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Abstract

Background: In silico methods for toxicity prediction have increased signifi-

cantly in recent years due to the 3Rs principle. This also applies to predicting

reproductive toxicology, which is one of the most critical factors in pesticide

approval. The widely used quantitative structure–activity relationship (QSAR)

models use experimental toxicity data to create a model that relates experimen-

tally observed toxicity to molecular structures to predict toxicity. Aim of the

study was to evaluate the available prediction models for developmental and

reproductive toxicity regarding their strengths and weaknesses in a pesticide

database.

Methods: The reproductive toxicity of 315 pesticides, which have a GHS clas-

sification by ECHA, was compared with the prediction of different in silico

models: VEGA, OECD (Q)SAR Toolbox, Leadscope Model Applier, and CASE

Ultra by MultiCASE.

Results: In all models, a large proportion (up to 77%) of all pesticides were out-

side the chemical space of the model. Analysis of the prediction of remaining

pesticides revealed a balanced accuracy of the models between 0.48 and 0.66.

Conclusion: Overall, predictions were only meaningful in rare cases and

therefore always require evaluation by an expert. The critical factors were the

underlying data and determination of molecular similarity, which offer great

potential for improvement.
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1 | INTRODUCTION

Reproductive toxicity (Reprotoxicity) is one of the most
critical factors in pesticide approval. Due to the 3R

principle, the approval authorities are demanding more
and more in silico evaluations for assessing reprotoxicity.
Several models are available using generalized positive or
negative calls not evaluating the particular endpoint or
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study design. This paper aims at discussing the difficulty
and relevant parameters in designing adequate in silico
models for developmental and reproductive toxicology.
To illustrate the difficulties, available models have been
tested using a database of 310 pesticides, which are data
rich and where testing follows the OECD testing
guidelines.

1.1 | Complexity of reproductive
toxicology

Reproductive toxicology (Reprotox) reflects the entire
circle from formation and maturation of gametes
through mating and conception, the embryonic and fetal
development, postnatal adaptations, up to sexual matu-
ration of the offspring. Due to the multitude of processes,
pathophysiological disturbances may be observed as
functional (e.g., altered estrous cyclicity, impaired reflex
ontogeny) or structural (e.g., malformations, delayed
bone ossification) anomalies or as behavioral alterations
(e.g., missing mating drive, altered maternal behavior).
Assessing all these factors in one study takes a very long
time (approximately two years in rodents) and anomalies
sometimes can hardly be appointed to a single interfer-
ence. Therefore, the entire reproductive cycle is often
broken down to several sections, each being tested sepa-
rately. In this way, particular aspects can be assessed in
more detail. However, the enormous animal consump-
tion, time, and cost remain, and it is a great incentive for
the development of alternative in vitro and in silico
methods.

In the following section, the in vivo studies are pre-
sented based on their OECD guidelines, which must be
carried out for the registration of a pesticide in the
EU. Since these studies are a potential data basis for in
silico models, knowledge of the assessed endpoints and
their classification in the overall toxicological context is
of great importance.

1.1.1 | Current OECD Guidelines for
assessment of reprotoxicity

In the following section, the major study types used for
the generation of reproductive and developmental toxic-
ity data for pesticides and chemicals are outlined. The
usual species used in these studies are rats as rodents and
rabbits as non-rodents. Additional study types like OECD
422, developmental neurotoxicity studies, or pharma
study types are not covered but are equally important
and contribute to the available database.

OECD 414: Prenatal Developmental Toxicity Study in
one rodent and one non-rodent (OECD, 2018a)
Young mature nulliparous rats are used. Animals in the
estrous phase are mated overnight with a male. Success-
ful mating is detected by sperms in the vaginal lavage
and defines gestation day 0. Estrous phase in rabbits can
be detected by reddening of the vulva if provoked by
estrogen injection. Rabbits are mated with a male of
proven fertility. Mating is confirmed by the presence of
spermatozoa in the vaginal lavage. Alternatively, artificial
insemination after hormone treatment can be performed
in rabbits. Ovulation occurs approximately 10 hr after
mating or estrogen injection.

Animals are then allocated to the different treatment
groups (one control group, three treatment groups). Usu-
ally, each group consists of 22–24 animals to generate
20 litters per group. Treatment begins at implantation
(Days 5–6 in rats and Day 6 in rabbits) and continues
until the day before scheduled sacrifice. On Day 20/21
(rats) and 28/29 (rabbits), dependent on strain and/or
laboratory, the animals are delivered by cesarean section.
Cesarean section is done since otherwise malformed born
pups would be lost by cannibalism.

During treatment, the behavior of the animals is care-
fully observed. Body weight and food consumption are
recorded at regular intervals. At cesarean section, the
uterus is opened. The numbers of corpora lutea, implan-
tations, early and late resorptions as well as live and dead
fetuses are determined. Individual fetal body weights are
recorded. All fetuses are examined for external abnormal-
ities. In rats, one half of the fetuses is examined for vis-
ceral alterations. The other fetuses are eviscerated,
skinned, and evaluated for skeletal alterations, which is
usually done by staining with Alcian Blue (cartilage) and
Alizarin Red (bones). In rabbits, all fetuses are examined
for visceral examination and then eviscerated, stained
with Alcian Blue and Alizarin Red and examined for
skeletal examination. External, visceral, and skeletal find-
ings are usually classified as malformations (a permanent
structural change that is likely to adversely affect the sur-
vival or health of the species under investigation) and
variations (a change that occurs within the normal popu-
lation under investigation and is unlikely to adversely
affect survival or health).

There are two different study types available for asses-
sing reprotoxicity, which are explained in the next
section:

OECD 416: Two-Generation Reproduction Toxicity
Study in rodents (usually rats) (OECD, 2001)
The objective of this study is the determination of poten-
tial effects on maturation of gametes, mating,
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fertilization, pre-implantation stages, implantation. Fur-
ther potential adverse effects encompass estrous cycle,
transport of the fertilized egg, pregnancy, birth, lactation,
and growth of the offspring across two generations. In
males, effects on libido and epididymal sperm maturation
are possible, which cannot be detected otherwise.

Groups of 25 male and 25 virgin female rats, 5–
9 weeks of age, are used in this study and allocated ran-
domly to the treatment groups (one control group, three
treatment groups). The animals are treated for 70 consec-
utive days (56 days in case of mice) prior to mating until
sacrifice. This time covers a whole spermatogenic cycle
including sperm maturation in the epididymis. After evi-
dence of mating, that is, presence of spermatozoa in vagi-
nal smears in the morning, the females are separated
from the assigned male and allowed to deliver their F1
offspring. Standardization of offspring at postnatal day
(PND) 4 is optional. After 3 weeks of lactation, the F1
animals are separated from their mothers, which are then
euthanized. The uterus is opened, and the number of
implantation scars is counted. Dosing of F1 animals is
then continued for at least 10 weeks before they are
mated. After evidence of mating, the females are sepa-
rated and allowed to deliver their F2 offspring. Standardi-
zation of offspring at PND 4 is also optional here. After
3 weeks of lactation, the F2 animals and the maternal
animals are euthanized. Males are euthanized when the
mating outcome is sufficient. Reproductive organs are
weighed and examined histopathologically.

Examined parameters consist of body weight, food
consumption, estrous cycle determination, litter parame-
ters, anogenital distance, developmental landmarks of F1
offspring (e.g., preputial separation, vaginal opening),
and spermatological examinations. For this purpose,
sperm samples are taken from the cauda epididymis and
assessed for sperm concentration and sperm motility
(motionless, locally motile and progressively motile).
Alternatively, computer-assisted sperm analysis (CASA)
can be used. Additionally, testicular spermatid head
count is determined after homogenization of the testis.
Sperm morphology is evaluated by assessment of abnor-
mal head, mid-piece, and tail.

Recently, EFSA required the assessment of nipple
retention in male pups around PND 14.

OECD 443: Extended One-Generation Reproductive
Toxicity Study in rodents (usually rats) (OECD, 2018b)
This study design originally has been discussed as a
replacement for the Two-Generation Reproduction Toxic-
ity Study design, as it requires considerably less animals.
The study design is similar to the Two-Generation Repro-
duction Toxicity Study, but ideally covers only the F1
generation. Optionally developmental neurotoxicity

cohorts and a developmental immunotoxicity can be
added in the F1 generation.

Groups of 25 male and 25 virgin female rats are used
in this study and allocated randomly to the different
treatment groups. Pre-mating treatment is at least
2 weeks in males and females. In practice, sometimes a
10-week pre-mating treatment is required by authorities.
The age of the animals depends on the pre-mating period
(10 weeks treatment: 5–6 weeks old; 2 weeks treatment:
11–12 weeks old). After evidence of mating, the females
are separated from the assigned male and allowed to
deliver their F1 offspring. Anogenital distance in both
sexes and nipple retention are assessed in males. Stan-
dardization of offspring at PND 4 is optional. After total
10 weeks of treatment, hematological and clinical chem-
istry examinations, urinalysis, assessment of organ
weights, and histological examination of numerous
organs are carried out in the parental animals. Spermato-
logical examinations as described for the OECD 416 study
are performed. At weaning, offspring are assigned to the
following cohorts:

F1-1A (Reprotoxicity): These animals (20 females and
20 males) are dosed daily from PND 22 and euthanized at
the age of 13 weeks and examined in the same way as the
parental generation.
F1-1B (Reprotoxicity): These animals (20 females and
20 males) are dosed daily from PND 22 and euthanized at
the age of 14 weeks. Reproductive organs and a limited
number of other organs are weighed and preserved for
possible histopathological examination. If there is evi-
dence of a change of reproductive parameters in the F1A
cohort, which warrants further data, these animals are
used for breeding and generation of a F2 generation,
which is raised and examined like the F1 offspring. It
should be noted (although not mentioned in the guide-
line) that in this case 20 F2 litters should be produced.
Therefore, it may be prudent to increase the size of the
F2 generation to 25 males and 25 females and conse-
quently increase also the number of parental animals.
F1-2A (optional) Developmental Neurotoxicity: These
animals (10 males and 10 females; one male or 1 female
out of 20 litters) are subjected to detailed neurological
examinations (functional observation battery, motor
activity). They are euthanized in Weeks 11 and 12 by per-
fusion fixation. Central and parts of the peripheral ner-
vous system are preserved, fixed, and embedded in
paraplat or plastic (epoxy resin) and histologically
examined.
F1-2B (optional) Developmental neurotoxicity: These ani-
mals (10 males and 10 females; one male or 1 female out
of 20 litters) are euthanized on PND 22, undergo perfu-
sion fixation and are used for assessment of brain weight
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and histological examination of brain and brain-
associated structures.
F1-3 (optional) Developmental immunotoxicity: These
animals (10 males and 10 females; one male or 1 female
out of 20 litters) are used at PND 56 ± 3 in a T-cell-
dependent antibody response assay (TDAR), for example,
the primary IgM antibody response to a T-cell-dependent
antigen, such as Sheep Red Blood Cells or Keyhole Lim-
pet Hemocyanin. Additional pups may be required from
the control group to act as positive control animals in
TDAR. The response is evaluated by counting specific
plaque-forming cells in the spleen or by determining the
titer of SRBC- or KLH-specific IgM antibody in the serum
by ELISA, at the peak of the response.

Alternative study designs
Many alternative in vivo non-mammalian and in vitro
approaches to contribute to the 3Rs concept (Russell &
Burch, 1959) exist, but none is accepted by regulatory
agencies as alternative test system for registration of pes-
ticides. The major drawback of these alternatives is that
the interaction with the maternal compartment is
missing.

