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Abstract
The phenomenon of two or more genes affecting the expression of each other in various
ways in the development of a single character of an organism is known as gene inter-
action. Gene interaction not only applies to normal human traits but to the diseased
samples as well. Thus, an analysis of gene interaction could help us to differentiate be-
tween the normal and the diseased samples or between the two/more phases any
diseased samples. At the first stage of this work we have used restricted Boltzmann
machine model to find such significant interactions present in normal and/or cancer
samples of every gene pairs of 20 genes of colorectal cancer data set (GDS4382) along
with the weight/degree of those interactions. Later on, we are looking for those in-
teractions present in adenoma and/or carcinoma samples of the same 20 genes of
colorectal cancer data set (GDS1777). The weight/degree of those interactions repre-
sents how strong/weak an interaction is. At the end we will create a gene regulatory
network with the help of those interactions, where the regulatory genes are identified by
using Naïve Bayes Classifier. Experimental results are validated biologically by comparing
the interactions with NCBI databases.

1 | INTRODUCTION

As defined by biologists, gene is a locus (or region) of DNA
which is made up of nucleotides and is the molecular unit of
heredity and the basis of the inheritance lies in transmission of
genes to organism's offspring [1]. Gene forms the foundation
of the central dogma of biology which consists of DNA
replication, RNA transcription and protein translation. Ex-
periments have proved that most of the characteristics of the
living organisms are controlled by a collaboration of several
different genes [1]. It is known that genes work together in a
cell to make the cell function properly. There are some genes in
the DNA known as the regulator gene, regulator or regulatory
gene which controls one or more genes to increase or decrease
the production of specific gene products (protein or RNA)
thus modifying their gene expression patterns to activate
developmental pathways, respond to environmental stimuli, or
adapt to new food sources [2].

A group of functional relationships between a pair of genes
is referred to as genetic interaction (GI). Bateson and Mendel
(1909) [3] introduced one type of such relationships, called

epistasis. Biological epistasis was then referred to as the effect
of one allele masking the effect of another one [4]. After
almost 9 years of this discovery, Fisher (1919) described sta-
tistical epistasis, originally called ‘epistacy’, which is a signifi-
cant deviation of the phenotype of a double mutant from what
is expected considering the phenotypes of the single mutants
[5]. In literature, we have found so many statistical and
computational methods that are used to detect and characterize
those genes whose effects depends on other genes [6]. The
main focus is on the genetic association studies of discrete and
quantitative traits. The reason is most of the methods for
detecting gene–gene interactions have been developed specif-
ically for these study designs.

A gene regulatory network (GRN) is a collection of mo-
lecular regulators that interact with each other. These regula-
tors can be DNA, RNA, proteins and so on. Many statistical
and machine learning based methods have recently advanced in
the construction of GRNs on some biological data sets [7]. All
these methods had tried to identify the GRN by comparing the
expression values among the genes of normal and diseased
samples. The most common logic behind gene network
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inference is quite simple. When the expression level of a gene
is perturbed and subsequently another gene's expression level
is observed to change, then it can be inferred that the earlier
gene is regulating the later one. Although the concept is simple,
such measurements are very much complicated. The reason for
this is most gene expression studies on diseased samples
concern observational data [7].

Since identifying both the interaction as well as the strength
of the interaction between every pair of genes in a GRN is our
main goal thus we proposed an algorithm that will observe and
measure the likelihood of the interaction between the genes of
normal and diseased samples, as well as between the genes of
various phases of diseased samples. Thus, the bonding between
two individuals can be strongly determined through in-
teractions only. More interactions an individual go through;
more it learns about others and finds the best individual to
interact with among others. This is very much similar with the
working principle of restricted Boltzmann machine (RBM)
model. That's why in this work we have used RBM model,
where genes are allowed to interact with each other and by this
we find the strength of the interaction, as well as the direction
of the interaction between a pair of genes in that GRN using
Naïve Bayes Classifier (NBC).

1.1 | Restricted Boltzmann machine

Boltzmann machines (BMs) can be defined as bidirectionally
connected stochastic neural network models [8]. A BM can be
used to learn important aspects of an unknown probability
distribution based on samples from this distribution. A RBM is
a simplified version of BM where some restrictions are
imposed on the network topology. Given some training data,
learning a BM means adjust the BM parameters such that the
probability distribution represented by the BM fits the training
data as far as possible. Boltzmann machines consist of two
types of units, so called visible and hidden neurons, which can
be thought of as being arranged in two layers.

The visible units constitute the first layer and correspond
to the components of an observation. The hidden units model
dependencies between the components of observations.

The RBM, shown in Figure 1, is a bipartite undirected
graph. It consists of m visible units (v1,…, vm) and n hidden
units (h1, …, hn) to capture dependencies between observed
variables (Fischer and Igel, 2012). In binary RBMs, the random
variables (V, H) take values (v, h) ∈ {0, 1}mþn and the joint
probability distribution under the model is given by the
following energy function:

Eðv; hÞ ¼ � ∑
m

i¼1
∑
n

j¼1
wijhivj � ∑

m

j¼1
bjvj � ∑

n

i¼1
cihi ð1Þ

For all i ∈ {1, …, n} and j ∈ {1, …,m}, wij is a real valued
weight associated with the edge between units Vj and Hi,
whereas bj and ci are bias terms associated with the jth visible
and the ith hidden variable, respectively. The graph of an RBM

has only connections between the layer of hidden and visible
variables but not between two variables of the same layer. In
terms of probability this means that the hidden variables are
independent given the state of the visible variables and vice
versa [8].

