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Abstract

Realization of reaching and grasping movements by a paralytic person or an amputee would greatly facilitate her/his
activities of daily living. Towards this goal, control of a computer cursor or robotic arm using neural signals has been
demonstrated in rodents, non-human primates and humans. This technology is commonly referred to as a Brain-Machine
Interface (BMI) and is achieved by predictions of kinematic parameters, e.g. position or velocity. However, execution of
natural movements, such as swinging baseball bats of different weights at the same speed, requires advanced planning for
necessary context-specific forces in addition to kinematic control. Here we show, for the first time, the control of a virtual
arm with representative inertial parameters using real-time neural control of torques in non-human primates (M. radiata).
We found that neural control of torques leads to ballistic, possibly more naturalistic movements than position control alone,
and that adding the influence of position in a hybrid torque-position control changes the feedforward behavior of these
BMI movements. In addition, this level of control was achievable utilizing the neural recordings from either contralateral or
ipsilateral M1. We also observed changed behavior of hybrid torque-position control under novel external dynamic
environments that was comparable to natural movements. Our results demonstrate that inclusion of torque control to drive
a neuroprosthetic device gives the user a more direct handle on the movement execution, especially when dealing with
novel or changing dynamic environments. We anticipate our results to be a starting point of more sophisticated algorithms
for sensorimotor neuroprostheses, eliminating the need of fully automatic kinematic-to-dynamic transformations as
currently used by traditional kinematic-based decoders. Thus, we propose that direct control of torques, or other force
related variables, should allow for more natural neuroprosthetic movements by the user.
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Introduction

Planning and execution of motor tasks, such as lifting a cup of

coffee, take into consideration the required forces. This becomes

apparent when we encounter an object that is much lighter or

heavier than expected, making us change our motor strategy to

compensate for these newly learned properties of the object. Such

properties are called dynamic properties, or properties that take

into account the inertia of the object, as well as forces and torques

involved in the motion. Kinematics along cannot explain this

phenomenon as they take into account the position, velocity and

acceleration but not the used or required forces or torques.

Additionally, manipulation of the grasped object, such as an egg,

requires a relatively narrow range of forces to be applied in order

to pick it up without breaking it. The current state-of-the-art BMI

prototypes depend exclusively on position or velocity control [1–

10]. Therefore, currently these BMI algorithms rely on automatic

manipulator algorithms to determine the endpoint forces in order

to achieve the controlled position or velocity. Thus, fine context-

specific control of endpoint forces are beyond the control of most

current BMIs [10], a problem that we start to address in the

present work.

Movements like waving one’s hand in the air vs. water can have

the exact same kinematic profiles but require different amounts of

forces/torques because of different dynamic properties of the

environments. Real-life use of a brain-controlled robotic arm/

hand would thus likely benefit from control of dynamic variables

like end-point forces and joint torques in addition to kinematic

variables. In spite of an established relationship between motor

cortical activity and movement dynamics [11–18], real-time use of

dynamic signals to control a brain-machine interface (BMI) has

not been demonstrated. Here we present for the first time a torque

controlled BMI in addition to a hybrid joint torque and position

controlled BMI using primary motor cortical (M1) spiking activity
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acquired through high-count microelectrode arrays [19] implant-

ed bilaterally in M1 shoulder and elbow regions [20]. Such a

control offers the BMI user direct control over the forces and

torques necessary for execution of the movement trajectories. This

makes context-specific, precise application of the isometric forces

possible.

Materials and Methods

Behavioral task
All the behavioral and surgical procedures were approved by

IACUC of SUNY Downstate Medical Center and closely

supervised and assisted by the Division of Laboratory Animal

Resources (DLAR). Two bonnet macaques (M. radiata, one female

(Subject 1) and one male (Subject 2), weights 3.7–4.0 kg) were

trained for this work. The chair training and the task training were

based on the principles of positive reinforcement and operant

conditioning. No negative reinforcement or aversive stimuli were

offered for incomplete/incorrect trials or otherwise.

The subjects were put on controlled water access (CWA) for

reaching task training and during the manual and BMI

experiments. This regime was in line with the standards

established at NIH. Each subject has different water/fluid

requirements and cannot be generalized. Such requirements were

determined by drinking patterns of the past couple of months. The

subjects almost always take the required fluid during the training/

experimentation by the water/juice rewards offered. However, it

was made sure that the weekly fluid intake is met during this 5

day/week CWA. This was done by offering additional water

during off-training days/times in case the subjects did not take the

required amount of fluids while performing the behavioral tasks

over the training/recording sessions. Any signs of poor nutrition,

dehydration or psychological decline were stringently looked for

and followed over days and weeks to detect weight-loss. This

included daily body weight measurements, urine color, mucosa

and skin turgor, abnormal behavior. Provision was made to

suspend the training and/or experiment sessions for at least a week

should any of these be found and confirmed by a local veterinary

doctor as a concern. We did not have to face this scenario with

either of our subjects.

