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Tuberculosis (TB) is a devastating infectious disease that kills over a million people every
year. There is an increasing burden of multi drug resistance (MDR) and extensively drug
resistance (XDR) TB. New and improved therapies are urgently needed to overcome the
limitations of current treatment. The causative agent,Mycobacterium tuberculosis (Mtb) is
one of the most successful pathogens that can manipulate host cell environment for
adaptation, evading immune defences, virulence, and pathogenesis of TB infection. Host-
pathogen interaction is important to establish infection and it involves a complex set of
processes. Metabolic cross talk between the host and pathogen is a facet of TB infection
and has been an important topic of research where there is growing interest in developing
therapies and drugs that target these interactions and metabolism of the pathogen in the
host. Mtb scavenges multiple nutrient sources from the host and has adapted its
metabolism to survive in the intracellular niche. Advancements in systems-based omic
technologies have been successful to unravel host-pathogen interactions in TB. In this
review we discuss the application and usefulness of omics in TB research that provides
promising interventions for developing anti-TB therapies.
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INTRODUCTION

Tuberculosis (TB) remains a global pandemic and the biggest infectious killer despite being a
preventable and curable disease (1). This communicable disease is caused by the pathogen
Mycobacterium tuberculosis (Mtb) and it kills over a million people every year. In 2016, WHO
estimated around 1.7 billion people were reported to have latent TB infection (1, 2). Drug resistance
in TB has been an escalating problem worldwide with nearly half a million people developing
rifampicin resistance in 2019. The pathogenic mycobacterium becomes resistant to the first line
anti-TB drugs including isoniazid, rifampicin, fluoroquinolone and second line drugs causing
multidrug resistant (MDR) and extensively drug resistant (XDR) TB, which are a serious global
threat with MDR-TB accounting for one third of the deaths worldwide due to antimicrobial
resistance (1, 3). MDR and XDR-TB cases are developed mainly due to poor drug regimen,
treatment misuse and poor patient compliance due to the lengthy anti-TB treatments and the
associated side-effects of the medications (3). This rapidly growing problem of drug resistance needs
urgent attention. We need to develop new therapies to overcome the limitations of current anti-TB
org November 2021 | Volume 12 | Article 7623151
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drug treatments. We also need improved and efficient diagnostic
platforms for detection and surveillance for disease control and
management of MDR and XDR-TB. COVID-19 pandemic posed
significant challenges and disruptions to TB control and cure by
restricting the health services, infrastructure, workforce and
research efforts which were diverted away from TB and other
diseases (4, 5). These disruptions from COVID-19 pandemic are
predicted to increase global TB deaths by 20% over the next 5
years (4). We need to harness global research efforts to develop
new and effective treatments for TB and to mitigate the
limitations on treatment and cure imposed by the COVID-19
pandemic for avoiding additional morbidity and mortality.

The causative agent of TB has evolved to persist in humans.
Mtb interacts with alveolar macrophages which are the primary
cellular site of infection (6, 7). Macrophages in the lungs of an
infected individual phagocytize TB bacilli which were inhaled
as aerosols from another infected individual (6). Inside
macrophages Mtb are contained in phagosomes which exhibit
bactericidal activity through maturation and acidification (8, 9).
Macrophages produce reactive oxygen and nitrogen species to
eliminate intraphagosomal Mtb (6, 10). Macrophages initiate a
pro-inflammatory response with other immune cells being
recruited to the site of infection and forming a granulomatous
lesion to arrest bacterial replication and stop dissemination.
However, Mtb has evolved adaptation mechanisms to avoid
the hostile host environment and immune defences including
intraphagosomal survival and escape into the cytoplasm (9, 11).
Mtb adapts its life and metabolism to survive in the hostile
phagosome environments including hypoxia, low pH,
antimicrobial peptides, reactive oxygen and nitrogen species
and nutrient limitations (12–14). Metabolism of the TB
pathogen is key for its survival in the human host. Decades of
research using in vivo and in vitro TB models has enabled
identification of the metabolic characteristics of Mtb within the
intracellular niche. It is now well-established that Mtb uses
multiple host metabolites such as lipids and amino acids as
nutrient sources during infection (6, 13–15). Therefore,
identifying vulnerable metabolic targets of Mtb provide
avenues for the development of new antimicrobials and it has
been an accelerating research area. Scientific advances in the
development and application of systems-wide tools and
platforms to screen genome, transcriptome, proteome,
metabolome, metabolic modelling and fluxome have
revolutionised research in untangling the interactions between
human host and Mtb (Figure 1). In this review, we discuss
advancements in TB research achieved using systems-
based omics.
GENOMICS, TRANSCRIPTOMICS, AND
PROTEOMICS