2 | RELATED EARLIER WORKS

In Genomics Study and computational biology, the discovery
of gene connectivity/interaction networks from temporal
expression data is one of the most pressing problems in
computational biology. Researchers are working on the field of
genomic data analysis and ranking genes which are both bio-
logically and statistically significant based on a gene microarray
experiment.

To start this research, we came across several works that
have already been proposed to find the level of interactions
between genes. Let's now briefly discuss those methods:

One such work, proposed in the study by Watkinson et al.
[9], uses mutual information between the genes. Here, the
relation between each pair of genes is used to build the synergy
network. If the synergy level between gene pairs is high then
that two genes shared a pathway and leads to a graphical
representation of inferred gene–gene interactions associated
with disease, in the form of a ‘synergy network’. The proposed
approach is applied on a set of publicly available prostate
cancer gene expression data sets and the results are also vali-
dated successfully.

Another new method, presented in [10], for estimating
gene group interactions uses sparse canonical correlation
analysis coupled with repeated random partition and sub‐
sampling of the gene expression data set. This method infers
these types of interactions using appropriate partial correla-
tions between genes. The proposed approach is compared with
several existing methods on simulated and real data sets.
Experimental results show that the new procedure performs
better than those earlier methods in terms of both the statis-
tical measure as well as biological measure.

Another novel algorithm, titled as Signing of Regulatory
Networks (SIREN), proposed in [11], can infer a regulatory
type of interactions for each pair of connected gene of a GRN
by computing a similarity score. SIREN score is estimated in

F I GURE 1 The undirected graph of an restricted Boltzmann machine
with n hidden and m visible variables
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four ways in this work, one by B‐Spline discretization of
expression data, and another by calculating co‐occurrence
scores for each combination of bins of the genes, third one is
by rescaling of co‐occurrence scores, and the last one is by
calculation of expected value of the rescaled co‐occurrence
probability scores. The proposed approach is applied on three
different benchmark GRNs, including Escherichia coli, pros-
tate cancer, and an in silico constructed network. Experimental
results show that the new method has approximately 68, 70,
and 100 percent accuracy, for these networks, respectively.

Another work, based on differential co‐expression analysis,
proposed in the study by Hsu et al. [12] is applied on
Saccharomyces Cerevisiae to build differential co‐expression
network. It identifies transcription factors that cause differ-
ential expressions under different situations. Result analysis
found that differentially co‐expressed genes tend to participate
in different pathways.

Correlation & entropy metrics based novel work is pre-
sented in the study by Seal et al. [13] to find the level of
interaction between the genes applied on gene interaction
networks. Experiments are done on three benchmark cancer
data sets Colorectal, Leukaemia and CML. Results show some
weighted graphs, where the weights along each edge represents
the level of interaction between two genes in a particular
network.

A two‐stage discovery‐confirmatory analysis is proposed in
the study by Meng et al. [14] that explored potential gene–gene
interactions for hypertension to take place. The first stage was
an exhaustive pair wise search performed in 2320 early onset
hypertensive cases with matched normotensive controls from
the offspring cohort. In the second stage, identified gene–gene
interactions were justified in an independent set of 694 subjects
from the original cohort. Experimental results identified four
unique gene–gene interactions susceptible to hypertension.
Overall, this gene–gene interaction analysis helps to identify
those genes which can provide more insights into the genetic
background of blood pressure regulation.

A novel work is proposed by Saha et al. [15], which firstly
uses three correlation measures, like Pearson, Spearman and
Kendall‐Tau to find the interaction level in a gene interaction
network. In the second phase of the experiment, entropy
measure & Rough set theory are also used to determine the
level of interaction between every pair of genes as well as finds
the direction of interaction that indicates which gene regulates
which other genes. Experiments are done on normal &
diseased samples of colorectal cancer (CRC) data set
(GDS4382) separately. Results are validated with NCBI
database.

3 | PROPOSED METHODOLOGY

In general, a GI between a pair of genes implies that the
phenotype of a double mutant is different from what is ex-
pected from each individual mutant. Genome scale studies of
quantitative GIs, in the last decade, were completed mainly
using synthetic genetic array technology and RNA interference

[6]. These studies raised many questions on the functional
interpretation of GIs, like the relationship of genetic and
molecular interaction networks, the usefulness of GI networks
to infer gene function and co‐functionality, the evolutionary
conservation of GI and so on [6]. Thus, gene expression (RNA
expression) can be treated as an important parameter for
constructing the GI. In this study, we have developed the
gene–gene interaction from human colon expression data sets.
Let us consider y as a function of x, that is, y ¼ f (x). This
means any variation of x will affect y. Thus, we can say that y
depends on x. It is represented as x → y. In other words, we
can say there is an association exists between x and y. This
means that x interacts with y. Now, consider the above example
for gene expression data such that x and y are two genes. Thus,
there exists an association if y ¼ f (x), and gene x interacts with
y. We call this interaction between gene x and y as gene–gene
interaction.