The subjects were trained on the random target pursuit (RTP)

task, where they were required to hit the target that was randomly

displayed in the workspace [5]. We used a 2-degree-of-freedom

planar robotic manipulandum (KINARM, BKin Technologies,

Kingston, ON, Canada) as a right hand exoskeletal system to train

these subjects [21]. The target was circular in shape and the radius

was 1 or 1.5 cm. The target was displayed in a manner that its

center falls inside the workspace spanned by shoulder angles

between 10u and 50u–65u and shoulder+elbow angles (i.e., elbow

angle in global space) between 85u and 125u (Figure 1, A). One of

the sets of joint angular velocity-dependent (viscous) torque fields

was applied and cycled between low and high gains every 10 trials

as the subject performed the task (Table 1).

Once the subject reached the target, s/he was required to stay

in the target for 40 ms–160 ms for the trial to be considered

successful. On successful completion of a trial, the subject was

rewarded with a few drops of water or juice (,0.25 ml), depending

on the subjects preference by a paradigm-controlled juice-reward

system (Crist Instrument, Hagerstown, MD). To limit the fluid

intake while keeping the subject involved with doing the task for

more than an hour, we utilized a random reward schedule: the

subject was rewarded randomly on 40% of the correct trials for the

manual task. As the subject was newly exposed to BMI task, 100%

reward schedule was offered to keep him/her motivated and

engaged in the task. The reward schedule for BMI trials was

titrated down to 70% depending on the motivation and

performance of the subject.

The boundary conditions for the manual task were the physical

restrains of the KINARM apparatus, which commonly gives

movement range of 30u to 100u at the shoulder angle and 0u to

160u at the elbow angle (local coordinates). For the virtual BMI

arm, we set the boundaries to be 5u to 75u for shoulder angle, 0u to

150u for elbow angle and 0u to 160u for shoulder+elbow angle (i.e.,

elbow angle in global space) with the margins of the visual

feedback screen serving as boundary conditions. For an easier task,

Figure 1. Behavioral paradigm, implant locations and first
submovement velocity (FSV) plots. (A) Trained bonnet macaques
(M. radiata) perform Random Target Pursuit (RTP) task under viscous
gain fields, generated by planar exoskeletal robot, with target
presentation (light blue filled circles) within pre-defined shoulder and
elbow angle boundaries (blue) on the horizontal monitor (edges shown
as black lines). Movement trajectory is shown as blue curved
continuous line with velocity vectors at different time points of
movements as magenta arrows. Scale bar, 2 cm. (B, C) Chronic
microelectrode array implant locations on Subject 1 (B) and Subject 2
(C) shown by tracing the implantation photographs taken intraoper-
atively. M1, primary motor cortex; arc, arcuate sulcus; spur, spur of the
arcuate sulcus; cs, central sulcus; ips, intraparietal sulcus. (D) Schematic
of FSV plot generation. Two example movement trajectories are shown
and overlaid on top of each other after rotating (curved black arrow)
and scaling (vertical arrow in the bottom trajectory schematic) so that
the line joining the movement onset and the target center points
upwards and is of the same size. The overlay is shown as the panel on
the right with both movement trajectories on top of each other. The
difference in the size of the targets (shown as open circles of different
size) is apparent and is to demonstrate that different scaling was
applied on different movement trajectories to match the distance
between the movement onset and the target center. For the rest of the
panels, only one open circle representing the mean target size of all the
normalized trajectories will be shown. FSV vectors for each movement
trajectory are shown as colored arrows at the location of peak speed of
the first submovement on the movement trajectories (see Methods). (E,
F) FSV plots of example manual task performed by Subject 1 (E, n = 118
movements) and Subject 2 (F, n = 172 movements). Bold yellow line
represents the line joining the movement onset and the center of
target. Mean target (after scaling the movement trajectories) is shown
as green circle. Thick dashed black circle represents the mean and
standard deviation of all FSV locations; thick black arrow and thin black
circle represent the mean and standard deviation of FSV vectors,
respectively (see Methods). Small light blue arrows in manual task (or
small red arrows in BMI task, as shown in Figure 3) represent scaled
individual FSV and ‘+’ sign at the start of FSV suggest unsuccessful trials.
Scale bar, 25% of the bold yellow line.
doi:10.1371/journal.pone.0052286.g001
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the boundary conditions were used as the random target

generation boundaries plus 5u–10u on each border.

Behavioral data, specifically joint angular positions and torques

applied by the KINARM robot on each joint was recorded at

2 kHz sampling rate along with neural recordings (40 kHz for

spike detection and unit waveform analysis) on Plexon recording

system (Plexon Inc., Dallas, TX). Task specific information was

also saved with the same recording system as strobed-word events.