The discovery of next-generation sequencing (NGS) facilitates
the genomic and transcriptomic research of mycobacteria. The
genomic or transcriptomic analysis focuses on the variation of
genomic features, such as gene expression level, DNA sequencing
Frontiers in Immunology | www.frontiersin.org 2
or regulatory elements annotation, which enables the
identification of essential genetic or regulatory targets under
certain conditions (16–18). Resistance mutation of
mycobacterium to drugs can be detected by genomic analysis
of clinical isolates (19). The massive online database generated
from genomics analysis of resistance mutation enables the
generation of genetic interaction networks to different
antibiotics (18, 20). RNAseq and methylome analysis of
different clades of Mtb complex detected differential gene
expression involved in host interaction and metabolism, which
is further linked to the varied phenotypes and host susceptibility
between the Mtb complex (21). RNAseq has been used to
identify the relevant virulent genes in clinical Mtb strains such
as the MKR mutant (17). Genes involved in cholesterol
degradation as well as ESX-1 secretion system were up-
regulated in the MDK strain but not in Mtb H37Rv (17).
Drugs targeting the cellular pathway could decrease the
intracellular survival of the MDK strain, which further proves
the application of transcriptional analysis of Mtb strains could
facilitate the identification of drug targets. Some studies
combining both genomics and transcriptomic analysis among
the same set of mycobacterial isolates identify specific single
nucleotide polymorphisms (SNPs) and varied gene expression
levels, as well as the link to phenotypes of the bacterial
population (22, 23). Genomics or transcriptomics analyses are
adopted to investigate the influence of deletion or over-
expression mutants on the gene expression of the whole
population to identify relevant cellular pathways (24, 25).
Genomics and transcriptomics have provided insights into TB
pathogenesis and host-pathogen interactions and facilitated
identification of biomarkers of TB and vaccine development
(26–29). RNA seq analyses by Kaufmann et al., demonstrated
changes in the transcriptome profiles of hematopoietic stem cells
(HSCs) and multipotent progenitors in BCG intravenously
vaccinated mice vs. control mice. These epigenetic changes in
the HSCs enhanced myelopoiesis and generated BCG trained
macrophages that provided enhanced protection against Mtb
(27). Esterhuyse et al. employed DNAmethylome, transcriptome
and proteome analyses of monocytes and granulocytes to
demonstrate differences in DNA methylation profiles which
correlated to changes in immune cell activation, transcription
and inflammation between active TB and latent TB infection
(LTBI) patients (29). A recent study using transcriptomic
analyses compared the lung biosignatures between TB, lung
adenocarcinoma (LUAD) and sarcoidosis patients and
identified MK167 which is a mediator of Mtb-promoted tumor
cell proliferation, migration, and invasion to be overexpressed in
both TB and LUAD patients (26).