Gene–gene interaction consists of weights between the
genes and these weights help to decide the strength of that
interaction. A gene interaction in normal sample will never be
same with the diseased one. In the CRC sample either the
interaction presents in the normal would never exist or a new
interaction may develop due to mutation. Degree/weight of
the interactions present in CRC samples represent degree of
dependency between a pair of genes in a GRN. This will help
the researchers to identify the real cause behind the CRC to
take place. Similarly identifying the regulatory genes in a GRN
will also be a great help as far as CRC is concerned. That's the
reason why analysing gene – gene interaction, identifying their
dependency and then finding the regulatory genes of CRC data
set is really a challenge. Following section discusses about the
proposed method in detail.

3.1 | Initialization

Let's consider a microarray data set X of m genes, g1, g2, …,
gm, each of which have n dimensions, representing samples.
RBM is used here to extract the feature from one gene to
identify the similarity with extracted feature of another gene.
The proposed model first takes the input from two genes
concurrently; say Gene g1 and Gene g2, and then trying to
establish the interaction between g1 and g2 and moving next
with g1 and g3 and so on. Gene g1 uses an RBM model to
interact with Gene g2 which also uses another RBM. The
Model uses a simple one‐layer Artificial Neural Network
(ANN) having only one input and one output layer. When two
RBMs interact with each other it uses a bridge to select the
common output features from both sides of the model.

The architecture can be shown in Figure 2 as follows:
At the first iteration, the genes do not share information

with each other using the bridge shown in Figure 2. They first
learn the features of themselves by construction and recon-
struction techniques. After one or more iterations g1 shares the
information to g2 through the bridge for the reconstruction of
the actual input of g2 and similarly g2 shares to g1 and try to
reconstruct the actual input of g1. This continues until

28 - SAHA ET AL.



satisfactory minimum error of reconstruction of self inputs
using the others is achieved. We choose this minimum error to
be as low as 0.01. Any pair of gene interaction having error
more than 0.01 is ignored.

Weights between input and hidden layer in the forward
propagation are represented as w1nxn and in the backward
propagation are represented as w2nxn. These weight vectors are
initialized as follows:

w1nxn ¼ w2nxn ¼

"

� 1;
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number ‐ of ‐ input ‐ units

p

#

ð2Þ

3.2 | Pre‐processing stage

Given microarray dataset is normalized between 0 & 1 with the
help ofMAXMINnormalization using the following three steps:

maxmin¼max
�
g1½1::n�

�
� min

�
g1½1::n�

�
ð3Þ

g1½1::n� ¼ g1½1::n� � min
�
g1½1::n�

�
ð4Þ

g1½1::n� ¼
g1½1::n�
maxmin

ð5Þ

Let's consider the following microarray dataset as an
example containing five rows and six columns, as shown in
Table 1.

After applying MAXMIN normalization method on the
above dataset we have the following normalized dataset, as
shown in Table 2.

3.3 | Working procedure

As the data of the first gene g1 is given as input, forward
propagation method calculates each output node using weights
and bias. Once all the computations at the output nodes are

done, then sigmoid activation function is used to nodes are
done, then sigmoid activation function is used to calculate the
activation probabilities between 0 and 1 for each of the output
node at the output layer. At the same time similar kind of
operations is performed for g2 from the other direction. Steps
in detail are as follows:

Forward Propagation for g1
forward Hidden Node,

f Hg1½1::n� ¼ ∑
n

i¼1
bi þ g1:w1 ð6Þ

forward Hidden activation function,

f Hg1act½1::n� ¼ sigmoid
�
f Hg1

�
ð7Þ

forward Hidden states,

f Hg1act½1::n� ¼ f Hg1act > random_state ð8Þ

Forward Propagation for g2
forward Hidden Node,

f Hg2½1::n� ¼ ∑
n

i¼1
bi þ g2:w2 ð9Þ

forward Hidden activation function,

f Hg2act½1::n� ¼ sigmoid
�
f Hg2

�
ð10Þ

forward Hidden states,

f Hg2act½1::n� ¼ f Hg2act > random_state ð11Þ

Once forward propagation is done, the back propagation
comes into play. The activation probabilities are used
as new inputs and the last used weights and bias are

F I GURE 2 Restricted Boltzmann machine architecture
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considered to re‐construct the actual inputs using sigmoid
function. The actual normalized inputs have been re‐con-
structed (ri) using back propagation method. Because the
weights of the RBM are randomly initialized, the difference
between the reconstructions and the original input (Oi) is
often large. It can be thought like a reconstruction error is
then back propagated against the RBM's weights, again and
again, in an iterative learning process until minimum error is
reached.