Surgical implantation
All surgeries were performed under general anesthesia with

strict aseptic precautions in a dedicated OR suite. All the standard

of care protocols and recommendations were followed. Anesthesia

and initial preparations of the surgery were done by an in-house

veterinarian personally or under her direct supervision. Pre-

operative hydration, NPO and medications (including antibiotics,

pain-killers, and inducing agents like ketamine) were administered

in conventional fashion. Isofluorane anesthesia was used through-

out the surgery. Injectable steroids were used to minimize brain

edema and swelling. Mannitol and diuretics like furosemide were

kept available if needed. The subjects were given appropriate

analgesics, antibiotics and other needed medications by injection

throughout the course of surgery and in the post-operative

convalescence (commonly 2 weeks). The subjects were observed

hourly or two-hourly for the first twelve hours after the surgery by

the lab personnel and were examined once or twice daily by the

DLAR personnel to quickly detect any potential signs of

discomfort.

The subjects were trained on the task with head restraint using a

footed headpost (6-FHP-X2F, Crist Instrument, Hagerstown,

MD). Implantation was made in the midline slightly superior to

the occipital ridge [22]. Head restraint was needed because our

experiments also used eye tracking, and neural recordings required

several hundreds of electrical connections to the headstage for

amplification, of which movement artifacts would saturate the

recordings and lead to high loss of information. This also is a

common practice in the scientific community and we have not

observed any changes in the behavior of the subject or any signs of

distress that originate because of the headpost restraint. The

subject maintains the same behavior in the cage a few days after

headpost implantation and maintains the same level of proficiency

and speed of task performance after head restraint.

Once the subject reached the proficiency level of 90% task

performance we implanted them bilaterally in primary motor

cortex (M1) of shoulder/elbow representative region (Figure 1,

B–C). The implantation site was located by intra-operative

determination of representative somatosensory cortex using single

sharp electrode electrophysiology and then selection of motor

cortex adjacent to the area receiving somatosensory inputs from

the shoulder region. We used Utah intra-cortical arrays (10610

electrode grid, 450 mm inter-electrode distance at tip, 1.5 (Subject

1) or 1.0 (Subject 2) mm shank length, Platinum (Subject 1) or

Iridium oxide (Subject 2) coating at tip; Blackrock Microsystems,

Salt Lake City, UT) [19]. Subject 2 was also implanted bilaterally

in primary somatosensory cortex area 1 and 2 of hand

representative region and area PE (666 electrode grid S1,

1.5 mm shank length, Platinum coating at tip; Blackrock

Microsystems, Salt Lake City, UT). Subject 1 was implanted

bilaterally in S1 area 1–2 of shoulder and elbow representative

region (10610 electrode grid, 1.5 mm shank length and Platinum-

coated tip in left hemisphere, 1.0 mm shank length and Iridium

Oxide coated tip in right hemisphere). We used Nesting Platform

method to minimize the trans-cutaneous footprint of the implant

and reduced the implant-related costs by half [20]. No subject

showed any signs of discomfort at or around implantation site. The

connectors mounted on the Nesting Platform offered an easy, pain

or discomfort free way of connecting the microelectrode arrays to

the recording hardware.

Subject 1 was implanted for the third time in contralateral (left)

M1 and S1 cortices with 1.5 mm shank length arrays (previous two

implantations also covered dorsal premotor cortex), but we were

not successful with the neural recordings from these regions with

the current implant. This might be because of previous surgical

insults to the gray matter and/or consequent healing and gliosis,

preventing the close contact of the array tips with the neurons.

Right sided S1 array for Subject 1 (fresh implant) also failed to

record any spiking neural activity, possibly due to high wire-

bundle strain and eventual spontaneous explantation of the array

post-operatively. We used neural recordings from the right-

hemisphere (ipsilateral) M1 cortex from Subject 1 and left-

hemisphere (contralateral) M1 cortex from Subject 2 for closed-

loop experiments. Thus, this work also provides evidence for an

Ipsilateral closed-loop BMI.

Neural recordings
After implantation surgery, the subjects were allowed to recover

for 2–3 weeks after which recordings of single unit activity were

taken while the subject performed the reaching task. Recordings

were made using externally synched multiple multichannel

acquisition processor systems [6] (MAPs, Plexon Inc., Dallas,

TX). Neural signals were amplified, band-pass filtered (170 Hz–

8 kHz), sampled at 40 kHz, thresholded and single/multiple units

were sorted based on their waveforms using principal-component-

based methods in Sort-Client software (Plexon Inc., Dallas, TX).

Neural spike timestamps were streamed online using TCP/IP

protocol through PlexNetConc (Plexon Inc., Dallas, TX) to the

Table 1. Applied loads on the real or virtual arm as the subject performs the reaching task.