Proteomic analyses are used to identify and quantify proteins,
which are functional biochemical entity of an organism, and
these analyses provide direct functional information
complementary to the genomics and transcriptomics analyses
(30). Development and application of proteomic platforms has
been researched for over a decade. In TB research, systems-level
proteomic analysis has been applied with the motive to develop
diagnostic markers, vaccines and therapeutics (31). Proteomic
November 2021 | Volume 12 | Article 762315
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methods involve gel electrophoresis separation of proteins (30,
32) and liquid chromatography-mass spectrometry (LC-MS/MS)
analyses of protein samples which can be conducted, broadly in
two ways. A widely used approach, also known as bottom-up
proteomics, involves digestion of proteins into peptides, followed
by their identification and mapping into the proteins using their
mass-to-charge ratios and further fragmentation of the ions for
quantitative analyses (30, 33). The second approach, called top-
down approach involves fragmentation of the total intact protein
into molecular ions followed by protein identification and
quantitation (31). Proteomic studies in TB have provided
information on the TB pathogen’s protein expression profiles
in in vitro and within the host. Discovery proteomic analyses by
Rosenkrands et al. (34) identified 82 novel proteins out of 49
extracellular culture filtrate and 118 cellular lysate proteins in
Mtb. Comparative proteomic analyses in clinical isolates and
virulent and avirulent mycobacterial vaccine strains and Mtb
complexes (MTBC) have revealed strain-specific characteristics
(35, 36). Jungblut et al. (35) identified six proteins including L-
alanine dehydrogenase (Rv2780), isopropyl malate synthase
(Rv3710), nicotinate-nucleotide pyrophosphatase (Rv1596),
Frontiers in Immunology | www.frontiersin.org 3
MPT64 (Rv1980c) and two conserved hypotheticals (Rv2449c
and Rv0036c) with missing counterparts in M. bovis BCG
(Chicago strain). Chicago and Copenhagen BCG strains
exhibited highly similar proteomes with only three identified
variants while Mtb H37Rv and Erdman strains had 18 variants
between them (35). Clinical strains JAL and BND showed
distinct variations in the Esx and mce1 operon proteins, which
contributed to their virulence and drug resistance, as compared
with H37Ra and H37Rv strains (37). A tandem mass tag (TMT)
labelled proteomics identified differential protein expression and
phosphorylation in PE/PPE/PE-PGRS between H37Rv and
H37Ra which contributes to the virulence of H37Ra in human
cells (38). Differences in expression of nitrate metabolism
proteins between Mtb H37Rv and drug-susceptible Beijing and
multidrug-resistant Beijing strains were identified to be
important in the pathogens’ adaptation to stressful intracellular
environments (39). The non-replicative persistent (NRP) state of
Mtb was investigated using isotope coded affinity tag-based
(ICAT) proteomics which uses isotopic labels for quantitation
of proteins (40). Cho et al. (40) cultivated Mtb in an oxygen
depleted fermentor to achieve early and late NRP states of
FIGURE 1 | Overview of systems-based omics used for exploring Mtb and host metabolic interactions. Created with BioRender.com.
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cultures and measured relative expression of proteins. This
proteomic analysis revealed different expression profiles in the
two NRP states which were associated with energy metabolism
and degradation (40). In guinea pig models of TB, shot gun
tandem mass spectrometry (MS/MS) proteomics at early (30
days-post infection) and chronic (90 days-post infection)
infection stages identified over 500 Mtb proteins in infected
lung tissues (41). This research identified heterogeneity in two
protein classes, belonging to the cell wall processes and
respiration and metabolism between the two stages
highlighting these processes as necessary adaptations in
persistent Mtb (41).