Error is calculated as follows:

∑
i
ðOi � riÞ2 ð12Þ

Detailed steps of backward propagation are shown as
below:

Backward propagation for g1
if epoch ¼ 1:
for backward visible node,

bVg1½1::n� ¼ ∑
n

i¼1
bi þ f Hg1:w1 ð13Þ

else

bVg1½1::n� ¼ ∑
n

i¼1
bi þ f Hg2:w1 ð14Þ

backward visible activation function,

bVg1act½1::n� ¼ sigmoid
�
bVg1

�
ð15Þ

backward hidden node,

bHg1½1::n� ¼ ∑
n

i¼1
bi þ bVg1act:w1 ð16Þ

backward hidden activation function,

bHg1act½1::n� ¼ sigmoid
�
bHg1

�
ð17Þ

Backward propagation for g2
if epoch ¼ 1:
for backward visible node,

bVg2½1::n� ¼ ∑
n

i¼1
bi þ f Hg2:w2 ð18Þ

else

bHg2½1::n� ¼ ∑
n

i¼1
bi þ f Hg1:w2 ð19Þ

backward visible activation function,

bVg2act½1::n� ¼ sigmoid
�
bVg2

�
ð20Þ

backward hidden node,

bHg2½1::n� ¼ ∑
n

i¼1
bi þ bVg2act:w2 ð21Þ

backward hidden activation function,

bHg2act½1::n� ¼ sigmoid
�
bHg2

�
ð22Þ

On its forward pass, an RBM uses inputs to make pre-
dictions about node activations, or the probability of output
given a weighted x: p (a| x; w), whereas on its backward pass,

TABLE 1 Sample microarray gene
expression data set

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Gene 1 5.27055 5.07397 5.20949 5.25106 5.38327 5.13528

Gene 2 7.41519 7.11951 8.54414 7.73497 7.70082 8.04083

Gene 3 5.04245 5.01335 5.15868 4.58296 5.1552 4.58029

Gene 4 5.8967 5.82747 6.10051 5.71561 6.25209 5.9603

Gene 5 4.68734 4.62737 4.71932 4.77644 4.63229 4.29907

TABLE 2 Normalized version of Table 1
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Gene 1 0.6355 0 0.4381 0.5725 1 0.1982

Gene 2 0.2075 0 1 0.4320 0.4080 0.6467

Gene 3 0.7990 0.7487 1 0.0046 0.9939 0

Gene 4 0.3375 0.2085 0.7174 0 1 0.4561

Gene 5 0.8133 0.6877 0.8803 1 0.6980 0
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when activations are fed in and reconstructions, or guesses
about the original data, an RBM is attempting to estimate the
probability of inputs x given activations a, which are weighted
with the same coefficients as those used on the forward pass.
This second phase can be expressed as p (x| a; w).

To measure the distance between its estimated probability
distribution and the ground‐truth distribution of the input,
RBMs uses ‘Kullback–Leibler Divergence’. In our proposed
method it is called as probability association. The actual input
probability association for g1 is calculated using actual inputs
and its activation probabilities generated at the output layer
(g1_fAssociation). The re‐constructed inputs are again passed
through all the layer using forward propagation till it reaches
the output layer using sigmoid activation function as activated
hidden probabilities. Now, the reconstructed input is used to
calculate re‐constructed probability association (g1_bAssocia-
tion) with its activated hidden probability generated at the
output layer.

Forward Association for g1 & g2

g1 f Association¼ g1 � f Hg1act ð23Þ

g2 f Association¼ g2 � f Hg2act ð24Þ

Backward Association for g1 & g2

g1 bAssociation¼ bVg1act� bHg1act ð25Þ

g2 bAssociation¼ bVg2act� bHg2act ð26Þ

Once this phase is finished, error is calculated for both g1
and g2 as follows:

g1error ¼ ∑
n

i¼1

�
g1½i� � bVg1act½i�

�2
ð27Þ

g2error ¼ ∑
n

i¼1

�
g2½i� � bVbg2act½i�

�2
ð28Þ

After that, weights are updated as per the following rules:

w1 þ¼learning_rate�

�
g1 f Association � g1 bAssociation

�

number ‐ of ‐ input ‐ units
ð29Þ

w2 þ¼learning_rate�

�
g2 f Association � g2 bAssociation

�

number ‐ of ‐ input ‐ units
ð30Þ

For the first iteration only the data of g1 are re‐con-
structed using its sigmoid activation probabilities generated
from its actual inputs at the output layer and similarly for g2
data. This enables the g1/g2 to get knowledged of its own
feature before getting the others. From the second iteration

onwards the sigmoid activation probabilities of g2 are passed
to g1 for re‐construction and g1 sigmoid activation probabil-
ities are passed to g2 for re‐construction. Once the re‐con-
struction is done the squared error and association are
calculated to minimize the error and update the weights
respectively. The number of iterations is continued till the
model minimizes the error for the particular pair, here it is g1
and g2 or till the number of epochs.

At the last iteration, the input data of g1 are passed
through all the layer and sigmoid activation probabilities are
calculated where a random threshold is kept to activate the
output node for g1. Similarly, for g2 data, same random
threshold is kept to activate the output node at the last layer.
Now each of the activated output node from g1 and g2 are
compared. The matched activated nodes for the same level of
nodes only, the activation probabilities are considered. If the
node of g1 is activated at level 1 and at the same
level g2 node is not activated, then the activation probability
would not be considered for neither of the genes for that
level of the output layer. When all the matched activated
nodes are identified then mean of the activation probabilities
for g1 and g2 is calculated.