Load set name Joint velocity-dependent resistive load gains (0.016Nms/rad)

Low load condition (10 trials, small visual
feedback cursor)

High load condition (10 trials, big visual feedback
cursor)

shoulder elbow shoulder elbow

Routine 1 5 4 20

New 2 10 3 15

Equal 5 5 15 15

Increased 10 10 20 20

doi:10.1371/journal.pone.0052286.t001
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computer where spike-based-predictions are made based on

previously calculated weights from manual task. EMG recordings

(bilateral pectoralis major, latissimus dorsi, anterior and posterior

heads of deltoid, biceps brachii, triceps brachii) using surface

electrodes (Grass Technologies, West Warwick, RI) at 2 kHz

sampling rate were made during the task performance. Under

BMI task, we did not find significant correlations between EMG

activity and cursor movements under both locked and moving arm

condition, suggesting that proprioceptive signals or motor signals

controlling muscle activity were not contributing to the BMI

performance. Eye tracking was performed under some experi-

mental sessions to confirm that the subject is paying attention to

the workspace and the task in general, but was not used for any

further analysis.

BMI algorithm
The torques generated by the subjects were calculated using

equations of inverse dynamics [16,17,21]. We estimated the

inertial properties of the limb segments using linear regression

equations based on limb segment lengths and subject weight [23]

and those of the robotic systems were made available by the

company that commercializes KINARM (BKin Technologies,

Kingston, ON, Canada). The generalized form of such inverse

dynamics equation can be described as:

~ttsub~M hð Þ€hhzC h, _hh
� �

_hhzG hð Þ{~ttcmd{~ttfrc ð1Þ

where ~ttsub is the torque generated by the subject (with separate

shoulder and elbow components), M hð Þ is the inertial matrix of

the whole system, C h, _hh
� �

is the term for coriolis and centripetal

forces, G hð Þ is the gravity term (which will be 0 in our case because

of the planar nature of the manipulandum performing movements

about the horizontal plane). h, _hh,€hh denote joint (in our case,

shoulder and elbow) angular positions, velocities and accelerations,

respectively. h and _hh are sampled at 2 kHz and then low-pass

filtered at 10 Hz using 6-pole (3 pole forward, 3 pole backward)

Butterworth filter. ~ttcmd represent commanded torques by the

attached motors in order to create the virtual environment. ~ttfrc

represent friction torques generated inside the torque motors as

the subject makes the movements, which were calculated as tanh

function of the product of the joint angular velocities and static

friction parameters, as supplied by BKin technologies. The

negative sign before the last two terms signify that the subject

has to overcome those torque values in order to make the

movements.

We used first 20 principal components of the spiking neural

activity of past one second binned at 100 ms interval (10 bins) to

predict movement kinematics and dynamics [17]. The perfor-

mance of this decoder in offline or open loop mode is shown in

Figure 2. The general form of such a decoder is described below:

ŶY tð Þ~bz
Xm

i~1

Xn

T~1

ai Tð ÞSi t{Tð Þð Þ ð2Þ

where ŶY tð Þ is the predicted variable of interest (e.g., torque,

position) at time t; b is the y-intercept, ai Tð Þ are the filter

coefficients for the Si t{Tð Þ that represent the score of the ith
principal component of the population spike rate at time bins t{T
(we used n~10 and m~20 as described above). These filter

coefficients were derived with multiple linear regression methods

from the data collected from the manual task. The transformation

of neural activity space to principal component space can be

described in matrix notation by:

S 1|nð Þ tð Þ~N 1|nð Þ tð ÞQ n|nð Þ ð3Þ

where S 1|nð Þ tð Þ is the vector of principal component scores for a

given time bin t; N 1|nð Þ tð Þ is the vector of normalized neural spike

counts on each unit for the same time bin t, and Q n|nð Þ is the

principal component coefficient matrix that was calculated from

about 3–5 minutes of the spiking neural activity at the beginning

of the recording session or from one of the previous sessions.

Predicted shoulder and elbow joint torques and angular

positions (total four variables) were sent to the behavioral

paradigm plant. Behavioral paradigm plant is a mathematical

representation of the subject’s right arm with exoskeletal robotic

manipulandum. In our case, the plant was running at a rate of

1 kHz (plant update interval Dt of 0.001 seconds) on xPC target

(Mathworks, Natick, MA). The joint angle position values of the

plant running at discrete sufficiently small sampling intervals Dt

will be,

h tzDtð Þ~h tð Þz _hh tð ÞDtz
1

2
€hh tð Þ Dtð Þ2 ð4Þ

Where h tzDtð Þ are the joint angular position values at time tzDt

(next time-step of the plant), which depend on the current joint

angular positions h tð Þ and joint angular velocities _hh tð Þ of the plant

as well as the joint angular accelerations €hh tð Þ resulting from the

applied forces/torques to the plant at time t. In case of our hybrid

torque-position BMI, the acceleration is given as a weighted sum

of the joint angular accelerations as a result of joint angular

position predictions €̂hh€hhpos tð Þ and the joint torque predictions €̂hh€hhtor tð Þ.