Proteomic approaches have been used to investigate host-
pathogen interactions and immunological responses in TB, and
in identification of diagnostic markers. The cell wall of Mtb is
important for its virulence the cell wall lipids and proteins are
antigenic and elicit host immunomodulations. Lipoproteins, T
and B cell antigens and proteins associated with small and
macromolecule metabolism were identified in Mtb’s cell wall
which likely facilitated the transport of nutrients between the
cytosol and extracellular milieu and cell wall re-modelling (42).
Antibody screening and immunological responses using systems
level proteomics has attracted great attention in recent years.
TMT based quantitative proteomics showed differentially
expressed proteins in THP-1 macrophages infected with Mtb
H37Rv and H37Ra strains, and include proteins involved in
apoptosis, blood coagulation and oxidative phosphorylation
providing evidences to strain-specific host macrophage
responses (43). T-cell IFN- Ɣ immunological response elicited
by Mtb antigens in culture filtrate and cellular extracts were
screened in splenocytes from Mtb-infected mice which allowed
identification of 17 novel T-cell antigens (44). Proteomic
analyses by Penn et al. using affinity tag purification mass
spectrometry mapped 187 Mtb-human protein-protein
interactions and identified two factors, Mtb’s secreted protein
LpqN and the human ubiquitin ligase CBL involved in Mtb’s
pathogenesis (45). Robust quantification of proteins in complex
samples representing the intracellular milieu is critical to not
only advance the TB biology but also to develop therapeutic and
diagnostic interventions. Schubert et al. (46) developed Mtb
proteome library, a public resource of definitive MS assays
using single reaction monitoring (SRM) technique to quantify
proteins in complex biological samples. Label-free quantitation
of plasma proteins in patients with pulmonary (PTB) and (LTBI)
provided a diagnostic model which showed alpha-1-
antichymotrypsin(ACT), alpha-1-acid glycoprotein 1 (AGP1),
and E-cadherin (CDH1) with >80% sensitivity, specificity and
accuracy in distinguishing LTBI from PTB (47). Another study
using TMT-based quantitative proteomics of human serum
demonstrated different signatures of inflammatory proteins
and apolipoprotein A and serotransferrin proteins (involved in
lipid transport and iron metabolism) in LTBI and active TB
cohorts (48). A multidimensional and stable isotope labelled q3D
LC-MS quantitative plasma proteomics enabled discovery of
novel protein biomarkers and 5-protein signature comprising
of complement factor H related 5 (CFHR5), interleukin enhancer
Frontiers in Immunology | www.frontiersin.org 4
binding factor 2 (ILF2), leucine-rich alpha-2 glycoprotein
(LRG1), LPS-binding protein (LBP), serum amyloid A (SAA),
plasma C-reactive protein (CRP) and E3 ubiquitin-protein ligase
listerin (LTN) to improve diagnostic accuracy of TB (49).
Immunological proteome screening using integrative host and
pathogen biochemical datasets allowed identification of
antibodies in human serum of TB patients. A large-scale
screening used protein microarray platforms which included
4099 Mtb proteins; these microarrays were probed with
serum from over 500 individuals with and without active
TB. Antibodies were screened against the entire Mtb proteome
to identify immunoproteome for active TB which were
extracellular proteins comprising 0.5% of the entire
proteome (50) demonstrating well-established application of
proteomics in identification of host-pathogen interactions for
serodiagnostic markers.
METABOLOMICS AND ISOTOPIC
TRACING STUDIES

Metabolomics is the one of the newest omic technologies used to
discover, identify, and quantify metabolites which are
biochemical entities produced and consumed in metabolic
reactions which in turn drives metabolism and energy
production in biological systems. Metabolomics allow big data
integration across different omics for comprehensive
determination of the consequences of all metabolites on
cellular function and physiology (51–53). Metabolomics
combined with isotope labelling strategies have identified
nutrient sources for Mtb in in vivo environments and
measured their uptake and assimilation by Mtb metabolic
network; this is not feasible with any other omic platforms.
Metabolomic analysis involves quenching of metabolites from
living cells and cellular extracts and polar/nonpolar metabolites
recovery, followed by analytical identification and quantification.
Gas chromatography-mass spectrometry (GC-MS), nuclear
magnetic resonance (NMR) and LC-MS are three most widely
used analytical platforms for metabolomics. Depending on the
purpose of the study, metabolites are analysed either by
untargeted or unbiased methods/platforms, mainly used for
qualitative analysis or by targeted analyses involving SRM or
multiple reaction monitoring (MRM). Metabolism is at the heart
of survival, growth, and virulence of Mtb, and other pathogens
inside the human host cells. Metabolism of immune cells is
equally important in driving a variety of cellular and
immunological responses during infection and therefore, in
recent years, immunometabolism has emerged as a rapidly
growing area with the motive to develop new diagnostics and
therapeutics for TB. The advancements in analytical tools and
platforms have also allowed metabolomics and metabolic
investigations at single cell and subcellular (cellular
microcompartment) levels (54, 55). In this section, we have
reviewed the latest developments in metabolomic technologies
and their application to achieving breakthroughs in
November 2021 | Volume 12 | Article 762315
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characterisation of the metabolic cross talk between the host
and Mtb.