Let's assume that w1 and w2 are the weights of g1 to g2
pair and g2 to g1 pair, respectively. No threshold has been
considered to identify the strength between the gene pair
rather low difference of mean value of w1 and w2 (as low as
0.01) was observed. If the difference of w1–w2 < 0.01 is
satisfied for a particular gene pair then only it is accepted as
valid gene–gene interaction, otherwise the interaction was
not considered. Detailed steps to form a GRN are shown
below:

The similarity has been measured by number of hidden
states get activated between g1 and g2 and position where they
are same with boolean value True.

g1hiddenactivestates[1..n] ¼
g1hiddenactivationfunction[(g1hiddenstates ¼¼ True)
and (g1hiddenstates ¼¼ g2hiddenstates)]

g2hiddenactivestates[1..n] ¼
g2hiddenactivationfunction[(g2hiddenstates ¼¼ True)
and (g1hiddenstates ¼¼ g2hiddenstates)]

#average of g1 and g2
g1weight ¼ mean(g1hiddenactivestates[1..n])
g2weight ¼ mean(g2hiddenactivestates[1..n])
if(abs(g1weight–g2weight) > 0.01)

break
Iteration end with the max number of epochs

Interactions are considered if (abs (g1weight–g2weight)
<θ ), where the value of the threshold (θ) is ranging from 0.004
to 0.016 and the direction of those interactions is identified in
the next part.

Let's explain the above process with the help of the
following Table 3 which shows the weight of the interactions
between every pair of four genes after the specified number of
epochs:
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Now, using the condition, if (abs (giweight–gjweight)
<¼θ ), where i≠j, 1 ≤ i, j ≤ 4, and threshold (θ) ¼ 0.004, we
got the following Table 4:

Here, all the interactions marked in bold in Table 4 will be
discarded, as the difference of the weights of those interactions
> 0.004. So, we finally consider the likelihood of the in-
teractions between Gene1–Gene3, Gene2–Gene3 and Gene3–
Gene4.

The last phase in constructing the GRN is the identi-
fication of the regulatory genes. Gene regulation is a process
used by any cell to control the production of specific gene
products, like RNA, protein etc. A set of interactions be-
tween a pair of genes determine when and where specific
genes are activated and the amount of protein or RNA
product produced. To identify the regulatory genes in a
GRN, NBC is applied on continuous valued attributes as
follows:

pðak|CiÞ ¼ gðak; μci; σciÞ ð31Þ

where, the function g() is defined as follows:

gðx; μ; σÞ ¼
1
ffiffiffiffiffiffiffiffi
2πσ
p e�

ðx� μÞ2

2σ2 ð32Þ

Here, μCi and σCi are the mean & standard deviation,
respectively, of the values of some attribute Ak for training
tuples of class Ci. A continuous valued attribute Ak is typically
assumed to have a gaussian distribution and ak ∈ Ak is a
specific value of attribute Ak, for which the probability to
belong to the class Ci needs to be calculated. In our case, the
target is to find which of the genes in a gene–gene pair has
greater influence over the other. When it is found for all such
pairs in the network then it can be clearly said that a gene
controls which other genes, or is regulated by which other
genes in the network. If we consider Gene1 – Gene2 pair,
then we have two cases to consider. Either Gene1 regulates
Gene2, that is Gene1 → Gene2, or vice‐versa, that is Gene2
→ Gene1. That's why this is done in two phases. When
Gene1 is regulated by Gene2, that is Gene1 → Gene2, we
have found the mean and standard deviation of Gene2 and
let's consider those values as μgene2, σgene2 respectively.
Equations (31) and (32) are then applied on μgene2, σgene2 to
find p(Gene1|Gene2). On the other hand, when Gene2 is
regulated by Gene1, that is Gene2 → Gene1, we have found
the mean and standard deviation of Gene1 and let's consider
those values as μgene1, σgene1 respectively. Equations (31) and
(32) are now applied on μgene1, σgene1 to find p(Gene2|
Gene1). If p(Gene1|Gene2) > p(Gene2|Gene1), then Gene1
regulates Gene2, that is Gene1→ Gene2, otherwise Gene2→
Gene1.

What we observe from Table 4 that, there exist two
strength values for each valid interaction, like between
Gene1 and Gene3, two values are 0.772 and 0.73. Now,

which of the values will dominate will be determined by
NBC. Let's assume that the following Table 5 represent the
sample gene expression values of the genes Gene1 and
Gene3:

Table 5 behaves here as training vector. Therefore, we have
the following from Table 5 above:

μgene1 ¼ 4.389629
σgene1 ¼ 0.28986362569106

μgene3 ¼ 7.307352
σgene3 ¼ 0.89597257254372

So, using Equation (31) we have the following:

p(Gene1|Gene3) ¼ 0.0032880123307121776
p(Gene3|Gene1) ¼ 2.6393256102800502e� 05

So, we can conclude that Gene1 is likely to be regulated by
Gene3.