€hh tð Þ~cpos
€̂hh€hhpos tð Þzctor

€̂hh€hhtor tð Þ ð5Þ

cpos and ctor in Equation 5 are the coefficients that determine, or

scale, the influence of joint angular accelerations resulting from the

joint angular position and torque predictions, respectively, on the

hybrid BMI. Inserting the value of Equation 5 in Equation 4 will

give,

h tzDtð Þ~h tð Þz _hh tð ÞDtz
1

2
cpos

€̂hh€hhpos tð Þzctor
€̂hh€hhtor tð Þ

� �
Dtð Þ2 ð6Þ

Equation 6 is the hybrid torque-position control that we used in

this work. The joint angular accelerations caused by the joint

torque predictions, €̂hh€hhtor tð Þ, are straight-forward to calculate using

the following formula,

€̂hh€hhtor tð Þ~ M tð Þð Þ{1
ŶY tor tð Þ{C tð Þ{G tð Þ
� �

ð7Þ

Where the neural predictions for the joint torques are defined as

ŶYtor tð Þ. M tð Þ, C tð Þ and G tð Þ are the inertial, coriolis and

gravitational terms of the plant at time t. Because of the horizontal

planar configuration of our setup, G tð Þ will be 0 in our case as

previously mentioned. Update of the plant joint angular positions

in a special case of pure torque control mode (no influence of joint

angular position predictions) can be done by,

Hybrid Torque and Position Control
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h tzDtð Þ~

h tð Þz _hh tð ÞDtz
1

2
M tð Þð Þ{1

ŶYtor tð Þ{C tð Þ{G tð Þ
� �� �

Dtð Þ2
ð8Þ

Thus pure torque control shown in Equation 8 with our hybrid

torque-position control equation (Equation 6) is achieved by using

cpos~0, ctor~1 and inserting the values from Equation 7 in

Equation 6. However, special case of pure position control would

be achieved if the plant position at time tzDt matches the neural

predictions of the joint angular positions ŶYpos tð Þ provided to the

plant, i.e.,

h tzDtð Þ~ŶYpos tð Þ ð9Þ

Neural predictions of the joint angular positions, ŶYpos tð Þ, are used

as final estimates of h tzDtð Þ and not the difference between the

actual and predicted joint angular positions. Therefore, it is not

possible to come up with €̂hh€hhpos tð Þ by taking double time-differential

of ŶYpos tð Þ. We derived €̂hh€hhpos tð Þ that satisfies the pure position

control shown in Equation 9 with our hybrid torque-position

control shown in Equation 6. Inserting values from Equation 9 in

Equation 6 as well as using cpos~
2

Dtð Þ2
and ctor~0 yielded,

€̂hh€hhpos tð Þ~ŶYpos tð Þ{h tð Þ{ _hh tð ÞDt ð10Þ

The second term on the right _hh tð ÞDt
� �

is a single time-step

integral of joint angular velocities. This is to update the changes in

the joint angular positions as a result of the joint angular velocities

in the plant. Note that €̂hh€hhpos tð Þ as defined in Equation 10 is a

practical workaround and not the actual acceleration derived from

position predictions. For the hybrid torque-position BMI results

presented here, ctor was set to 1 or very close to 1 and the values of

cpos were varied between 0 and 200 in Equation 6.

First Submovement Velocity (FSV)
In general a reaching movement can be decomposed into

multiple submovements. The very first sub movement can be

considered the output of a feedforward controller, while subse-

quent submovements can be considered to be the output of a

feedback mechanism. In order to compare the feedforward

component of the reaching movements made under manual

control and those made under BMI control we studied the first

Figure 2. Open loop performance of the decoder. (A) Sample plot of prediction values (green) overlaid on recorded positions, velocities or
calculated torque values (blue) during manual task. R, correlation coefficient. (B) Summary R value plots of fits (estimates on the same dataset from
which the multiple linear regression coefficients were calculated, left 2 columns) and predictions (estimates on the new dataset, right 2 columns) for
ipsilateral and contralateral motor cortical signals on multiple behavioral variables. Note the comparable accuracies among dynamic (e.g., torque) and
kinematic (e.g., position, velocity) variables. Acronym key: fit, fit values; pred, prediction values; Rt, Right; Lt, Left; M1, primary motor cortex (shoulder
and elbow representative region); Sh, shoulder; Elb, elbow; Tor, torque; Pos, position; Vel, velocity; Acc, acceleration; EndPt, End-point/end-effector –
located about the tip of middle finger of the subject; F, force; X, X-direction; Y, Y-direction; mag, magnitude.
doi:10.1371/journal.pone.0052286.g002
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submovement. To this end we compared velocity information at

the peak speed of the first submovement, including not only the

magnitude of this peak speed but also the direction of motion at it.

