if the xylanase bioactivity rise but had less impact
on the overall experimental conclusion. The individual difference in
xylanase did not affect the present method's application. As a
result, this modeling approach is cross-scalable and suitable for
investigating biomass enzymatic digestion processes with different
enzymes and substrates. Additionally, this approach can potentially
form an open-source database of related studies.

Deep learning has shown great potential for application in
several research fields. Different deep learning models are suitable
for different research cases. The LSTM model is suitable for pro-
cessing time-series data, and the convolutional neural network
(CNN) model is suitable for processing image data. Choosing the
appropriate deep learning model structure is crucial based on the
research problem and the corresponding data type. The DNNmodel
based on deep neural network structure designed in this study
achieved accurate prediction for polysaccharide yield. In this study,
machine learning has presented great potential for applications in
target product yield prediction, feature engineering, production
status monitoring, and biomass utilization solution development.
Future research opportunities lie in exploring the implementation
of machine learning in production anomaly monitoring and solu-
tion optimization. To further enhance the practical applications of
machine learning, improving the interpretability and applicability
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analysis of models is crucial. Additionally, the outstanding perfor-
mance of machine learning in handling large and complex data can
offer valuable contributions to addressing the problems and chal-
lenges faced in environmental science.
5. Conclusion

This study presented a new data-driven approach to assist in
producing polysaccharides from cornstalk. The proposed approach
consists of a machine learningmodeling framework, followed by an
assessment for the prediction accuracy of five models with
different input variable combinations. Based on this framework,
five polysaccharide yield prediction models were built from linear
to nonlinear models to a neural network model. The analysis of
model accuracy with different input variables revealed the signif-
icance of all five input variables (TEMP, pH, TIME, SC, and ESV) in
achieving high prediction accuracy. Omitting any of these variables
resulted in decreased prediction performance. Notably, when
tested with all five input variables, the RF model achieves a pre-
diction accuracy of 93.0%, while the XGB model attains 95.6%.
Especially the independent deep neural network (DNN) model,
incorporating five variables, successfully predicted the poly-
saccharide yield by mining the mapping relationship among the
five enzymatic parameters with polysaccharide yield, and its pre-
diction accuracy reached 91.1%.

Subsequently, this approach performed the global and local
interpretability analysis using SHAP to explain the predictive
mechanism and discover valuable insights related to enzymatic
parameters. Themodel interpretability analysis results showed that
the variable ESV had the most significant effect on the enzymatic
polysaccharide reaction system, with a marginal utility of 43.7%. In
contrast, other variables (TEMP, pH, TIME, and SC) had a combined
marginal utility of 56.3% on the reaction system. The interaction
analysis of the input variables has presented that ESV was most
strongly affected by solid interactions with other input variables,
thus providing further evidence that the utility of ESV can be
significantly boosted by modulating other variables. The model
interpretability analysis provides a reference for adjusting the
enzyme reaction system parameters, leading to improved poly-
saccharide yield and cost reduction.

A new modeling approach was presented in this study for
comprehending the multifaceted impact of multiple variables and
serving as a guide for improving enzymatic polysaccharide pro-
duction. The versatility of this approach makes it suitable for the
recovery of various agricultural wastes. We expected this technol-
ogy to open a new energy-saving and efficient utilization pattern
for agricultural waste.
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