4 | EXPERIMENTAL RESULTS

Whole experiments of the proposed approach are done on two
CRC data sets of Homo sapiens available from NCBI re-
pository [16]. One of them is GDS4382 and the other one is
GDS1777.

4.1 | Platform used

Platform: Jupyter Notebook—Python 3.5.2.
Libraries: sklearn, openpyxl, numpy, networkx and

matplotlib.

TABLE 3 Weight of the interactions after max epochs

Gene 1 Gene 2 Gene 3 Gene 4

Gene 1 ‐ 0.765 0.772 0.698

Gene 2 0.779 ‐ 0.73 0.721

Gene 3 0.77 0.733 ‐ 0.7

Gene 4 0.6695 0.736 0.682 ‐

TABLE 4 Weight of the interactions after applying threshold

Gene 1 Gene 2 Gene 3 Gene 4

Gene 1 ‐ 0.765 0.772 0.698

Gene 2 0.779 ‐ 0.73 0.721

Gene 3 0.77 0.733 ‐ 0.6843

Gene 4 0.6695 0.736 0.682 ‐
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4.2 | Description of the data set used

GDS4382 is an analysis of paired CRC tumours and adjacent
non‐cancerous tissues of human beings [16]. The series is
published on 20 March 2012. The data set contains 34 samples,
out of those 17 are control and the rest are diseased. All probe
sets represented on this GeneChip Human Genome U133 Set
are identically replicated on the Affymetrix Human Genome
U133 Plus 2.0 Array.

GDS1777 is another analysis of colon tubular adenoma
and carcinoma cells micro‐dissected from formalin‐fixed
paraffin‐embedded sections of colon tubular adenomas con-
taining focal adenocarcinomas of human beings [16]. This
series is published on 22 December 2005. The data set contains
eight samples. The platform on which the probe sets of this
data set are represented is Human‐8K cDNA microarray.

4.3 | Results

On the way to perform our experiments, we first rank the
genes of GDS4382 data set by using Wilcoxon Rank Sum Test.

Then we try to match the genes in the ranked set from NCBI
Colorectal Biosystem. In this way we select top 50 genes that
matches with NCBI. Among these top 50 genes we have found
that 20 genes are common to GDS1777 data set and we have
taken those 20 genes for our experiment. We further checked
that if we take top 100 genes instead of top 50, then also there
is no change in number of common genes found. We have
divided these 20 genes into a sequence of 1–10 (first set of
result) and 11–20 (second set of result) genes. First, we have
used GDS4382 data set to observe the change of interaction
between Normal and Diseased samples of human CRC. Here,
normal genes refer to the healthy genes that exhibit proper/
normal cell growth, whereas diseased genes are identified as
the mutant genotypes responsible for an inherited genetic
disorder or responsible for abnormal cell growth.

Figures 3–8 below shows GRNs for Normal & Diseased
samples of GDS4382, whereas Figures 10–15 displays the
same type of networks for Adenoma and Carcinoma samples
of GDS1777 for a range of thresholds θ. Nodes in those
figures represent the genes, for which the corresponding gene
names are mentioned in the Table 3 below, and the directed
edges represent the interactions identified by our experiments.

TABLE 5 Sample expression values of
Gene 1 and Gene 3

Gene1 4.3078 4.5863 4.8488 4.7809 4.1483 3.8997 4.2633 4.2199 4.4515

Gene3 7.0182 6.6068 8.3893 8.1416 7.5879 6.7963 8.4705 7.2029 5.5523

F I GURE 3 Gene–Gene interactions present in Normal and Diseased samples of first set of 10 genes of GDS4382

F I GURE 4 Gene–Gene interactions present in Normal and Diseased samples of next set of 10 genes of GDS4382
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If there is a directed edge from gene A to gene B in any
GRN, that is A→B, that means gene B is regulated by gene
A, in turn its biological significance is that the expression
values of gene B is controlled by the expression value of gene
A. The values present on the edges represent the strength of
that interaction. The same gene sequence was taken and the
experiment was repeated once again with GDS1777

(Adenoma and Carcinoma genes) data set. Adenoma genes
are responsible for benign tumour and Carcinoma genes are
responsible for abnormal cell growth that leads to cancer.
This experiment will convey us about the presence or
absence of those interactions in the diseased samples, as well
as in the different phases of the diseased samples, like Ad-
enoma and Carcinoma, that may be responsible for that

F I GURE 5 Gene–Gene interactions present in Normal and Diseased samples of first set of 10 genes of GDS4382

F I GURE 6 Gene–Gene interactions present in Normal and Diseased samples of next set of 10 genes of GDS4382

F I GURE 7 Gene–Gene interactions present in Normal and Diseased samples of first set of 10 genes of GDS4382
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particular cancer to take place. Following Figure 3 shows the
interactions present between the first 10 genes of Normal
samples and diseased samples of GDS4382 data set separately
when θ ¼ 0.006.

Following Figure 4 shows the interactions present between
the next set of 10 genes of Normal samples and diseased
samples of GDS4382 data set separately when θ ¼ 0.006.