However, since these methods are of great interest in
current research, examples are mentioned for the sake of
completeness:

• the Zebra fish embryotoxicity test (ZET) (Selderslaghs,
Van Rompay, De Coen, & Witters, 2009)

• the frog embryo teratogenesis assay Xenopus (FETAX)
(Bantle, Fort, & James, 1989)

• the whole embryo culture test (WEC) (Piersma
et al., 2004)

• the embryonic stem cell test (EST) (Seiler &
Spielmann, 2011)

1.1.2 | Differences between study guidelines

One aspect that is often not considered in the comparison
of toxicity studies is the change in the underlying experi-
mental guidelines. In case of reprotoxicity, this can have
tremendous impact. For example, the original versions of
the OECD 414: Developmental Toxicity Testing guideline
required dosing only during embryogenesis and organo-
genesis. In the rat, this is between gestation days (GD) 6–
15; in the rabbit 6–19. In the more recent guideline, this
was adapted to also cover the later intrauterine matura-
tion leading to treatment between GD 6–20 in the rat and
6–29 in the rabbit. In both guideline versions, the ani-
mals were euthanized and delivered by cesarian
section to achieve a standardized read out. By use of the
older study design developmental delays, for example,

ossification effects might have recovered by the last day
of pregnancy. This “recovery” period is not present in the
newer test design. Furthermore, the day of cesarean
section varies between GD 20 and 21 in rats and GD
29 and 30 in rabbits among laboratories and between ani-
mal strains. Especially in rats, this difference has signifi-
cant impact on the ossification status and fetal weight.
Since dosing is based on the dam's weight and fetal
weight becomes a significant part of this in the last stage
of gestation, the high dose tolerated by the dams is
expected to be lower in the new study design in many
cases.

Another change in the guideline with strong impact
is that in older studies, often only bone was stained. In
more recent experiments, a co-staining for cartilage is
often applied, which allows a much better, standardized
analysis of ossification effects.

The impact of guideline changes is even more promi-
nent in OECD 416 (2-generation study). A significant
array of additional parameters has been added. Many of
these are related to sexual maturation and endocrine dis-
ruption, such as anogenital distance, nipple retention,
vaginal opening, and preputial separation. More recent
changes include measurement of thyroid hormones.
Therefore, results for these endpoints are not available
for historic studies performed according to the old OECD
protocols. In the meantime, depending on the regulatory
framework, the OECD 416 is often replaced by the OECD
443. The assessed reprotoxic endpoints in both studies
are similar, but in the OECD 443 the F2 generation is
often avoided unless triggers are calling for generation of
the F2. Additionally, the OECD 443 can contain cohorts
for the assessment of developmental neurotoxicity and
immunotoxicity.

Additional critical parameters are dose setting, which
in historic times often used large spacings, for example,
100, 500, and 5,000 ppm. If the top dose showed excessive
toxicity, and the low dose displayed no effects, the extend
of effects on reproductive performance or sexual matura-
tion cannot be clearly defined. For NOAEL setting this is
not a problem, but for hazard and risk assessment, and
also for QSAR, the widely spaced dose setting can mask
effects at lower toxicity levels.

In addition to the OECD guidelines just presented,
which are used for the classification of pesticides and
chemicals in the EU, there are further guidelines for
assessing reprotoxicity:

• US EPA OPPTS for the risk assessment of chemicals
and pesticides

• ICH-Guidelines for risk assessment for drug authoriza-
tion, used in the EU (EMA), US (FDA), and
Japan (MHLW)
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These guidelines display great similarity in their general
structure, but there are also some differences about the
exposure period and the points considered.

1.1.3 | Causes and mechanisms of
reprotoxicity

ADME during gestation and lactation
Critical points in reprotox that have not been adequately
explored are ADME and metabolism. The fetuses and
pups have different exposure conditions
(De Schaepdrijver, Annaert, & Chen, 2019). In utero,
exposure to the fetus is largely mediated by maternal sup-
ply via the placenta (Tetro, Moushaev, Rubinchik-
Stern, & Eyal, 2018). The exposure will therefore be
restricted to bioavailable active ingredients and their bio-
available metabolites. Usually, metabolism information is
only available for non-pregnant animals. Due to the
physiological changes in pregnancy, ADME parameters
between pregnant and non-pregnant animals can be sig-
nificantly different, which can lead to an unknown pat-
tern of exposure (Avram, 2020; Tasnif, Morado, &
Hebert, 2016). In order to bundle knowledge about the
metabolism of pesticides, EFSA initiated the creation of
MetaPath with the EU transparency regulation, which
can be used in the future, among other things, for the
development of PBPK models.

Placental transfer can be a limiting factor for distribu-
tion, since the placenta is designed to form a protective
barrier protecting the fetus from xenobiotic compounds.
A number of models for placental transport have been
proposed and can potentially contribute to an assessment
of the fetal exposure situation.

The exposure of the offspring is initially via the meco-
nium, maternal skin contacts and if the compound is fat
soluble via milk. Only after pups start ingesting food,
approximately around Days 10–14, does dietary exposure
become a dominant factor. Currently, no systematic data-
base for milk transfer is available across pharmaceuticals,
pesticides, and chemicals. Therefore, logp values are a
logical way of approximation. Here again, the metabo-
lism of parent and data on tissue distribution into fat
should be taken into account, which has not been sys-
tematically collected. Having a respective database would
be a valuable addition into the toolset of PBPK models to
evaluate.

An additional important parameter is the difference in
the expression and activity of phase I—III enzymes. Fetal
and pup metabolism and excretion is often limited while
immature. For example, most transporters only reach
maximal expression at around PND 21 in both liver and
kidney. While significant data on the rat are available for a

number of phase I—III enzymes, the database for humans
and rabbits, as the second relevant species for teratogenic-
ity testing, is limited (De Schaepdrijver et al., 2019).

All in all, too little is known about the exact ADME
of pesticides during gestation or lactation. Whether the
pesticides cross the placental barrier are metabolized by
the fetus, exposure takes place via the milk or how
ADME works in the pup are questions that cannot be
answered for most pesticides. To make matters worse,
the embryo/fetus/pup changes over the entire period
under consideration, which is why it can be assumed that
this also applies to ADME.

Importance of maternal toxicity and species differences
Based on the complexity of reprotoxicity, a vast interplay
with related areas such as pathology, endocrinology, and
general toxicology is necessary. To make the matter even
more complex, an interrelation between generation
effects can be seen, such as impaired maternal nutritional
status leading to lower numbers of follicles maturing,
lower reproductive success, and subsequent lower num-
bers of live born pups (Khera, 1987; Nitzsche, 2017;
Theunissen et al., 2016). Or maternal toxicity can lead to
a less than optimal uterine environment, lower nutri-
tional supply to the fetus, possibly resulting in lower fetal
weight and delayed skeletal ossification. The inherent
role of maternal toxicity has gained increasing attention
in the last decade as it assists data interpretation.

Furthermore, different animal models respond differ-
ently to exogenous stress factors. While rabbits for exam-
ple often react with abortions, rats tend to maintain their
pregnancies but may display higher numbers of resorp-
tions, lower fetal weight, and developmental delay in
their offspring. An additional factor, which is often over-
looked, is the documentation of negative results, parame-
ter that was assessed but is not affected. In the future, not
only the documentation but also the publication of those
can help to shed light on affected pathways.

Therefore, for each reprotoxicity assessment, the right
time frame and route of exposure, the most appropriate
animal model and a well-suited laboratory with sufficient
experience have to be carefully selected.

Adverse outcome pathways
While the conservative study approach can connect
between an exposure at a certain timepoint and an out-
come, it usually gives no clear information on the mode
of action of adverse outcomes. For this, a different
approach was developed.

In order to sort parameters, connect cause and conse-
quences and subsequently organize scientific knowledge,
the conceptual framework of Adverse Outcome Pathways
(AOPs) was initiated. They are intended to aggregate
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knowledge currently dispersed in various sources from
case studies, journal articles to databases into a system-
atic and accessible format that facilitates use of that
knowledge.

AOPs are based of several principles:

• Linking a molecular initiating event (MIE) via several
key events to an adverse outcome.

• Modular AOPs can assemble into AOP networks.
• And AOPs are living documents, reflecting the current

state of science and open to evolutions as knowledge
increases.

In addition to evidence supporting a causal relationship
between different events, authors are also encouraged to
provide quantitative understanding of the linkage, based
upon 1. Response–response relationships, time scales,
known modulating factors and known positive or nega-
tive feedback loops (Society for the Advancement of
Adverse Outcome Pathways, 2022).

Adverse Outcome Pathways have gained increasing
regulatory acceptance but still the number of OECD
approved AOPs in reprotox is low and currently lim-
ited to:

• Androgen receptor agonism leading to reproductive
dysfunction

• Aromatase inhibition leading to reproductive
dysfunction

• Aryl hydrocarbon receptor activation leading to early
life stage mortality, via increased COX-2 or VEGF

• Inhibition of thyroperoxidase and subsequent adverse
neurodevelopmental outcomes

• Histone deacetylase inhibition leading to testicular
atrophy

Several additional molecular initiating events and their
pathways are currently under review or open for adop-
tion, such as histone deacetylase inhibition, estrogen
receptor antagonism and PPARα activation. Nevertheless,
major pathophysiological pathways for which teratogenic
properties are known, still lack incorporation into the
various adverse outcome networks, these include but are
not limited to fetal anemia, HDAC (histone deacetylase)
inhibition or methemoglobinemia, all affecting tissue
differentiation.

1.2 | In silico models

In the directive 2010/63/EU, the European Parliament
defined the Three Rs principle, described first by
Russell & Burch, 1959, as aim for the protection of

animals used for scientific purposes in EU. To fulfill this
aim, the member states should support the research on
alternative methods. At that timepoint, the focus was
mainly on in vitro methods but with the inure of REACH
regulation in 2007 the in silico methods became more
important due to the huge amount of additional animal
tests requested. For this purpose, five OECD principles
were published, which have to be fulfilled by regulatory
used QSARs: (a) defined endpoints; (b) unambiguous
algorithm; (c) defined domain of applicability;
(d) appropriate measures of goodness-of-fit, robustness,
and predictivity; and (e) a mechanistic interpretation
(OECD, 2006).

The great advantages of in silico methods are the
reduction of test animals and costs and high throughput
compared to animal studies (Valerio, 2009). Hence, these
methods are suitable for compound selection in early
developmental steps or to fill existing gaps in empirical
data. This makes in silico methods particularly attractive
for reprotox, even if the prediction is difficult due to the
number and complexity of the endpoints (Hewitt, Ellison,
Enoch, Madden, & Cronin, 2010). The big challenges for
in silico prediction of reprotoxicity endpoints are the com-
plexity of ontogenesis, the combination of several end-
points with partly unknown AOPs and the limited
availability of empirical reprotoxicity data (Cronin &
Worth, 2008).

1.2.1 | Model types

The available in silico models for reprotoxicity endpoints,
which were tested in this study, is mainly Structural
Alerts (SAs) and rule-based models or Quantitative
Structure–Activity Relationship (QSAR) models.

SAs are chemical structures, which have been linked
to toxic events (Yang, Lou, Li, Liu, & Tang, 2020). These
alerts could be based on human expert knowledge (rule-
based models) or generated by machine learning
(Venkatapathy & Wang, 2013). Also, mixtures of both
methods are common. The advantages of these models
are that they are easy to interpret and allow to localize
the crucial structure for toxicity. Limitations are that the
methods just show the presence or absence of SAs, and
absent SAs are always interpreted as non-toxicant even
when based solely on incompleteness of SA lists. Besides,
biological pathways of toxicity are not considered
(Raies & Bajic, 2016).