Briefly, submovements in a given movement profile are charac-

terized by the occurrence of two jerk zero-crossings that flank the

peak speed [24]. Jerk is the third time-derivative of position, after

speed and acceleration, which are the first and second time-

derivatives of position, respectively. In acceleration space, the peak

speed would be a zero-crossing.

Finding the movement peaks
Shoulder and Elbow angular position data was collected at

2 kHz sampling rate. It was low-pass filtered at 10 Hz using a 6-

pole (3 forward, 3 backward) Butterworth filter. End-point position

was then calculated using trigonometry and numerical differenti-

ation to come up with end-point velocities and speed. Peaks and

troughs of the speed were then found using calculus methods

previously described [24]. Trials meeting the following criteria

were considered for the analysis: (i) peak values of the speed higher

than 5 cm/sec, (ii) start of the movement (trough preceding the

peak) at least 100 ms after the presentation of the target (iii) peak

of the speed at least 200 ms after the presentation of the target and

finally (iv) start of the movement point is at least 1 cm away from

the margin of the target in workspace.

Normalizing the movements
All included trials are normalized by rotating and scaling the

movements with respect to start-to-target vector. Start-to-target

vector is defined as the line joining the point of the movement

onset and the center of the target. First, the movement trajectory

was isolated from the movement onset to the end of the trial. This

movement trajectory was then rotated such that the start-to-target

vector for a given movement trajectory points upwards. The

movement trajectory was then scaled such that the length of start-

to-target vector is uniform over all the movement trajectories.

Notice that this length in reality is always greater than 1 cm plus

target radius (making total of at least 2–3 cm) considering the

inclusion criteria that we have used, and can go as high as 15 cm

in cases of targets presented at the extremes of the workspace. This

normalized movement trajectory was then broken down into

submovements by analyzing the temporal differentials of the

speed, namely acceleration and jerk [24]. The first or primary

submovement was used for analysis and the velocity at the peak

speed was deemed to be representative of the first submovement.

We located the FSV on the workspace and calculated perpendic-

ular and parallel components as a fraction of the distance between

the point of movement onset and the target center (Figure 1, D).

FSV locations, vectors, plot legends and statistics
The FSV vector is defined as the velocity vector at the peak

speed of the first submovement on the normalized workspace. The

FSV location is defined as the location of this peak speed on the

normalized workspace. Normalized start-to-target vector is plotted

as vertical yellow bar of unitary length and mean normalized

target size is plotted as a green circle. Individual FSV locations are

plotted as blue or red dots in case of manual or BMI task,

respectively. Similarly, individual FSV vectors are plotted as blue

or red arrows in case of real arm or virtual arm movements,

respectively (scaled to 1% of original). Unsuccessful trials are

marked by black plus (+) signs on individual FSV locations. The

mean and standard deviation of FSV locations is plotted as dashed

circle/oval with the mean FSV location at its center and standard

deviation as its margin. The mean and standard deviation of the

FSV vectors is plotted as solid arrow and thin circle respectively

(scaled to 10% of original). The mean and standard deviations of

FSV locations and vectors of sessions to be compared were

Figure 3. Effect of position influence and environmental changes in hybrid torque-position BMI. (A) Decreasing position influence (cpos,
see methods) from 200 (n = 32) to 100 (n = 46; 42) to 20 (n = 75) and (B) from 20 (n = 127; 92) to 0 (pure torque control; n = 116; 77) moved the FSV
locations away from the movement start-point and towards the target (P,0.05), indicating more ballistic movement profiles. (C) Increased viscous
gain-fields (Increased Load, IL, see Table 1; right; n = 74) from before (Equal Load, see Table 1; left; n = 77) moved the FSV locations towards the
movement start-point and decreased the FSV vector lengths (P,0.05), indicating decreased movement velocities under high resistance. (D)
Introduction of new viscous gain-fields (New Load, NL, see Table 1; right; n = 81) within the bounds of ongoing low- and high- gain fields (Routine
Load, see Table 1; left; n = 76) led to no statistically significant differences in the FSV locations or vectors. Same conventions as in Figure 1, E, F are
used. Means and standard deviations of the FSV locations and vectors of different sessions (mean FSV location: base of arrow; standard deviation of
FSV location: dashed circle, scaled 10%; mean FSV vector: arrow itself; standard deviation of FSV vector: thin solid line circle, scaled 10%) are overlaid
in between the FSV plots for easy comparison; blue: from the FSV plot on the left, red: from the FSV plot on the right. The arm was restrained at the
bottom left (75u shoulder and 85u elbow angles, A, D) or at the center (25u shoulder and 85u elbow angles, B, C) of the workspace unless indicated as
F, free or unrestrained arm.
doi:10.1371/journal.pone.0052286.g003
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overlaid for ease of visualization in Figure 3. We used non-

parametric Kuiper two-sample test statistic (circular statistic

analogue of Kolmogorov-Smirnov two-sample test) to compare

the distributions of angles of FSV locations and vectors. To

compare the distribution or lengths of FSV locations and vectors,

we used non-parametric Kolmogorov-Smirnov two-sample test

statistic.