Following Figure 5 shows the interactions present between
the first 10 genes of Normal samples and diseased samples of
GDS4382 data set separately when θ ¼ 0.012.

Following Figure 6 shows the interactions present between
the next set of 10 genes of Normal samples and diseased
samples of GDS4382 data set separately when θ ¼ 0.012

Following Figure 7 shows the interactions present between
the first 10 genes of Normal samples and diseased samples of
GDS4382 data set separately when θ ¼ 0.016.

Following Figure 8 shows the interactions present be-
tween the next set of 10 genes of Normal samples and
diseased samples of GDS4382 data set separately when
θ ¼ 0.016.

Following plot of Figure 9 shows how the number of edges
between the normal and diseased samples is changed with the
variation of the threshold θ.

From the above plot, we observed that, with the increasing
value of threshold, the no. of edges increases for both normal
and cancer data. Further, we observed that the number of
edges in the diseased network is always outnumbered the
normal network and the difference between them increases
with increase in the threshold value, that is, with the increase in
the number of edges the difference between the diseased
network and normal network increases.

Next experiment is carried on the same 20 genes of
GDS1777, which shows the two stages of cancer, that is Ad-
enoma and Carcinoma. Adenoma is a type of non‐cancerous
tumour or benign that may affect various organs. Carcinoma is
a type of cancer that starts in cells that make up the skin or the
tissue lining organs, such as the liver or kidneys.

Following Figure 10 shows the interactions present be-
tween the first 10 genes of Adenoma and Carcinoma samples
of GDS1777 data set separately when θ ¼ 0.006.

F I GURE 8 Gene–Gene interactions present in Normal and Diseased samples of next set of 10 genes of GDS4382

F I GURE 9 Plot showing difference in edges versus error threshold
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Following Figure 11 shows the interactions present be-
tween the next set of 10 genes of Adenoma and Carcinoma
samples of GDS1777 data set separately when θ ¼ 0.006.

Following Figure 12 shows the interactions present be-
tween the first set of 10 genes of Adenoma and Carcinoma
samples of GDS1777 data set separately when θ ¼ 0.012.

Following Figure 13 shows the interactions present be-
tween the next set of 10 genes of Adenoma and Carcinoma
samples of GDS1777 data set separately when θ ¼ 0.012.

Following Figure 14 shows the interactions present be-
tween the first set of 10 genes of Adenoma and Carcinoma
samples of GDS1777 data set separately when θ ¼ 0.016.

F I GURE 1 0 Gene–Gene interactions present in Adenoma & Carcinoma samples of first set of 10 genes of GDS1777

F I GURE 1 1 Gene–Gene interactions present in Adenoma & Carcinoma samples of next set of 10 genes of GDS1777

F I GURE 1 2 Gene–Gene interactions present in Adenoma & Carcinoma samples of first set of 10 genes of GDS1777

36 - SAHA ET AL.



Following Figure 15 shows the interactions present be-
tween the next set of 10 genes of Adenoma and Carcinoma
samples of GDS1777 data set separately when θ ¼ 0.016.

In order to validate the interactions as well as the direction
of those interactions between a pair of genes in GRNs, we
have checked whether those interactions are already reported
at NCBI database or not. We have validated the likelihood of
the interactions and the corresponding directions of those
interactions through NCBI database [16] and also using some
earlier investigations [17]. Here, we explain the validation of

the interactions among the genes in brief for the better un-
derstanding of the readers. In most of the GRNs for Normal
samples we have found that the gene AKT2 (AKT serine/
threonine kinase2) regulates PIK3CD (phosphatidylinositol‐
4,5‐bisphosphate 3‐kinase catalytic subunit delta) and this was
also reported at NCBI [16]. Similar to this investigation, some
of the other interactions can also be mentioned, like CCND1
(cyclin D1) is regulated by FOS (Fos proto‐oncogene), CASP3
(caspase 3) regulates CASP9 (caspase 9), SMAD3 (SMAD
family member3) regulates SMAD2 (SMAD family member2),

F I GURE 1 5 Gene–Gene interactions present in Adenoma & Carcinoma samples of next set of 10 genes of GDS1777

F I GURE 1 3 Gene–Gene interactions present in Adenoma & Carcinoma samples of next set of 10 genes of GDS1777

F I GURE 1 4 Gene–Gene interactions present in Adenoma & Carcinoma samples of first set of 10 genes of GDS1777
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AXIN1 (axin1) regulates SMAD3 (SMAD family member3),
FOS (Fos proto‐oncogene) controls SMAD3 (SMAD family
member3). In this way, we have validated the result as well as
the direction of the interaction among the genes through
NCBI database.

Following plot of Figure 16 shows how the number of
edges between the adenoma and carcinoma samples of these
20 genes is changed with the variation of the threshold θ.

Following Table 6 shows the mapping of the node
numbers in the GRN to the gene names of those 20 genes
used in the experiment for both GDS4382 and GDS1777
data sets.