QSAR models are based on the assumption that mole-
cules that have a similar chemical structure tend to pro-
duce similar toxic effects (Hansch & Fujita, 1964). The
description of the chemical structure and assessment of
the similarity therefore play a decisive role in the creation

WEYRICH ET AL. 817



of statistical models, which are created with a training
data set of sample molecules with known toxicity
(Valerio, 2009). The molecules can be described by
molecular descriptors, which are based on the geometric,
electronic, topological, constitutional, and thermody-
namic properties of the molecule (Danishuddin &
Khan, 2016). However, 2D fingerprints are often used to
describe the chemical structure in the form of a bit vec-
tor. In the substructure keys-based fingerprints, each bit
represents the presence or absence of a predefined sub-
structure (Cereto-Massagué et al., 2015). In contrast,
topological or path-based fingerprints work by analyzing
all fragments of the molecule following a path up to a
certain number of bonds and then hashing each of those
paths to create the fingerprint. Circular fingerprints are
also hashed topological fingerprints, but they do not
describe the path but the area around each atom up to a
certain radius (examples for each type of fingerprint with
description can be found in Table S5). Since the descrip-
tors and the various molecular fingerprints differ greatly
in their description of the molecules, this has a great
influence on the functionality of the QSAR model. In
order to combine the advantages of the various methods,
combinations of several descriptors and a fingerprint are
often used for building a QSAR model.

An alternative approach to define similarity is the use
of compound class specific substructures or toxicophores
(SMARTS), which can be combined with structural alerts
or fingerprint techniques. This is a particular powerful
approach for read across as it captures compound class
intrinsic information (Enoch et al., 2022).

Significant efforts have also been invested to use bio-
activity data, such as Toxcast or PubChem bioactivity
data as an alternative type of descriptor. Such an affinity
fingerprint is the vector consisting of compounds affinity
or potency against a reference panel of proteins targets
(Škuta et al., 2020). In a similar approach also effects
from subchronic or chronic studies can be used. These
approaches however are generally limited to marketed
compounds or face the problem that bioactivity databases
are proprietary information, for example, from pharma-
ceutical companies.

The characteristics of the models used in the study
are briefly described in Table 1. A detailed description is
given in Section 2.2.

1.2.2 | Importance of molecular similarity

When using prediction models, the determination of
molecular similarity is of enormous importance. On one
hand, this is used in QSAR models to predict toxicity
and, on the other hand, it can be used for all model types

to determine the applicability domain (AD). The AD is
the structure space on which the training set of the model
was developed, to which it is applicable to make predic-
tions for new compounds and therefore a good bench-
mark if the prediction is reliable.

The choice of the description of the molecule thus has
a major influence on both the prediction and its evalua-
tion. Mellor et al. showed that the notion of fingerprint-
derived similarity varies widely between data sets and
structure types (Mellor et al., 2019). In particular, the
subtle differences between very similar structures can
often be overlooked, resulting in the same numerical sim-
ilarity for such compounds. The descriptors and finger-
prints for a model should therefore be selected with great
care and the prediction of existing models should be criti-
cally examined by experts.

1.2.3 | Problems of prediction models for
reprotoxicity

Especially for the prediction of reprotoxicity, the cur-
rently available in silico models have some weaknesses
(Cronin & Worth, 2008). These are discussed in the fol-
lowing list:

• Many models only differentiate between toxic for
reproduction or not. Since there can be many different
MOAs with different conspicuous endpoints behind
reprotoxicity, this information is very simplified. The
use of models that only refer to individual endpoints or
parts of reprotoxicity (e.g., female fertility) is therefore
more promising.

• The current prediction models only consider ADME of
pesticides indirectly via models trained on in vivo data.
However, this is insufficient, considering, for example,
the changes in the guidelines regarding exposure pat-
terns, which can have an impact on ADME. There are
currently no reliable models that can predict ADME
during gestation. However, since this can greatly
change the toxicity, ADME should at best be included
in the models.

• To create a meaningful QSAR model, a good quality
database is required, which should also be as compre-
hensive as possible. There is a lack of such data for
reprotoxicity, especially since the type of data and their
interpretation has changed significantly over the
decades, for example, the changes in the guidelines
(endpoints and dosage) and the interpretation of
maternal toxicity.

• Chemical similarity is usually used to create QSAR
models. Alternatively, or additionally, information
about the compound class, biological activity or
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SMARTS, for example, could also be used. For exam-
ple, the HPPD inhibitor group of herbicides has a sig-
nificant structural heterogenicity, but all are increasing
tyrosine in the rat leading to respective tyrosine medi-
ated toxicity.

• For the creation of predictive expert based structural
alert models, knowledge about the AOPs is crucial in
order to be able to correctly name the relevant struc-
tural features. Since there is still a knowledge gap for
reprotox and only four AOPs have so far been recog-
nized by the regulatory authorities, these models tend
to lead to incorrect predictions.

1.3 | Testing the performance of
prediction models for reprotoxicity

As discussed in the previous section, there are several
challenges in predicting reprotoxicity using in silico
models. Nevertheless, there are some commercial or
freely available prediction models, which are tested in
the following case studies with regard to their perfor-
mance in predicting pesticides.

2 | MATERIALS AND METHODS

2.1 | Pesticide data base

To test the models with regard to their suitability for pre-
dicting reprotoxicity in pesticides, a database was created
with 315 pesticides that were or are approved in the EU
(see Tables S1 and S2 for pesticide DB). Five of these pes-
ticides appeared in two versions each, which differed
only in terms of stereoisomerism (cypermethrin,
dimethenamid, cyhalothrin, napropamide, benalaxyl).
Since most of the models to be tested do not differentiate
between stereoisomers, only the 2D structures were con-
sidered in the evaluation (except for the OECD (Q)SAR
Toolbox), which led to a database of 310 pesticides. In the
database, the molecular structures were described by
SMILES code and the InChIKeys. The reprotoxicity was
assessed based on the ECHA classification according to
CLP. Figure 1a shows the distribution of reprotoxicity
due to ECHA classification. Notably, 256 pesticides were
not classified as reprotoxicant. Notably, 17 were classified
in Repr. Cat. 1B and 34 in Repr. Cat. 2. The relatively low
number of potentially reprotoxic pesticides is explained
by the fact that reprotoxicity is usually an exclusion crite-
rion in the EU for the approval of a plant protection
product. For the evaluation of the CAESAR model, the
developmental toxicity was also selectively analyzed
based on the hazard statements. Of the 51 pesticidesT
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classified as reprotoxic, only 5 are not developmentally
toxic. Leadscope and CASE Ultra differentiate in their
models between different endpoints of reprotoxicity:
Female Reprotox_Rat, Male Reprotox_Rat, Fetus_Dys-
morphogenesis_Rat, and Fetus_Dysmorphogenesis_Rab-
bit, which were defined by Matthews, Kruhlak, Daniel
Benz, & Contrera (2007). The endpoints Female and Mal-
e_Reprotox_Rat include effects on the respective repro-
ductive organs and fertility specific to the rat.
Fetus_Dysmorphogenesis includes structural effects on
fetal organs and tissues separated by species. Based on
these definitions, the study results described in the avail-
able documents by ECHA/EFSA (RAC Opinion or Con-
clusion regarding the peer review of the pesticide risk
assessment) were analyzed and corresponding columns
added to the pesticide database to have comparable data.
The number of pesticides per endpoint can be seen in
Figure 1b. It is very important to mention, that the as
reprotoxicants classified pesticides could show toxicity in
one or many of these sections but also in none.

In addition, the categorization of the pesticides due to
the different Resistance Action Committees (HRAC,
FRAC and IRAC) and the BCPC's Compendium of Pesti-
cide Common Names has been added, if available. The
most common pesticide types in the database are fungi-
cides, herbicides, and insecticides, a list of all types can
be found in Table S3. Besides, all pesticides were classi-
fied based on their chemical structure (Chemical Group
column). When categorizing according to these chemical
groups, triazoles, sulfonylureas, carbamates, and orga-
nothiophosphates were the most common. Table 2 shows
the 12 chemical groups with the most pesticides and the

associated MOA according to the RAC poster, which
applies to most of the categorized pesticides.

2.2 | Used prediction models

In the following, a selection of commercial and freely
available models for DART endpoints, which were used
in the case studies (see Section 3), are introduced: the
open source in silico tools OECD (Q)SAR Toolbox (v4.4.1,
developed by Laboratory of Mathematical Chemistry
(LMC), Bulgaria, in collaboration with the Organization
for Economic Co-operation and Development (OECD)
and the European Chemicals Agency (ECHA), the VEGA
In Silico Platform (v.1.1.5-b48, developed by Istituto di
Ricerche Farmacologiche Mario Negri [Laboratory of
Environmental Chemistry and Toxicology] and Kode srl),
the commercial software packages Leadscope Model
Applier (v3.0.2-4, developed by Instem), and CASE Ultra
(v1.8.0.0, developed by MultiCASE Inc.). The predictions
of all models and pesticides can be seen in Table S6.

2.2.1 | VEGA: Developmental Toxicity
model (CAESAR, v.2.1.7)

The Developmental Toxicity CAESAR (Computer-
Assisted Evaluation of industrial chemical Substances
According to Regulations) model is a QSAR classification
model based on a random forest method implemented
using WEKA open-source libraries designed by Cassano
et al., 2010. The underlying data set contains

FIGURE 1 Pie charts of the distribution of (a) reprotoxicity categories by ECHA and (b) selected reprotoxicity endpoints within the

pesticide DB. Pesticides classified as “NO Reprotox” do not have a Repr. 1A/B or 2 category classification but may have a classification for

any other toxicity. The various reprotoxicity endpoints in chart B are based on the definition by Matthews et al. and were classified based on

the studies relevant to the classification by ECHA (Matthews, Kruhlak, Daniel Benz, & Contrera, 2007)
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292 compounds of different classes (extracted from
Arena, Sussman, Mazumdar, Yu, & Macina, 2004) whose
developmental toxicity was classified according to the
FDA criteria and then was subdivided in two classes:
nondevelopmental toxicant (N) (FDA Cat. A and B) and
developmental toxicant (D) (FDA Cat. C, D, and X).
Notably, 91 compounds were classified as non-
developmental and 201 as developmental toxicants. A set
13 descriptors was used for the description of the com-
pounds calculated using Toxicity Estimation Software
Tool (T.E.S.T.) (Cassano et al., 2010). The applicability of
the CAESAR model is limited to organic substances with
the usual elements. Predicting the toxicity of salts is only
possible if they were converted into the neutralized form.

In addition to predicting toxicity using the CAESAR
model, the VEGA platform itself provides an analysis of
the AD. The AD is the structure space on which the
training set of the model was developed and to which it
is applicable to make predictions for new compounds
(Hanser, Barber, Guesné, Marchaland, & Werner, 2019).
To analyze the AD, the VEGA algorithm first determined
the six most similar compounds within the training/test
set of the model (Cassano & Benfenati, 2010). Chemical
similarity was calculated by combining fingerprints with
non-binary structural keys based on constitutional molec-
ular descriptors (Floris et al., 2014). Important is that this
similarity calculation is completely independent from the
CAESAR model itself. Then, the two most similar com-
pounds were used to determine the AD index (ADI),

which considers also other indices besides similarity. The
ADI has values from 0 (worst case) to 1 (best case) and is
the basis for the reliability classes good, moderate, and
low. Since the training set is not very large, the provided
information about the similar compounds and the ADI
are very useful to evaluate the prediction.

The validation statistic states the sensitivity as 95%
and the specificity as 59%. This is sensible since the
models have been developed with the aim to minimize
false negatives in order to make the CAESAR model
usable for REACH (Cassano et al., 2010). This tendency
has to be considered when analyzing the predictions.