Results and Discussion

Two bonnet macaque (M. radiata) subjects performed a planar

random target pursuit (RTP) task (Figure 1, A) using a right-

handed exoskeletal robotic system [21]. Towards separating the

neural signatures of kinematic and dynamic variables, they were

exposed to high and low resistive viscous force field environments

(cycled in blocks of 10 trials, See Table 1). This can be compared

with moving in air (low viscosity) or water (high viscosity). The

subject-generated torques were calculated using equation of

inverse dynamics as described in Equation 1 [16,17,21], which

uses inertial estimates of the exoskeletal robot and the limb

segments [23]. We did not notice significant task-related move-

ments or EMG activity in their left upper limbs in either manual

or BMI tasks. We reconstructed a variety of kinematic and

dynamic-related parameters with a multiple linear regression

method as described in Equations 2 and 3 (Figure 2, A) [17]. We

used correlation coefficient (R) between the measured and

predicted behavior as a means to quantify prediction accuracies

across a variety of behavioral parameters and confirmed that both

kinematic and dynamic variables have comparable fit and

prediction accuracies (Figure 2, B). Superior fit/prediction

performance of ipsilateral M1 neural activity in Subject 1 was

most likely due to poor electrode recordings in the contralateral

M1, which had been previously implanted several times. This

further bolsters the previously documented findings [9] that the

ipsilateral cortex can also be used to derive both kinematic and

dynamic information for the BMI performance in case of

contralateral cortical damage or unavailability.

Under BMI control mode, reconstructions of a single behavioral

parameter (joint torques or joint angular positions) or any scaled

combination of the two were fed continuously to the BMI plant

(Equation 6) to come up with the final cursor position. Inclusion of

torque predictions in closed-loop control leads to more naturalistic

movement profiles (Video S1, S2, S3) when compared with pure

position control (Equation 9) without or with smoothing (Video
S4 and Video S5, respectively). Open loop control while the

subject was performing manual task (similar to offline predictions)

demonstrated that the hybrid torque-position control was

efficiently predicting the movement trajectory (Video S1). Under

brain-control mode, the subject was able to successfully perform

the task with such hybrid torque-position control in a closed-loop

(Video S2). To quantify the feedforward aspects of the

movements under brain-control mode, we used the first submove-

ment velocity (FSV, Figure 1, D) as our error proxy. When the

subject uses her/his arm to make natural ballistic movements, the

mean FSV location (center of dashed circle) is approximately at a

point halfway on the line joining the movement start point and the

target and mean FSV vector (arrow) points towards the target

(Figure 1, E, F). Under hybrid BMI control, decreasing the

influence of position control in the hybrid controller moved the

FSV locations towards the target and further away from the

movement start-point (Figure 3, A–B, P,0.05). On switching to

pure torque control (i.e., no position predictions contribution to

drive the BMI, Equation 8), the movements became more ballistic

(Video S3). The angle of mean FSV location and direction

changed (P,0.05, Kuiper test) and distribution of FSV location

expanded (Figure 3, B, P,0.001, K-S test). The change in the

mean FSV location and vector away from the movement start-

point under higher relative influence of torque control can be seen

as increased admittance/compliance or decreased impedance.

Thus by varying the amounts of relative influences of torque and

position in the hybrid BMI controller one can get a handle on the

stiffness or impedance of the prosthetic arm.

We employed pure torque control (cpos~0, Equation 8) to test

the influence of external dynamic environments on the BMI

behavior in closed-loop. Absence of position/kinematic control

ensured that the dynamic properties of the environment affect the

BMI behavior to the fullest. Introducing increased viscosity

environments (from equal to increased, see Table 1) moved the

FSV locations near the movement start-point with shorter FSV

vector lengths (Figure 3, C, P,0.05, K-S test). This indicates that

the BMI movements slowed down when the external environment

exerted higher resistance. On the other hand, introducing new

viscous gain fields within the bounds of low and high viscous fields

that the subject is currently experiencing (from ‘Routine’ to ‘New’,

see Table 1), we did not find significant differences in the FSV

locations or vectors. (Figure 3, D). Note that the changed

behavior of torque control BMI under increased viscosities can be

explained by facilitated direct interaction of the user with the

dynamic properties of the environment. Such phenomenon cannot

be observed under pure kinematic control because the automatic

kinematic-to-dynamic algorithm would overcome the increased

viscous loads involuntarily towards maintaining user-instructed

kinematic goals.