Metabolomics has been extensively used to identify metabolic
pathways and to decipher metabolism of Mtb in in vitro and in
vivo animal models. Activity-based metabolomic profiling which
uses cellular metabolome as the platform using protein and time-
dependent production and consumption of small molecules,
assigned functional and structural characteristics of Rv1692 as
a glycerol 3-phosphate phosphatase in glycerophospholipid
metabolism (56). Rv322c has been recently assigned a nitrogen
metabolic role in aspartate biosynthesis and this enzyme is
essential for Mtb’s survival in murine macrophages and
in mice (57). Lineage-specific metabolic differences,
predominantly in amino acid, glycolysis, and tricarboxylic acid
(TCA) cycle metabolism between six strains of MTBC complex
were identified in exometabolomes of culture supernatants by
untargeted time-of-flight (TOF) MS analysis. This study involved
integration of metabolomics data into a constraint-based model
which predicted the SNPs and genetic basis of the metabolic
variations (58).

Complementary to other omic platforms, metabolomics has
been applied to successfully identify Mtb and host metabolites
in human biological fluids. High resolution orbitrap MS
identified lipid metabolites such as phospha-tidylglycerol
(16:0_18:1), lysophosphatidylinositol (18:0) and acylphosphati-
dylinositolmannoside (Ac1PIM1) elevated in plasma of patients
with active pulmonary TB (59). Another study applied orbitrap
MS/MS and measured host responses to active TB and LTBI
and identified elevated tryptophan catabolism to kynurenine
mediated by indoleamine 2,3-dioxygenase-1 (IDO-1) (60).
Metabolic biosignatures measured in human urine samples
identified pre and post therapy clinical responses to TB
antimicrobials which included 23 molecular features changing
during the treatment (61). Drug phenotypes and their
mechanism of Mtb's growth inhibition has been investigated
using metabolomics and isotopic labelling analyses. Bedaquiline
(BDQ), a newly approved anti-TB drug exhibits Mtb killing
through inhibition of ATP synthase. The mode-of-action of
BDQ is complex and has been investigated by multiple
research demonstrating that BDQ induces Mtb’s glycolytic and
gluconeogenic metabolic dependencies and that pyruvate
phosphate dikinase (PPDK) is a vulnerable metabolic target
(62). Knoll et al. (63) measured metabolite markers involved
in TCA cycle metabolism, cell wall and DNA synthesis with
GCxGC-TOF-MS in Mtb grown with and without ciprofloxacin,
(a quinolone potent against drug resistance TB) to identify
mechanism of action and Mtb’s adaptation to antimicrobials
(63). Comparison of drug resistant and drug susceptible
metabolic profiles showed proline and isoleucine levels
significantly reduced in drug resistant strains (64).