2.2.2 | OECD (Q)SAR Toolbox

The expert-based developmental and reproductive toxic-
ity (DART) scheme (v.1.4, developed by Procter & Gam-
ble and LMC) is based on a decision tree for identifying
chemicals as developmental and/or reproductive toxi-
cants presented in Wu et al., 2013. This decision tree was
designed based on the combination of known modes of
action (MOA) and associated structural features, as well
as an empirical association of structural fragments within
DART chemicals when MOA information was not avail-
able. According to Wu et al., 2013, the decision tree was
not originally intended to be used as a standalone predic-
tive tool, but as part of a screening system to identify
potentially reproductively toxic chemicals and as part of

TABLE 2 The most common chemical groups within the pesticide DB with corresponding mode of actions by the RAC-posters

Group Pesticide type Mode of action based on IRAC/FRAC/HRAC #

Triazole Fungicide G1: Inhibition of sterol biosynthesis in membranes via C14-
demethylase (19/21)

21

Sulfonylurea Herbicide 2: Inhibition of acetolactate synthase (14/14) 14

Carbamate Insecticide 1A: Acetylcholine esterase inhibitor (9/13) 13

Organothiophosphate Insecticide 1B: Acetylcholine esterase inhibitor (10/10) 10

Pyrethroid Insecticide 3A: Sodium channel modulator (9/9) 9

Aryloxphenoxypropionate (FOPs) Herbicide 1: Inhibition of acetyl CoA carboxylase (7/7) 7

Phenoxycarboxylate Herbicide 4: Auxin mimics (7/7) 7

Pyrazolecarboxamide Fungicide C2: Inhibition of succinate-dehydrogenase (7/7) 7

Strobilurin Fungicide C3: Inhibition of cytochrome bc1 (ubiquinol oxidase) at Qo site
(cyt b gene) (7/7)

7

Phenylurea Herbicide 5: Inhibition of photosynthesis at PSll—serine 264 binders (5/7) 7

Chloroacetamide Herbicide 15: Inhibition of very long-chain fatty acid synthesis (6/6) 6

Dinitroaniline Herbicide 3: Inhibition of microtubule assembly (5/6) 6

Note: The numbers in brackets indicate how many of the categorized pesticides can be assigned to the named mode of action. A list of all chemical groups can
be found in Table S4
Abbreviations: FRAC, Fungicide Resistance Action Committee; HRAC, Herbicide Resistance Action Committee; IRAC, Insecticide Resistance Action
Committee.
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weight-of-evidence-based structure–activity relationship
(SAR) decisions. This conflicts with use by the expert-
based DART scheme of the OECD (Q)SAR Toolbox.

The stereochemistry of the test substances is relevant
to the prediction in this model, accepting the nine catego-
ries (2, 3, 4, 5, 6, 7, 14, 16, and 18) where stereoisomerism
is ignored. Besides, the applicability of the model is lim-
ited to organic substances. The profiler's database com-
prises 716 chemicals (664 positive, 16 negative and
36 with insufficient data) that were investigated for their
DART potential (OECD (Q)SAR Toolbox, 2020; Wu
et al., 2013). It includes 25 different categories and
129 sub-categories, based on defined receptor binding
and chemical properties and, if known, their MOA. It
should be noted that the tool is not intended as a stand-
alone system to support regulatory decision-processes
(OECD (Q)SAR Toolbox, 2020).

2.2.3 | VEGA: Developmental/Reproductive
Toxicity library (PG, v.1.1.0)

The PG (Procter&Gamble) model is an empirically based
decision tree designed by Wu et al., 2013 (see
Section 2.2.2) and, therefore, is very similar to the DART
model of the OECD (Q)SAR Toolbox. However, the PG
model is available at the VEGA platform, which automat-
ically calculates the most similar compounds of the train-
ing set, an applicability domain index (ADI) and based
on this, indicates a reliability (Benfenati, 2020). This
additional information is very helpful for assessing the
prediction, for example, to check the classification in a
certain category based on similar compounds. In this
model, pesticides are predicted to be non-toxic, if their
core structural features fall outside of the chemical
domains covered by the DART decision tree. It is impor-
tant to realize that the PG model, by design, is incapable
of predicting non-reproductively toxic substances, as
there are no such categories. The correct description
would be that there is no known DART precedent, which
does not automatically imply the absence of DART end-
point effects (Wu et al., 2013). As with the CAESAR
model, the sensitivity here at 0.89 is significantly greater
than the specificity at 0.44 (Benfenati, 2020).

2.2.4 | Leadscope Model Applier

The statistical models used in the Reproductive Toxicity
Suite, Repro Female Rat (RFR) v2 and Repro Male Rat
(RMR) v2, are intended to be used in screening, prioriti-
zation and can be used in a weight of evidence approach
particularly for designing studies and interpretation of

findings, which may be used in regulatory contexts
(Leadscope, 2021). These models were developed under a
Research Collaboration Agreement (RCA) with the
United States Food and Drug Administration (FDA)
(Leadscope, 2021). The training set of the RFR model
consists of 894 structures and that of the RMR model
consists of 714 (Leadscope, 2021), which were obtained
from the Informatics and Computational Safety Analysis
Staff (ICSAS) database described in Division of Applied
Regulatory Science (DARS) publications of the FDA
(Matthews et al., 2006a, 2006b). The training set of the
Leadscope RFR model includes adverse effects on the
female reproductive system and fertility, while it does not
include effects on the fetus, gestation, or lactation. Repro-
toxicity in the RMR model comprises adverse effects on
the reproductive system and fertility in male rats
(Matthews et al., 2006a). The RFR model comprises
14.08% positives in its training set, while the RMR model
includes 30.07%. Because of the unbalanced nature of the
training sets, each model combines the results of three
sub-models with balanced sets as average model
(Leadscope development team, personal
communication).

The structural features identified by the models are
either positively or negatively correlated with activity.
Such features are highlighted in the structure to facilitate
a rapid review of features which are associated with activ-
ity and to assess the coverage of the structural elements
by the models. This information is provided in the predic-
tion report. The following eight property descriptors are
used in the RFR and RMR models: A Logp, polar surface
area, hydrogen bond acceptors, rotatable bonds, parent
molecular weight, hydrogen bond donors, parent atom
count, and Lipinski score (Leadscope development team,
personal communication).

The Leadscope software uses the following parame-
ters to manage the AD of the models: in addition to all
property descriptors, at least one structural feature and at
least one chemical in the training set with at least 30%
global similarity to the test chemical is required to gener-
ate predictions (Leadscope, 2021). The similarity score is
based on Leadscope's 27,000 sub-structural features and
hence will be lower than similarity scores that use smal-
ler feature sets.

2.2.5 | MultiCASE Software

CASE Ultra is a commercial tool by MultiCASE, which
provides classification models for different reproductive
and developmental toxicity endpoints based on in vivo
data for mouse, rat, or rabbit from FDA as part of
Research Cooperation Agreement (RCA). Four of these
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endpoint models (see Table 3) were selected for evalua-
tion of their predictive power for pesticides. The defini-
tion of these endpoint models was given by Matthews
et al., 2007 and the pre-processing of data before model-
ing was published in Matthews et al., 2006a. The models
were based on different data sets, but all were statistical
based SA models, which were built by collecting positive
or deactivating alerts from the training data set that are
related to the toxicity being modeled (Chakravarti
et al., 2012). In addition, a local QSAR was built for each
alert with physicochemical descriptors. The outcome of
the prediction was given as the probability of being repro-
toxic on a scale of 0 to 1 and by use of the classification
threshold (CT) (specific for each model) the prediction
was done. A probability between 0 and CT�0.1 leads to a
negative or out of domain classification. When the proba-
bility is between CT�0.1 and CT+0.1 the substance is
classified as inconclusive and above CT+0.1 as positive.
The AD of the model is defined by a fragment based
chemical space defined by the training set chemicals
(Cioffi, 2019a, 2019b, 2019c, 2019d). The AD is assessed
by checking for 3-atom fragments that are not present in
the trainings set. Due to the limits of applicability inor-
ganic compounds, mixtures and large biomolecules are in
principle not covered by the AD. The prediction report
provided by CASE Ultra contains detailed information
about the alerts and structural analogs etc., which are of
great importance when assessing the prediction.

2.3 | Evaluation of predictions

Analysis was conducted in KNIME (version 4.3.2)
(Berthold et al., 2008) and R (version 4.0.2) (R Core
Team, 2019) and figures were produced using the R pack-
age ggplot2 (Wickham, 2016). All shown chemical struc-
tures were copied from PubChem or from the respective
model reports. For the assessment, the predicted toxicity
of the PG and the QSAR Toolbox model was compared
with the classification by the ECHA. In the case of the
CAESAR model, predictions were compared to develop-
mental determined by ECHA. For the Leadscope and
CASE Ultra models, the results of the animal experiments
in rats and rabbits on which the ECHA classification is
based were used. If the pesticide was predicted as

nontoxic the evaluation could be True Negative (TN) or
False Negative (FN) and if the prediction was toxic the
possible evaluations were True Positive (TP) or False Pos-
itive (FP). In the case that no reliable prediction could be
made the evaluation is UNKNOWN (see Table 4).

Besides the typical values of an error matrix (TN, FN,
TP, FP), also the sensitivity (SEN), specificity (SPC), accu-
racy (ACC), and balanced accuracy (BA) were

TABLE 3 The properties of the evaluated CASE Ultra models

Model Description Species # Active/inactive # Descriptors Classification threshold

FDYSM Fetal Dysmorphogenesis Rabbit 128/129 19 0.5

Rat 436/457 111 0.45

FFRET Female fertility Rat 113/113 47 0.55

MFRET Male fertility Rat 180/180 47 0.5

TABLE 4 List of possible predictions of all models and the

resulting evaluations

Model Prediction Evaluation

VEGA_CAESAR NON-toxicant
(experimental value,
good/moderate
reliability)

TN, FN

Toxicant (experimental
value, good/moderate
reliability)

TP, FP

NON-toxicant/toxicant
(low reliability)

UNKNOWN

VEGA_PG NON-toxicant TN, FN

Toxicant TP, FP

OECD (Q)SAR
Toolbox
(OQTB)

Not known precedent
reproductive and
developmental toxic
potential

TN, FN

Known precedent
reproductive and
developmental toxic
potential

TP, FP

Not covered by current
version of the decision
tree

UNKNOWN

Leadscope (LS) Negative/Negative_EV TN, FN

Positive/Positive_EV TP, FP

Missing descriptors/not in
domain

UNKNOWN

CASE Ultra
(CU)

Negative/known negative TN, FN

Positive/known positive TP, FP

Inconclusive/out of domain UNKNOWN

Abbreviations: FN, false negative; FP, false positive; TN, true negative; TP,
true positive.
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determined (for definitions see Table 5). For models that
predict toxicity then sensitivity is a more critical value
than the specificity, because of safety reasons FP are
much more tolerable than FN. In this study, the pesticide
DB and also most of the training sets of the models were
unbalanced data sets; therefore, the BA is calculated
besides the more common ACC.

3 | RESULTS AND DISCUSSION

3.1 | CAESAR model of VEGA

The statistical developmental toxicity QSAR model CAE-
SAR is based on a data set of 292 compounds whereby
the majority of the compounds was classified as “Toxi-
cant” (69%). The model is available via the VEGA plat-
form, which provides an assessment of the reliability in
addition to the prediction. This reliability relates to
whether the connection is inside or outside the
model's AD.

3.1.1 | Evaluation

Table 6 illustrates the reliability distribution within the
tested pesticide database. The vast majority of pesticides
were outside the AD of the model (77%). This shows that

the model cannot provide a meaningful prediction for
most pesticides.