In the natural acts of reaching and grasping, we routinely

increase the stiffness of the proximal joints (shoulder, elbow)

towards providing stability to the distal links (wrist and hand/

finger joints). In order to fully exploit this functionality of hybrid

BMI control, the relative influence of position (cpos) and torque

(ctor) predictions on the individual joints needs to be controlled

using the neural signals, which we leave for a future study. Many

refinements for superior BMI performance have been previously

documented. Towards building smart adaptive decoders, princi-

ples of reinforcement learning [2,25–27], coadaptation [28] and

feedback control design [29] have been implemented. Inclusion of

cognitive/behavioral states (awake/alert, asleep, task-focused,

distracted etc.) has been proposed towards robust decoding of

neural signals for prosthetic arm control [30]. Incorporation of

sensory feedback is shown to enhance BMI control [31] and

intracortical microstimulation has been used to provide tactile

feedback in brain-machine-brain interfaces [32]. Our results

suggest that real-time control of joint torques gives the user a

more direct handle on movements under changed dynamic

environments. Inclusion of torque predictions in BMI algorithms

can play a crucial role in sensorimotor neuroprostheses, as the

direct neural control of torques at each joint of the prosthetic

device will bring us closer to the ultimate goal of majority of the

dexterous movements reaching and grasping.

Supporting Information

Video S1 Manual task overlaid with offline predictions
show robust decoding of movement trajectories. Subject

is performing random target pursuit (RTP) task using the right

upper limb with mounted planar exoskeletal robot. Black tracings

with white circular visual feedback cursor at the end-point

represent the actual arm. Origin point at around (5,215)

represents the shoulder location and first angle represents the

elbow location. Light blue arm with a diamond-shaped visual
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feedback cursor at the end-point is the simulation of offline

predictions of the virtual arm using the past one second of neural

activity of M1. The small or large size of the visual feedback cursor

at the end-point indicates the low or high load environment,

respectively. cpos was set to 20. The subject was not given any

visual or somatosensory feedback of these reconstructions while

doing the manual task. Yellow color of the visual feedback cursor

indicates that the subject is looking away from the screen (screen

margin represented by a dark blue line, bottom right corner of

which is visible; yellow color for the purposes of this video only –

the actual task shows white circle throughout the task for visual

feedback purposes). Task execution time (in seconds) is displayed

on the top left corner. Big or small cursor size represents high or

low viscous loads (see Table 1) on the arm, as applied by the

KINARM motors. Note that the virtual arm reconstructions

match closely with the real arm movements and do carry a

‘projectile’ component of the movement as occurs in natural

movements. Our algorithm does not use or need heavy filtering or

smoothing of the predictions, partly because the torque predictions

automatically get ‘filtered’ by the equations of dynamics

containing inertial properties of the virtual limb.

(AVI)

Video S2 Hybrid BMI task with torque and position
control offers natural movement profiles. Neural control of

the virtual arm with cpos set to 20. The actual arm was locked to

25u at shoulder angle and 85u at elbow angle to discourage

contribution of neural signatures of any proprioceptive inputs

towards the task execution. The subject ‘‘closes’’ the BMI loop by

means of visual feedback. Here, the virtual arm is visible by the

subject as a diamond-shaped end-point visual feedback cursor on

the computer screen. The visual feedback of the real arm is turned

off (i.e., white circle is invisible to the subject). Big or small cursor

size represents high or low load on the virtual BMI arm. For the

purposes of this video only, the cursor color is changed to yellow

when the subject looks away from the screen. Actual task keeps the

same light blue cursor color throughout the task. Other

conventions are same as noted in Video S1. Note the resemblance

in the movement trajectories between the closed-loop BMI control

presented in this video and the open-loop predictions shown in

Video S1.

(AVI)

Video S3 BMI task using pure torque control leads to
more ballistic movements. Neural control of the virtual arm

with cpos set to 0. Note more expansive, less restrained movements

as echoed in the larger distribution of FSV locations and vectors

on Figure 3, B. Video generated using the same conventions as

used in Video S2.

(AVI)

Video S4 BMI task using position control offers less
natural and jittery movements. Neural control of the virtual

arm with limb joint position predictions only

(cpos~2|106; ctor~0;Dt~10{3). No smoothing or filtering of

the position predictions was performed. Note jittery, less ballistic

and sub-naturalistic movements. Video generated using the same

conventions as used in Video S2, except that the visual feedback

cursor color is white.

(AVI)

Video S5 BMI task using filtered position predictions
lead to smooth but slower movements. Neural control of

the virtual arm with limb joint position values that are estimated

by averaging past 10 pure joint position prediction values over

50 ms window. Note that now the movement profiles are smooth

but slower and less spontaneous when compared with pure

position control without smoothing. Video generated using the

same conventions as used in Video S4.

(AVI)
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