We can compare our work with another work mentioned
by Saha et al. [15], where correlation measures, relative en-
tropy and rough set theory are used to find the interaction
and the strength of the interaction between a pair of genes in
a gene interaction network. Although the work is similar but
there are some differences. First of all, the work by Saha
et al. [15] is applied on GDS 4382 data set, that is, it only
tries to find out the interactions between the normal and
diseased samples of CRC data set. In our work, we use
GDS4382 as well as GDS1777. That means apart from
finding the interactions between normal and diseased sam-
ples, we are also analysing the different stages of CRC dis-
ease, that is, our work is also finding the interactions between
adenoma and carcinoma samples. Cancer development sig-
nifies an abnormal growth of cells and depending on this

growth the stages of a cancer is identified. As we know a cell
cycle involves gene interaction and the changes of interaction
between normal and diseased/adenoma and carcinoma sam-
ples can be due to mutation and other conditions. Thus, we
also observed that the number of interactions between
diseased genes are increased than the normal genes, whereas
the number of interactions between carcinoma genes are
more than the adenoma genes. Another difference lies in the
working principle of both the works. Both the datasets that
we have used in our RBM based model are time series data.
That means if we take the snapshot of the data set in two
different time instances, then we can have different gene
interaction networks. In RBM based model the weights be-
tween the layers are initialized with random values, thus every
time we run the proposed model, 10%–20% of the total
interaction changes between the genes of normal and
diseased samples though most of the interaction remains the
same. Thus, it maintains the real‐life scenario. The above
obversions were not visible in the work [15], because that
work uses the correlation measures ranging from 0.15–0.8
[for positive] and (� 0.4)–(� 0.1) [for negative]. Since corre-
lation is a statistical measurement the calculation does not

F I GURE 1 6 Plot showing difference in edges versus error threshold

TABLE 6 Node no.—Gene name mapping

GDS4382 GDS1777

Node no. Gene name Node no. Gene name

1 AKT2 1 AKT2

2 PAK4 2 SMAD2

3 PAK2 3 PIK3R1

4 SMAD2 4 PAK2

5 PIK3R1 5 PAK4

6 CCND1 6 CCND1

7 AXIN1 7 AXIN1

8 FOS 8 FIGF

9 SMAD3 9 SMAD3

10 PIK3CD 10 PIK3CD

11 TGFB2 11 TGFB2

12 ARAF 12 ARAF

13 MLH1 13 MLH1

14 PIK3CB 14 PIK3CB

15 TCF7L2 15 TCF7L2

16 CASP3 16 CASP3

17 CASP9 17 CASP9

18 APPL1 18 APPL1

19 MAPK10 19 MAPK10

20 TCF7 20 TCF7
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involve any random values, and thus does not show any
dynamic behaviour. That means this work does not reflect
the actual scenario.

5 | CONCLUSIONS AND FUTURE
SCOPES

Objective of this work is to find the weight of the interaction,
as well as the direction of the interaction present in normal &
diseased samples and in adenoma and carcinoma samples of
every pair of genes in a GRN of CRC data set. RBM, along
with NBC is used over here to achieve this objective. We are
actually looking for the likelihood of those interactions that
are present in normal samples, but not present in diseased
samples, or vice versa. We are also interested in finding the
likelihood of those interactions present in adenoma samples,
but not in carcinoma samples, or vice versa. This is because
the presence/absence of those interactions may be respon-
sible for the CRC to take place. As for example, from Figure
3 it is shown that, there is an interaction between genes 5 & 8
in normal samples, but that interaction is not present in the
diseased samples. Whereas the interaction between genes 2 &
6 is present in diseased sample, but that was not present in
the normal sample. The weight/degree of the interaction
represents the strength of the interaction between the genes.
It indicates how strong/weak an interaction is. It has seen
that in a GRN, one gene regulator controls another, and so
on. Gene regulation is very much significant for viruses,
prokaryotes, eukaryotes etc. The reason is it increases the
versatility and adaptability of an organism by allowing the cell
to express protein when it is needed. The process that is
followed here to find the gene regulation is very much similar
to the working principle of NBC. That's why we have used it
here. At this phase, it was observed that, mostly the new
interactions are formed in the diseased genes that were not
present in Normal genes and if the common interaction exists
between normal and diseased genes then in most of the cases
the direction gets reversed. The same gene sequences were
taken and the experiment was repeated once again on
GDS1777 (Adenoma and Carcinoma samples) data set. Ad-
enoma genes are responsible for benign tumour and Carci-
noma genes are responsible for abnormal cell growth that
leads to cancer. We observed that interaction changes from
Adenoma to Carcinoma in an unpredictable manner for the
same set of genes. A mutation is a change that creates an
abnormal protein or it may prevent a protein's formation.
Mutation of genes will alter the gene–gene interaction or
protein‐protein interaction which was observed in our
experiment. What we observe here is that the interaction not
only changes from Adenoma to Carcinoma but if common
interaction exists then their direction also gets changed. The
change of interaction between pairs of genes is more likely to
be the part of gene mutation which is responsible for that
particular disease.

In this work we have used one specific model of Deep
LearningNeural network, that is, theRBMmodel tofind the level

of interaction between the genes. As a future scope we have a
plan to use some other deep learning neural net models, like
convolutional neural network models and so on for doing the
same job.
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