The predictions were evaluated by comparing them
with the GHS classification of ECHA referring to devel-
opmental toxicity (see M&M). Pesticides whose predic-
tion was classified as unreliable (Out of AD) were
classified as UNKNOWN for the evaluation. This resulted
in a large number of false positives, especially for the pes-
ticides, the prediction of which was classified as good
(see Table 7). This observation agrees with the results of
the published validation of the model (Cassano &
Benfenati, 2010), which also show a high proportion of
false positives and thus a low specificity. This is due to
the high overhang of toxic compounds in the training
data set of the CAESAR model and is reinforced by the
opposite distribution in the pesticide database. The pro-
portion of false negatives, on the other hand, is very low,
which leads to a sensitivity of 0.89.

3.1.2 | Example

The following example shows in detail why false predic-
tions are made despite good reliability (ADI > 0.8):
Napropamide is an herbicide that belongs to the chemical
group of acetamides. According to the GHS classification,
napropamide is not toxic to development, but was classi-
fied as developmental toxicant by the CAESAR model,
therefore as a false positive prediction. The reliability was
given as good (ADI = 0.918), which means that napropa-
mide was within the AD of the model. This classification
is based on the two most similar compounds in the train-
ing data set of the model and their classification, which
can be viewed in the report. The two most similar sub-
stances were Phenyltoloxamine and Naproxen with a
similarity score of 0.855 and 0.83 (see Table 8). According
to the model, connections with similarity scores above
0.75 are to be regarded as sufficiently similar. This seems
questionable when comparing the chemical structure of
napropamide with phenyltoloxamine and naproxen. The

TABLE 6 The distribution of

reliability of the developmental toxicity

prediction of 310 pesticides using the

CAESAR model provided by VEGA

Reliability Applicability domain # # [%]

Experimental value The predicted compound could be out of the
Applicability Domain of the model

1 0.32

Good reliability The predicted compound is into the Applicability
Domain of the model

28 9.03

Moderate reliability The predicted compound could be out of the
Applicability Domain of the model

40 12.90

Low reliability The predicted compound is outside the
Applicability Domain of the model

241 77.74

TABLE 5 The formulas for calculating the typical parameters

to evaluate prediction models

Value Name Definition

SEN Sensitivity TP=TPþFN

SPC Specificity TN=TNþFP

ACC Accuracy TPþTN=TPþTNþFPþFN

BA Balanced accuracy SENþSPC=2

Abbreviations: FN, false negative; FP, false positive; TN, true negative; TP,
true positive.
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main structures of napropamide methoxynaphthalene
and acetamide were not mirrored. In addition, phenylto-
loxamine was only part of the test set and therefore did
not serve as the basis for the model. Overall, similarity
scores should be viewed critically, since the values
depend heavily on the choice of descriptors, as can be
seen in Table 8. Next, the toxic classification of the simi-
lar compounds is considered. Both were classified as toxic
to development due to their FDA classification, while the
ECHA only classifies naproxen as developmentally toxic.

3.1.3 | Summary

In summary, many wrong predictions despite good reli-
ability were made because of an insufficiently similarity
of the “most similar compounds” as well as different data
sources for the assessment of toxicity. Therefore, the simi-
larity of the compounds and the data sources should
always be checked when assessing the prediction.

3.2 | PG model of VEGA

The PG model for the prediction of DART is available via
the VEGA platform. It is a rule-based model where the
classification takes place via a decision tree. The com-
pounds are categorized into 25 different chemical catego-
ries including several subgroups. It is important that the
established rules are only suitable for the detection of
DART, but that there are no rules that describe non-
DART structures. Therefore, the consideration of reliabil-
ity only makes sense for categorized and thus classified
as toxic pesticides, since all others should not be within
the AD of the model by definition (see Table S8).

3.2.1 | Evaluation

When analyzing the results, a large number of pesticides
(39, 12.5% of all pesticides, see Table S8) were labeled as

experimental value, which means that they can also be
found in the training data set of the model. Of these, 59%
were false positive, which indicates a different interpreta-
tion of DART in the data set of the PG model and by the
ECHA (see Table 9).

In predicting the DART of the pesticide database,
216 pesticides were not categorized and thus classified as
non-toxic. All other categorized were divided into 14 cate-
gories, with categories 1 (inorganics and derivatives
metals, metallic derivatives, organophosphorus and orga-
nosiloxane compounds), 8 (aromatic compounds with
alkyl, multi-halogen and nitro groups), and 13 (imidazole,
nitro imidazoles derivatives, nitro-furfurylideneamino
and triazole derivatives) being the most common (see
Figure 2a and Table S9).

Overall, the model classified two-thirds of the pesti-
cides that are toxic to reproduction as non-toxic (see
Table 9). These belonged to different chemical groups
and were either not assigned to the “right” category or
there was no suitable category. The proportion of false
positives was 25%. Figure 3 shows the distribution of FP
and TP per category. In all categories, the number of FPs
was higher than the number of TPs except for category
13, which includes triazole and imidazole.

3.2.2 | Example

In the following, the evaluation of the prediction is shown
on the basis of the PDF report provided by VEGA using
the example of 2,4-dichlorophenoxyacetic acid (2,4-D) (see
Table 10). 2,4-D is a phenoxy herbicide belonging to the
auxins group. It was classified as toxicant due to experi-
mental value, which was different to the ECHA classifica-
tion. 2,4-D was categorized into category 8c (aromatic
compounds with alkyl, multi-halogen and nitro groups,
examples: para-dichlorbenzene, 1,2,4-trichlorobenzene)
based on the dichlorobenzene sub-structure (matching
rule/virtual compound, see Table 10). The phenoxy acetic
acid part was not taken into account, which leads to a
misleading categorization. All six most similar compounds

TABLE 7 The results of evaluation of the CAESAR model via typical parameters

# FN # FP # TN # TP # UNKNOWN SEN SPC BA ACC

ALL 2 42 8 17 241 0.89 0.16 0.53 0.36

Experimental value 0 0 1 0 - - 1.00 - 1.00

Good reliability 1 23 1 3 - 0.75 0.04 0.40 0.14

Moderate reliability 1 19 6 14 - 0.93 0.24 0.59 0.50

Note: In addition to the evaluation for all pesticides, the following lines contain the evaluation related to the prediction reliability.

Abbreviations: ACC, accuracy; BA, balanced accuracy; FN, false negative; FP, false positive; SEN, sensitivity; SPC, specificity; TN, true negative; TP, true
positive.
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provided by the VEGA software were phenoxy herbicides
and categorized to category 9c (alpha aryloxy substituted
acetic acid, examples: 2,4,5-trichlorophenoxyacetic acid,
2,4-D Isopropyl ester), which would to be a much more
suitable category also for 2,4-D. Since the prediction was
false positive, although 2,4-D is part of the training data
set of the PG model, the data source was of great interest.
The DART toxicity of 2,4-D was described by the Repro-
ductive respectively Developmental Toxicity Effect Codes
R(T) (Changes in reproductive function/fertility only
occurred at doses where there was significant toxicity on
other organ systems) and D(MT) (Developmental effects
only occur in the presence of maternal toxicity) and the
Reregistration Eligibility Decision document by U.S. EPA
was given as reference U.S. EPA, 2005a, 2005b. In this
case, the problem lies in the fact that the classification is
based on different study data, or the study data were inter-
preted differently.

3.2.3 | Summary

The PDF report of the PG model describes exactly based
on which structure fragment the pesticide was classified
in the respective category. The more structures of the
original molecule are covered, the better. In contrast to
most models, the PG model also offers a detailed descrip-
tion of the sources on the basis of which the compounds
in the data set were classified. All of this information
should be considered when assessing the prediction.

3.3 | DART scheme of OECD (Q)SAR
Toolbox

The aim of the Developmental and Reproductive Toxicity
(DART) scheme implemented in the OECD (Q)SAR Tool-
box is to indicate that the test compound is associated
with chemical structures known to have DART, or that it
contains structural features that are outside the AD of
the DART decision tree (OECD (Q)SAR Toolbox, 2020).
The Toolbox's DART scheme is a rule-based profiler in
which the classification is carried out using a decision
tree (OECD (Q)SAR Toolbox, 2020), similar to the PG
model. This decision tree includes 25 different chemical
categories including 129 subcategories (OECD (Q)SAR
Toolbox, 2020). It should be noted that the established
rules are only suitable for the detection of DART, but
there are no rules that describe non-DART structures. In
contrast to the PG model, with the Toolbox's DART
scheme there is no structure-based comparison of the
predicted substance with the training data set and there-
fore no evaluation of the AD.T
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TABLE 9 The results of evaluation

of the PG model via typical parameters
# FN # FP # TN # TP SEN SPC BA ACC

ALL 34 77 182 17 0.33 0.70 0.52 0.64

Experimental value 0 23 3 13 1.00 0.12 0.56 0.41

Categorized 0 77 0 17 1.00 0 0.50 0.18

Uncategorized 34 0 182 0 0 1.00 0.50 0.84

Note: In addition to the evaluation for all pesticides, the following lines differentiate between experimental

value and categorized or uncategorized pesticides.
Abbreviations: ACC, accuracy; BA, balanced accuracy; FN, false negative; FP, false positive; SEN,
sensitivity; SPC, specificity; TN, true negative; TP, true positive.

FIGURE 2 The pie charts

show the distribution of

pesticides in the chemical

categories defined by Cassano

et al. (2010) predicted by the PG

model (a) or DART scheme of

the OECD (Q)SAR Toolbox (b).

The structural description of the

categories can be found in

Table S7

FIGURE 3 The bar plots

show the evaluation of the

predictions divided by the

predicted categories for the PG

and DART model by OECD (Q)

SAR Toolbox. The aim of the

depiction is to analyze whether

the prediction for some

categories is more reliable than

for others. FP, false positive; TP,

true positive
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The pesticides were classified into one of the following
three categories: “Not known precedent reproductive and
developmental toxic potential,” “Known precedent repro-
ductive and developmental toxic potential,” or “Not cov-
ered by current version of the decision tree.” The latter
category means that the test compound is out of AD of
the DART profiler. Thus, such compounds are not classi-
fied by the DART scheme (OECD (Q)SAR Toolbox, 2020).
In addition, the following subcategories were identified
for the pesticides tested in this category: “Inorganic
chemical,” “Metal atoms were identified, Metals (1a),” or
“Organophosphorus compounds (1b).” For the evaluation
of the pesticide predictions, the category that was identi-
fied outside of the AD is interpreted as UNKNOWN. Fur-
ther, if a substance does not match one of the structural
features associated with the potential to act as a DART
compound, it is classified as “Not known precedent repro-
ductive and developmental toxic potential.”

In contrast to the other models, the DART model of
the OECD (Q)SAR Toolbox distinguishes between stereo-
isomers, which is why these were also used for the pre-
diction when relevant. There were no differences in the
prediction between the stereoisomers of the tested pesti-
cides or in comparison with the 2D structures.

3.3.1 | Evaluation

Most pesticides (56%) were not associated with chemical
structures known to have DART and were therefore

identified as negative, 37% were predicted as positive,
and 6% were outside of the profiler's AD. In compari-
son, the similar PG model implemented in the VEGA
platform predicted 70% of the pesticides as negative,
30% as positive, and 0% were outside the AD of the
model.

In the DART prediction of the pesticide database, a
total of 136 categorized pesticides (117 DART positives
and 19 compounds that were outside the AD) were
divided into 13 categories (Figure 2b) and 18 subcate-
gories. Of these 150 pesticides, 14 were categorized into
two categories. The higher proportion of 174 pesticides
was not assigned to any category (56%) and was therefore
predicted as negative. Table S10 shows the distribution of
pesticides in the respective categories and subcategories.

In the following, either all prediction results of the
Toolbox's DART scheme or only uncategorized and cate-
gorized results are examined (Table 11) and compared
with VEGA's PG model.

When investigating all of the pesticide predictions,
the Toolbox's DART profiler predicted 43% of the pesti-
cides that are DART positive as non-toxic compared to
the ECHA GHS classification. This is a better prediction
result compared to the similar PG model, which classified
66% as non-DART. This group of false negative tested
pesticides similarly includes different pesticide types and
chemical groups in both models. The false negatives were
either not classified to the “right” category or there was
no appropriate category. A sensitivity of 57% and a speci-
ficity of 63% were identified in the Toolbox's DART

TABLE 10 Structure of the tested pesticide 2,4-D, the matching rule/virtual compound and the two most similar compounds, as well as

their predicted categories by the PG model

Name Structure Predicted category

Tested pesticide 2,4-D 8c

Matching rule/virtual compound - -

Similar compound 2 2,4,5-trichlorophenoxyacetic acid 9c

Similar compound 3 2,4-D isopropyl ester 9c
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scheme, while a sensitivity of only 33% and a specificity
of 70% were revealed in the PG model.

Of the 174 uncategorized pesticides identified as nega-
tive in the Toolbox were 87.4% classified as true negative
and 12.6% as false negative. The PG model showed simi-
lar results, in which 216 uncategorized pesticides were
identified 84.3% as true negative and 15.7% as false
negative.

More pesticides were classified in the Toolbox than in
the PG model. Of the 117 categorized DART positives in
the Toolbox were 24.8% classified as true positive and
75.2% as false positive, while of the 94 classified DART
positives in the PG model were 18.1% identified as true
positive and 81.9% as false positive. The distribution of
true positive and false positive predictions per chemical
category in the Toolbox is presented in Figure 3. In all cat-
egories with a higher number of pesticides (i.e., ≥ 7 pesti-
cides/category), the number of false positives was higher
than that of true positives, with the exception of Category
13, which included both with the same frequency. Cate-
gory 13 includes triazole and imidazole. These results are
similar to those of the PG model with the exception that
more true positives were recognized in Category 13. Fur-
ther, as mentioned above, more pesticides were catego-
rized using the Toolbox's DART scheme than the PG
model. In particular, the number of pesticides in chemical
Category 8 (above all “Toluene and small alkyl toluene
derivatives (8a)” and “Polyhalogenated benzene deriva-
tives (8c)”) was much higher with the Toolbox's DART
profiler than with the PG model (Figure 3).

It should be kept in mind that both models contain
unbalanced training sets, with 92.7% positives, only 2.2%
negatives, and 5% substances with insufficient data in
their databases (OECD (Q)SAR Toolbox, 2020; Wu
et al., 2013). Only DART positive structural alerts are
used to categorize the test substances. This strong imbal-
ance in the direction of DART positives in the training
set may cause the high number of false positive results.

In general, the Toolbox's DART profiler has a slightly
better statistical profile in terms of DART prediction com-
pared to the VEGA's PG model. However, both DART
models tend to predict a higher number of false positives

and therefore show low specificity. Hence, both systems
are “overcautious” and may hinder the regulatory
decision-process of pesticides.

One of the model differences is that the Toolbox's
DART profiler classifies all pesticides of Category
1 (“Inorganic chemical,” “Metal atoms were identified,
Metals (1a),” and “Organophosphorus compounds (1b)”)
as “Not covered by current version of the decision tree”
(UNKNOWN; Figure 3), while the pesticides in Category
1 (“Inorganics and derivatives: metals, metallic deriva-
tives, organophosphorus, and organosiloxane com-
pounds”) of the PG model are assigned as toxicants.
However, when comparing the Category 1 pesticides of
both models with the ECHA GHS classification, none of
them were classified as DART positive. It can therefore
be concluded that an incorrect classification was imple-
mented in the PG model for Category 1 substances.

A more detailed comparison of the predictions of both
models shows that of the 310 pesticides tested, 157 were
not categorized by both models, 66 were assigned simi-
larly, and only 2 pesticides (1,4-dimethylnaphthalene and
2,4-D) were classified in different categories. Further,
54 were only categorized by the DART profiler of the
Toolbox and 17 only by the PG model (see Figure S1A).
Of the 54 pesticides categorized only by the Toolbox's
DART profiler, most were classified as Category 8 (“Tolu-
ene and small alkyl toluene derivatives (8a)”: 29 and
“Polyhalogenated benzene derivatives (8c)”: 10) and
13 (“Triazole derivatives (13c)”: 10) (Figure S2A). In con-
trast, of the 17 pesticides that were only categorized by
the PG model, most of them were assigned to Category
1 (“Inorganics and derivatives: metals, metallic deriva-
tives, organophosphorus and organosiloxane com-
pounds”: 4) and 8 (“Aromatic compounds with alkyl,
multi-halogen, and nitro groups”: 3) (see Figure S2B). In
addition, the Toolbox's DART profiler assigned 14 pesti-
cides to 2 categories, 5 (e.g., fluquinconazole) of which
were only categorized by the DART profiler, for 8 (e.-
g., penconazole) one categorization was similar to the PG
model and the other was not and for 1 (dicloran) both
categories of the DART profiler were similar to the PG
model (Figure S1B).

TABLE 11 The results of evaluation of the DART scheme of the OECD (Q)SAR Toolbox via typical parameters

# FN # FP # TN # TP # UNKNOWN SEN SPC BA ACC

ALL 22 88 152 29 19 57 63 60 62

Categorized 0 88 0 29 0 100 0 50 25

Uncategorized 22 0 152 0 0 0 100 50 87

Note: In addition to the evaluation for all pesticides, the following lines differentiate between categorized and uncategorized pesticides.
Abbreviations: ACC, accuracy; BA, balanced accuracy; FN, false negative; FP, false positive; SEN, sensitivity; SPC, specificity; TN, true negative; TP, true
positive.
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3.3.2 | Example

In a group-based case study, the classification of DART
positive pesticides in the Subcategory “Toluene and small
alkyl toluene derivatives (8a)” by the Toolbox's DART
profiler is investigating in the following.

The structural framework of this subcategory imple-
mented in the Toolbox is presented in Wu et al., 2013
and further developed by Procter & Gamble and LMC,
Bulgaria (OECD (Q)SAR Toolbox, 2020). Only toluene
and a single attached alkyl chain substituent (< 5 carbon
atoms) are structural features of this category according
to Wu et al., 2013 (Figure 4). The possible alkyl chain
substituents can be at ortho-, para- or meta-positions.
Members of the training data set (e.g., toluene, p-xylene
or butyltoluene) meet these conditions (Wu et al., 2013).

It is noticeable that all 29 pesticides assigned to Sub-
category 8a by the Toolbox contain, in addition to tolu-
ene, larger substitutes (> 5 carbon atoms; including N, O,
Cl, F, S, or Br atoms) that are not described in the origi-
nal category definition of Wu et al., 2013 (selected pesti-
cides shown in Table 12). Therefore, the categorization in
Subcategory 8a is considered wrong, since the pesticides
do not belong to the chemical class of toluene and small
alkyl toluene derivatives. The similar PG model, on the
other hand, which is closer to the description of Wu et al.
(2013), did not classify any of the pesticides in Subcate-
gory 8a.

In conclusion, the classification of the 29 pesticides in
Subcategory 8a is overall wrong or is not based on the
requirements described in Wu et al., 2013. Hence, the
Toolbox's DART profiler is not reliable to predict the
DART potential of pesticides that contain toluene and
alkyl toluene derivatives.

3.3.3 | Summary

The case study with toluene and alkyl toluene derivatives
illustrates well the general problem of the QSAR predic-
tion for pesticides using the Toolbox's DART scheme.

Many false negative and false positive predictions were
generated with the Toolbox, probably mainly due to
incorrect classification of pesticides into different chemi-
cal categories. Therefore, when evaluating the predic-
tions, care should be taken to ensure that the
categorization of the chemical classes is correctly chosen
by the Toolbox.

3.4 | Leadscope

In the present publication, prediction results from Repro
Female Rat (RFR) and Repro Male Rat (RMR) statistical
QSAR models of the Reproductive Toxicity Suite were
analyzed. The training set of the Leadscope RFR model
includes only adverse effects on the female reproductive
system and fertility, while it does not include effects on
the fetus, gestation, or lactation. Reprotoxicity in the
RMR model only comprises adverse effects on the repro-
ductive system and fertility in male rats (Matthews
et al., 2006a). Therefore, the predictions were compared
with the results of the experiments relevant for the classi-
fication according to ECHA, based on the endpoints
mentioned.

Both QSAR models assess potential reprotoxicity of
test substances based on a statistical weighting of struc-
tural features present in the test structures as well as
whole molecule descriptors. If experimental data are
available within the Reproductive Toxicity Suite, these
data will be used instead of the QSAR prediction. Proba-
bility scores below the cut off value of .5 are negative and
values equal to or greater than .5 are considered positive
(see Figure S3).

3.4.1 | Evaluation

When analyzing the prediction results of both models
(Table 13), about half of the pesticides were classified as
“UNKNOWN,” which comprises “Missing Descriptors”
and “Not in Domain” calls (RFR: 47%, RMR: 59%) (see
Table S11). A “Not in Domain” call indicates that the pre-
dicted pesticides were outside the model's AD. In the case
of “missing descriptors,” this is due to inorganic struc-
tures for which the whole molecule descriptors cannot be
calculated. Due to this classification, 4 reprotoxicants and
143 non-reprotoxicants could not be predicted by the
RFR model, and 4 reprotoxicants and 179 non-
reprotoxicants were not recognized by the RMR model
when the predictions were compared with the ECHA
GHS classification. Thus, 50 or 36% of the reprotoxicants
could not be detected for each model, as they were out-
side the AD.

FIGURE 4 The structural scope of “Toluene and small alkyl

toluene derivatives (8a).” R = H, Me, nBu, iPropyl, tBu
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The Leadscope RFR and RMR models contain experi-
mental data of the Informatics and Computational Safety
Analysis Staff (ICSAS) database (Matthews et al., 2006a)
with data records from FDA segment I (reprotoxicity in
male and female rats) studies. The data were obtained
from publicly available sources (e.g., Shepard's Catalog of
Teratogenic Agents, TERIS, REPROTOX, and RTECS), as
well as studies reported in drug labeling (Matthews
et al., 2006a).

When comparing the prediction of pesticides, which
are not only available in the pesticide database, but also
in the training set, it is noticeable that these pesticides
with experimental data are also sometimes “incorrectly”
predicted (see Table S12). This is due to differences in the
data from the Reproductive Toxicity Suite and the ECHA
data set. The reason for these differences can be, for
example, different in vivo studies on which the assess-
ment is based or different evaluation of reprotoxic effects
as adverse or not adverse.

Both models show a low sensitivity (RFR: 0.25, RFM:
0.43) in predicting the specific reprotoxicity endpoints of
pesticides, while the specificity is high (RFR: 0.96, RFM:
0.76) (Table 13). If the statistical profile of the pesticide
predictions is compared with those of the organic chemi-
cals in the Leadscope manual, the sensitivity for the
organic chemicals is much higher in both models (RFR:
61%, RFM: 85%), while the specificity is comparable
(RFR: 95%, RFM: 73%) (Leadscope, 2021). The low sensi-
tivity of both Leadscope models confirms that they
should not be used in isolation for the regulatory evalua-
tion of pesticides and additional lines of evidence such as
through an expert review of model features and poten-
tially reactive features, a consensus approach using pre-
dictions from other models in the Reproductive Toxicity
Suite and/or experimental findings are needed.

As mentioned above, structural features and property
descriptors are used to determine a probability score that
drives the prediction. The distribution of probability
scores per prediction can be seen in Figure S3. It is cru-
cial for the assessment of the prediction, that the positive
or negative statement is based on a threshold value (0.5)
and a connection with the stability of the prediction and
the absolute value of the probability cannot be considered
without other information.

3.4.2 | Examples

In a group-based case study, the prediction results of the
structurally diverse conazole fungicides (imidazoles and
triazoles) from the two selected RFR and RMR models
were analyzed (see Table S13). Conazoles, a class of azole-
based fungicides, are widely used as pesticides, but also as
human pharmaceuticals to treat mycoses (Kjærstad, Tax-
vig, Nellemann, Vinggaard, & Andersen, 2010; Zarn,
Brüschweiler, & Schlatter, 2003) during pregnancy (King,
Rogers, Cleary, & Chapman, 1998; Mogensen et al., 2017).

Of the 24 conazole fungicides included in the EFSA
conclusions, two substances (epoxiconazole and triadime-
nol) are reprotoxic in female rats and one (triadimenol)
in male rats according to their ECHA GHS classification.
However, only one of the tested conazoles
(i.e., epoxiconazole) was correctly predicted as reprotoxic
by the RFR model, while the RMR model identified the
substance false positive. The other reprotoxic pesticide,
triadimenol, was either classified as false negative in the
female model or outside the AD in the male model.

The negative prediction of triadimenol by the RFR
model, due to the detected structural feature contribution
of benzene, 1-alkoxy, 4-chloro (Table 14) and the

TABLE 12 A selection of pesticides that were incorrectly classified in subcategory 8a

Name 1,4-dimethyl-naphthalene Bifenthrin Cyazofamid Iprovalicarb Metrafenone

CAS no. 571-58-4 82657-04-3 120116-88-3 140923-17-7 220899-03-6

Structure

TABLE 13 The results of

evaluation of the two Leadscope models

Repro Female Rat (RFR) and Repro

Male Rat (RMR) via typical parameters

Model # FN # FP # TN # TP # UNKNOWN SEN SPC BA ACC

RFR 3 3 156 1 147 0.25 0.98 0.62 0.96

RMR 4 26 94 3 183 0.43 0.78 0.61 0.76

Abbreviations: ACC, accuracy; BA, balanced accuracy; FN, false negative; FP, false positive; SEN,

sensitivity; SPC, specificity; TN, true negative; TP, true positive.
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property descriptors, which resulted in a probability score
of .113, was evaluated as a false negative. The poor cover-
age of the structure by the feature identified indicates
that an expert review of the prediction is necessary. An
expert review may consider the training set structures,
which map to the feature, potentially reactive features,
and analogous structures. Analogous structures with a
similarity score greater than 30% are indicated. Of these,
it is important to examine the analogs and identify if any
(based on structural or biological similarity) would be rel-
evant for assessing the validity of the model prediction.
The analog field contains two conazoles (croconazole and
fluconazole, see Table 14). Based on representation from
the same class, these analogs would be considered useful
for further analysis. Croconazole is indicated as positive
for adverse effects to female reproductive organs and fer-
tility, while fluconazole is negative for these effects.
Accessing the underlying data for fluconazole indicates
result findings of specific developmental abnormalities to
the central nervous system, craniofacial, and musculo-
skeletal system (Lopez-Rangel & Van Allen, 2005). Such
information may alert the reviewer to the lower reliabil-
ity of the negative prediction and may support overturn-
ing the prediction based on review findings. The RMR
model identified a kind of chlorophenol feature as a miti-
gating structural feature (Table 14), but no analog with at
least 30% global similarity to triadimenol could be
detected by the model. Therefore, the RMR model con-
sidered the pesticide to be outside the AD.

For epoxiconazole, the true positive classifications by
the RFR model and false positive classification by the
RMR model were based on evidence of structural feature
contributions (RFR: benzene, 1-halo, 4-oxymethyl-fea-
ture, RMR: Fluorobenzene structure represents one of
four identified features, see Table 15) and property

descriptors associated with the predicted specific effect.
Given the totality of positive/negative contributing traits
in the pesticide structure, the positive probability for
reprotoxicity in both models was above the cut-off: the
RFR model identified a positive probability of .614 for the
true-positive prediction and the RMR model for the false
positive result was .514, which is slightly above the cut-
off positive prediction by both Leadscope models. The
structural similarity of the analogs with epoxiconazole
was between 32 and 39% in both models. Looking at the
identified analogs, it is striking that of the 7 (RFR) or
6 (RMR) conazole analogs, only one is positive for the
respective specific toxicity (see Table 15). This could mis-
lead to the unreflecting assumption that both predictions
are wrong, although this is only true for the RMR predic-
tion. Therefore, this information must be carefully con-
sidered in the context of an expert opinion.

Hence, the low reliability of the model predictions
suggests that an expert review is necessary in predicting
reprotoxic conazole fungicides within a chemical class
that is mainly negative for toxic effects on reproduction.

3.4.3 | Summary

The conazole case study illustrates quite well the general
problems of the QSAR prediction for pesticides using the
Leadscope software. One of the main issues is that the
identified structural features only cover part of the pesti-
cide molecule. In the case of the conazoles, mainly ben-
zene structures were identified. Therefore, an expert
review is recommended, especially in the case of poor
structural coverage. Relevant analog structures (inside
and outside the Leadscope database) should also be taken
into account. Additionally, it is important for the

TABLE 14 Detected structural features and selected training set analogs of triadimenol, which is reprotoxic in female and male rats

Predicted pesticide Model Evaluation Detected structural features Selected relevant analog structures

Triadimanol
CAS no. 55219-65-3

RFR v2 FN Benzene, 1-alkoxy-, 4-chloro- Croconazole
Positve for RFR

Fluconazole
Negative for RFR

RMR v2 UNKNOWN Chlorophenol- No analog structures reported.
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assessment to confirm that the probability score is not
directly related to the reliability of the prediction. Over-
all, a majority of the pesticides fell outside the AD of the
model. This is due to the fact that for many pesticides not
all property descriptors, not at least one structural feature
and/or not at least one analogous substance could be
identified in the training set.

3.5 | CASE ultra

In the following, the predictions of four selected CASE
Ultra models (see Section 2.2.5) are examined. All models
are statistically based structural alert models that use dif-
ferent data sets based on the respective endpoint. The
classification is based on the alerts from which the proba-
bility is calculated. If an alert is assigned to the pesticide,
the prediction can be positive or inconclusive. If there is
no alert, the prediction is negative or out of domain. A

known positive or known negative prediction can occur
in both cases.

3.5.1 | Evaluation

The proportion of pesticides for which no prediction
could be made (UNKNOWN), because they were either
outside the AD of the model (out of domain) or the data
were inconclusive (inclusive), was between 29 and 67%
depending on the model (see Table 16 and Table S14). As
a result, between 17 and 67% of reprotoxic pesticides
were not recognized (see Table S14).

With the CASE Ultra models, there is also the case
that tested pesticides also appear in the training data set
of the respective model. This is then referred to as known
positive/negative in the prediction. With the FDYSM_Rat
and the MFRET_Rat model, 10 or 5 of these pesticides
are nevertheless incorrectly predicted, which suggests a

TABLE 15 Detected structural features and selected training set analogs of epoxiconazole, which is reprotoxic in female rats

Predicted pesticide Model Evaluation Detected structural features Selected relevant analog structures

Epoxiconazole
CAS no. 135319-73-2

RFR v2 TP Benzene, 1-halo-, 4-oxymethyl- Oxiconazole
Positive for RFR

Econazole
Negative for RFR

RMR v2 FP Benzene, 1-fluoro- Terconazole
Positive for RMR

Econazole
Negative for RMR
For structure, see above

Benzene, 1-alkyl-,2-halo-

Benzene, 1-alkyl-,2-chloro-

Benzene, 1-alkyl-,4-halo-
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different data basis or interpretation of the data (see
Table S15). Since the CASE Ultra models cannot access
the underlying data, no further investigations were
carried out.

All four CASE Ultra models showed a lower sensitiv-
ity (between 0.33 and 0.6) than specificity (between 0.61
and 0.87). The FDYSM_Rat model was particularly
noticeable due to its high number of false negatives (19),
6 of which belonged to the triazoles. Since there is no
external validation available for the CASE Ultra models,
no comparison was possible.

The reprotoxicity is determined in the CASE Ultra
models using the “Probability” value. The larger the
value, the more reliable a positive prediction should theo-
retically be. However, this is not the case in any of the
models, as can be seen in Figure S4.

3.5.2 | Alerts

The determination of the reprotoxicity of the CASE Ultra
models is based on statistical structural alerts. These differ
between the models. If no alert fits, the prediction is lim-
ited to known positive/negative, negative and out of
domain. Otherwise, all predictions are possible, including a
negative one. Several alerts are possible for each pesticide,
but overall, no alert was assigned to over 60% of the pesti-
cides for all models (see Table S16). Figure S5 shows the
distribution of FN, FP, TN TP, and UNKNOWN per alert
and model. The problem with the alerts used is that they
are often very general and only cover very small sections of
the molecule. Several alerts would always be required to
cover the entire molecule, which is rarely the case. From
the plot just described, therefore, it was not possible to
select any alerts that would provide reliable predictions.

3.5.3 | Example

The prediction of reprotoxic potential of the triazoles by
the FDYSM_Rat model should be used in the following
to show the problems of the CASE Ultra models. The

pesticide DB contains 21 triazoles of which 10 showed
fetal dysmorphogenesis in rat studies relevant for ECHA
classification. Three of them were predicted correctly, but
six as negative and one was outside the AD of the model
(see Table 17). Interestingly, the alert for all TPs was:
C3H2-C3-c:cH:cH:c:cH (Alert ID 105), which describes
an aromatic structure with at least one undefined substit-
uent and a defined secondary substituent, which is a qua-
ternary carbon followed by a secondary carbon. This alert
only describes a small part of the molecule which is prob-
ably not very relevant for the toxicity mechanism as three
non-reprotoxic triazoles had the same alert (difenocona-
zole, flutriafol, myclobutanil). No alert could be assigned
for the 6 FN triazoles, which indicates that there is a data
gap here. Each prediction includes the 3 closest neigh-
bors of the test chemical in the training set. In the case of
the triazoles, there are some triazoles and imidazoles
among these, but a similarity above 0.7 is never reached.
Thus, these cannot be regarded as analog and therefore
only have a limited significance.

3.5.4 | Summary

The example shows the problem of the alerts within the
CASE Ultra models. These form the basis of the predic-
tion, but often only depict a small part of the molecular
structure of the pesticides. This creates a high number of
FPs. On the other hand, the critical structures are some-
times not recorded, or there is no suitable alert at all for
reprotoxic pesticides, although all fragments are present
in the data set. When evaluating the prediction, the alerts
and their relevance should always be considered. The
probability increases with an increasing number of alerts
(not continuously) but is otherwise not a reliable indica-
tor for the correctness of the prediction. When evaluat-
ing, the similarity of the 3 closest neighbors should also
be considered. If this is more than 0.7, the substances can
be considered analogous according to the model descrip-
tion. Overall, the assessment of the predictions of the
CASE Ultra models also requires critical questioning by
reprotoxicology experts.

TABLE 16 The results of evaluation of the four tested CASE Ultra models FDYSM_Rabbit, FDYSM_Rat, FFERT_Rat and MFERT_Rat

via typical parameters

Model # FN # FP # TN # TP # UNKNOWN SEN SPC BA ACC

FDYSM_RABBIT 4 18 75 5 208 0.56 0.81 0.68 0.78

FDYSM_RAT 19 75 115 10 91 0.34 0.61 0.48 0.57

FFERT_RAT 2 18 132 1 157 0.33 0.88 0.61 0.87

MFERT_RAT 2 62 106 3 137 0.60 0.63 0.62 0.63

Abbreviations: ACC, accuracy; BA, balanced accuracy; FN, false negative; FP, false positive; SEN, sensitivity; SPC, specificity; TN, true negative; TP, true
positive.
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TABLE 17 All triazoles of the pesticide DB that showed fetal dysmorphogenesis in ECHA classification-relevant studies in rats and

their prediction by the FDYSM_Rat model from CASE Ultra

Name CAS no. Structure Prediction/probability/alert

Ipconazole 125225-28-7 Negative/30.3/no alert

Metconazole 125116-23-6 Negative/30.3/no alert

Paclobutrazol 76738-62-0 Negative/30.3/no alert

Penconazole 66246-88-6 Negative/30.3/no alert

Tebuconazole 107534-96-3 Negative/30.3/no alert

Triadimenol 55219-65-3 Negative/30.3/no alert

Epoxiconazole 133855-98-8 Out of domain/30.3/no alert

Bromuconazole 116255-48-2 Positive/56/alert ID 105: C3H2-C3-c:cH:cH:c:cH

Cyproconazole 94361-06-5 Positive/56/alert ID 105: C3H2-C3-c:cH:cH:c:cH

Propiconazole 60207-90-1 Positive/56/alert ID 105: C3H2-C3-c:cH:cH:c:cH

Note: When an alert was found, the relevant structure in the molecular pesticide structure is highlighted in green.
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3.6 | Comparison

There are several ways to compare the predictive power
of the different models. The accuracy used for this is usu-
ally the one that should not be considered on its own in
the case of an unbalanced training or test data set. This
can be seen, for example, on the RFR model from Lead-
scope, which was rated the highest with an accuracy of
0.96. However, the sensitivity was only 0.25, which
means that three quarters of all reprotoxic pesticides
were not detected (see Figure 5 and Table S17). The bal-
anced accuracy, which is the mean value of sensitivity
and specificity, offers a better reference point. For the
evaluation of the models, above all, sensitivity and speci-
ficity are decisive. Since the safety aspect plays a decisive
role in predicting reprotoxicity and a low specificity is
more tolerable than a low sensitivity, the focus is more
on sensitivity. A typical representation for this is the
ROC diagram in which the false positive rate (FPR,
1-sensitivity) is plotted against the true positive rate
(TPR, sensitivity). The closer the models are to the diago-
nal (black line), the more the prediction resembles a

random process (see Figure 5b). Another important point
to consider when assessing predictive power is how many
of the pesticides were within the AD of the model and
given a reliable score. In the models tested, this was
between 100 and 22%.

The high number of “UNKNOWN” shows clearly that
the majority of the models are not suitable for predicting
pesticides, as these are outside the chemical space of the
models. A sensitivity above 0.55 is only achieved with
four models, whereas the CAESAR model has a specific-
ity of only 0.16. The other three models (OQTB, CU_F-
DYS_Rabbit and CU_MFERT_Rat) achieve a specificity
of at least 0.63. According to this statistical evaluation, all
models are insufficient for predicting reprotoxicity or the
partial aspects.

Also, in the overall comparison of the PG model with
the DART scheme of the OECD (Q)SAR Toolbox, it
becomes clear that the predictions of the models differ
significantly, although both are originally based on the
same decision tree. A detailed discussion of all differ-
ences can be found in Section 3.3.1. The Leadscope and
CASE Ultra reprotoxicity models are based on the same

FIGURE 5 Plot of the

accuracy against the balanced

accuracy (a) and the FPR against

the TPR (b) per model. The size

of the points depends on the

percentage of pesticides

predicted. The black line shows

the diagonal of the plot

(TPR = FPR). The closer the

points are to the diagonal, the

more the model's prediction

resembles a random process
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database, but their models differ greatly (statistical QSAR
vs. structural alert system), which also leads to large dif-
ferences in the predictions. Both models predict toxicity
of individual endpoints rather than overall reprotoxicity.
However, this does not lead to an improvement in predic-
tion reliability, as originally expected.

To find out whether the prediction quality differs
between the chemical groups within the pesticide data-
base, this was examined for the 12 largest chemical
groups (see Table 2). Figure 6 shows the distribution of
FP, FN, TN, TP, and UNKNOWN per chemical group for
each model. These differed greatly between the models.

Of the 13 carbamates, 2 are classified as reprotoxic by
the ECHA. Benfuracarb due to male reprotoxicity in the
rat and carbendazim also due to male reprotoxicity in the
rat but also fetal dysmorphogenesis in the rat and rabbit.

When comparing the predictions of the PG model and
the DART model of the OQTB for all carbamates, it is
noticeable that the two reprotoxic pesticides were recog-
nized as such, but most of the others were predicted false
positives. In the PG model, almost all carbamates were
also present in the training data set, which on the one
hand suggests a different interpretation of the experimen-
tal data and on the other hand a general tendency of both
models to classify carbamates as reprotoxic. The develop-
mental toxicity shall be predicted by the CAESAR model.
Most of the carbamates (eight pieces) were outside the
model's AD and all others were predicted to be develop-
mentally toxic, with only one actually being developmen-
tally toxic. This phenomenon is not specific to
carbamates, but in general the majority of pesticides was
predicted by the CAESAR model to be developmentally

FIGURE 6 All bar plots show the distribution of FN, FP, TN, TP, and UNKNOWN per chemical group for a different prediction model.

A more detailed description of the chemical groups can be found in Table 2
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toxic. In all CASE Ultra models, which each predict dif-
ferent aspects of reprotoxicity, more than half of the car-
bamates were not within AD or the prediction was
inconclusive, including the reprotoxic pesticides. Only
the FDYSM_Rat model predicted two carbamates as
FP. In the Leadscope models, there were four and five
carbamates outside the AD of the models. In the RFR
model, the majority of carbamates TN and only one FP
was predicted. Two reprotoxic ones were expected in the
RMR model, of which carbendazim was recognized, but
benfuracarb was predicted to be FN. Two carbamates
were predicted in FP and four in TN.

Overall, it is noticeable that the prediction quality of
the models, except for the CAESAR model, which gener-
ally tends to predict FP, differs between the chemical
groups. If one compares the prediction quality of the
chemical groups between the models, there are also
major differences (e.g., dinitroaniline) and some models
are then better suited than others for predicting the
reprotoxicity of certain chemical groups.

By looking at the prediction quality in relation to
selected groups, it becomes clear that the individual
models can provide good predictions under certain condi-
tions. When predicting the reprotoxicity using in silico
models, it is therefore important to consider the predic-
tions of several models and to weight them using the
additional information provided in the report (alerts, sim-
ilar compounds from the training data set) in order to
arrive at a well-founded opinion. The relevant additional
information that should be analyzed is summarized in
Table 18.

4 | CONCLUSION

The aim of this paper was to test the performance of
known models for predicting reproductive toxicity of

pesticides and to use the results to analyze the strengths
and weaknesses of the models. This resulted in suggested
solutions for improving the models. The paper is
intended to address three different target groups: In silico
experts are to be made aware of the special problems of
reprotoxicity, regulatory toxicologists are to be made
aware of the limitations of the individual models and
reprotoxicologists are to be made familiar with the in
silico topic in order to point out what contribution they
can still make.

The models used differed in several aspects (see
Table 1 for details):

• Type of model (statistical model, expert rule-based
model or mixture)

• Training data set
• Endpoint (general reprotoxicity vs. selected reprotoxi-

city endpoints)

However, the comparison of the models does not
allow any statement to be made as to which model type,
training data set or endpoint is most suitable, since all
models have major weaknesses in assessing reprotoxicity
of pesticides. In four of the nine models, no reliable pre-
diction can be made for over 50% of the pesticides and in
five out of nine models, not even half of the reprotoxic
pesticides are recognized (SEN < 0.5). In contrast, all
models except the CAESAR model recognize at least 60%
of the negative pesticides. Of course, the performance of
the models differs but overall, no model is convincing if
all three factors (number of predicted pesticides, SEN,
SPC) are taken into account.

There are three main reasons for the poor perfor-
mance of the models in relation to the pesticide database:

1. Many pesticides are not part of the chemical space of
the models. For example, the CAESAR model, which
is based on a drug database, cannot provide a reliable
prediction for more than three quarters of all pesti-
cides. Due to its database, it is only suitable to a lim-
ited extent for predicting pesticides. In general,
however, this problem is due to a too small database
with high-quality reprotoxicity studies of pesticides.
Therefore, larger databases based on uniform study
designs would be needed to improve the models.

2. Definitions of reproductive toxicity vary. The unifica-
tion of the assessment of toxicity is still a current issue
for the in vivo area since the interpretations are also
partly different here. For in silico toxicology, an
important step here would no longer be to predict the
entire reprotoxicity, but rather more easily definable,
specific endpoints or effects. Even if this could not be
shown with the models used, a better predictive power

TABLE 18 Possible additional information on the prediction,

which is made available in the reports

Information about… Important questions

Structural alert/feature/
predicted category

Does the selected structural
fragment match the key
functional groups of the
pesticide?

Analog structures/similar
compounds from training
set

How similar are these
compounds?

Data sources Which source is the
classification based on? Which
effects are described in this
source?
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can be expected from endpoint-specific models, since
they are based on a smaller number of possible AOPs.

3. The partially insufficient definition of similarity
within models. With the models provided by VEGA,
the most similar molecules from the respective train-
ing data set are displayed in the report and used to
calculate the reliability score (ADI). It is important to
note that this analysis is independent of the prediction
model. VEGA tended to overestimate the similarity of
the structures (see Section 3.1.2 example). With the
PG model and the DART scheme of the OECD (Q)
SAR Toolbox, there were sometimes incorrect classifi-
cations into categories (see Sections 3.2.2 and 3.3.2).
The Leadscope models include structural features,
and the CASE Ultra models are alarm based. In both
cases it would be desirable for the structural features
or alerts to cover the entire molecular structure, but
this is practically never achieved, which is more seri-
ous in the case of the CASE Ultra model. Since all pre-
diction models, regardless of type, are essentially
based on similarity, optimizing the calculation of simi-
larity is a crucial step in improving the models. In
order to describe similarity, there are more possibili-
ties apart from fingerprints and descriptors, which
should be used: AOPs, metabolism, receptor binding
etc. At the structural level, the use of SMARTs or
higher order substructures, that could even include
metabolism information, would also be a possibility.
It is crucial that the structures and properties relevant
to the toxicity can be fully described using the selected
parameters.

Despite all their weaknesses, the models can be of
great use when used critically and the results compared
to other models. Ensemble/consensus-type approaches
are suitable for this, which potentially make it possible to
compensate for the weaknesses of one model with
another. All models provide the reasons for the predic-
tion (alerts) and/or similar molecules from the training
data set in their respective report. This information usu-
ally allows a good assessment of the plausibility of the
prediction, provides clues for further research and should
therefore always be analyzed carefully. The DART
scheme of the OECD (Q)SAR Toolbox and the PG model
occupy a special position within the tested models, since
they are both based on the expert-known-based decision
tree by Wu et al. (2013). This gives a good overview of
chemical groups with known reprotoxicity and can serve
as a starting point for the development/inclusion of
MOAs and AOPs.

All the points mentioned are of course suitable for
improving prediction models, regardless of the type of
toxicity. For reprotox, however, the conditions are more

difficult overall due to the small amount of available and
high-quality data, the complexity of the underlying stud-
ies, the knowledge gaps regarding the modes of action
and the point that reprotoxicity is a mixture of effects,
which encompass a number of endpoints. Solving the
problems just described is essential for the development
of successful reprotoxicity models. Until then, using the
models already available requires a critical look at the
results based on reprotox expertise.
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