Host and pathogen interaction in infectious diseases has
been investigated in detail by multiple studies across decades
using metabolomics combined with isotopic tracing studies.
Metabolite profiling and 13C tracer studies have re-assigned
identity and functionality of Mtb enzymes and elaborated
its central carbon metabolic (CCM) pathways such as Rv1248c
Frontiers in Immunology | www.frontiersin.org 5
as 2-hydroxy-3-oxoadipate synthase catalysing C-C bond
formation between a-ketoglutarate and glyoxylate (65), the
role of phosphoenolpyruvate carboxykinase (PEPCK) in
gluconeogenesis and its essentiality for Mtb’s survival in mice
models (66) and the bifunctional role of Rv0812 coupling nucleic
acid and cell wall biosynthesis (67). Untargeted metabolite
profiling and isotopic analysis of Mtb grown on 13C-labelled
carbon substrates dextrose, acetate and glycerol demonstrated
that Mtb catabolizes multiple carbon substrates simultaneously
to achieve monophasic growth providing a snapshot of metabolic
adaptations in Mtb to host intracellular niche (68). GC-MS based
isotopologue profiling using 13C carbon isotopic labels of Mtb
infected-human THP-1 macrophages measured utilization of
glucose by Mtb and essentiality of the anaplerotic node
enzymes pyruvate carboxylase (PCA), PEPCK, malic enzyme
(MEZ), and PPDK in gluconeogenesis, propionate and
cholesterol detoxification and lipid synthesis (15, 69). Similar
isotopologue analyses have been successfully applied across
various host-pathogen models to measure intracellular
metabolism of these pathogens, such as 13C glucose profiles of
M. leprae growing in Schwann cells (70) and Trypanosoma brucei
in bloodstream form (71) and 13C glycerol profiles in legionella
pneumophila replicating in macrophages (72). 13C-isotopic
analysis of Mtb in vitro cultures in a chemostat setup
at controlled growth rate demonstrated efficient isotope
incorporation and co-catabolism of 13C-labelled acetate and
cholesterol, which are intracellular nutrient sources for Mtb
(73). Recent advances in MS technologies have enabled the use
of several stable isotopes including both single and mixed
labelled species such as 15N and 2H. 2H cholesterol labelling of
Mtb in vitro cultures confirmed that Mtb utilized cholesterol to
synthesize amino acids (73). 15N-asparagine was used to measure
the uptake and assimilation of nitrogen in murine macrophages
using NANO-Secondary ion mass spectrometry (SIMS) (74).
Agapova et al. (75) performed an LC-MS and 15N-isotopologue
analysis to measure ammonium and amino acid utilization
in in vitro Mtb and demonstrated that amino acids were
preferred over ammonium and were utilized at similar rates,
and that alanine dehydrogenase ald was important for alanine
utilisation as a nitrogen source (75). 15N-isotopic labelling
and GC-MS isotopologue analyses of Mtb infected-THP-1
macrophages identified nitrogen assimilation of amino acids
in intracellular Mtb replicating human cells and further
identified phosphoserine transaminase serC as a potential drug
target (13).
CONSTRAINT-BASED MODELLING

Metabolism in a biological system involves numerous complex
biochemical processes. Each biochemical reaction involves
consumption and production of metabolites or chemical
species. Metabolic flux through a reaction defines the rate at
which a substrate is utilized and is the accurate measure of the
activity of a pathway in the network. Metabolomics provides a
measure of the pool sizes of the metabolites that can indicate
November 2021 | Volume 12 | Article 762315
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active pathways but cannot measure the fluxes through the
pathways. Therefore, measuring metabolic fluxes is the way to
confirm network activity and function, and define the metabolic
phenotype of a system.

Mathematical modelling of Mtb is a recent innovation in TB
research and is popular for prediction of genes, metabolic and
drug phenotypes of the pathogen and host-pathogen
interactions. These models include a network of biochemical
reactions including enzymatic, spontaneous or transport
reactions which are reconstructed from annotated genome and
literatures and implements computational methods such as flux
balance analysis (FBA), flux variability analysis (FVA) and gene
essentially predictions (76). Constraint based in silico modelling
comprises of stoichiometric, mass, charge and energy balanced
reactions and is used for prediction of steady-state phenotypes.
The models include an objective function, typically a biomass
equation. Flux distributions through the network are
computationally optimized to maximize biomass function and
growth rate to predict phenotypes. The accuracy of these
predictions needs to be further validated using experimental
approaches. These genome scale models are powerful as these
platforms can be used to integrate transcriptomic, proteomic,
and metabolic data to provide a holistic view of an organism’s
metabolic and biochemical network in various environmental
and nutritional conditions, stress and disease which is otherwise
very challenging to derive from experimental and previously
discussed omic platforms alone. Such metabolic modelling has
been applied to study metabolic flexibility of Mtb and to predict
mutant phenotypes (76–78). GSMN-TB, the first genome scale
model of Mtb predicted the requirement of the enzyme isocitrate
lyase during slow growth of Mtb in a continuous culture (78).
Bonde et al. developed a differential producibility analysis (DPA)
algorithm to extract metabolite production profiles through
integration of micro array gene expression data into GSMN-
TB model (79). DPA using GSMN-ML, the first genome scale
model of M. leprae, was applied to interrogate RNA-seq data to
derive in vivo metabolite production of leprae bacillus and
nutritional status (80). Metabolic variations within the Mtb
complex were identified through comparisons of substrate
utilisation rates, gene essentiality data and growth rates
calculated from GSMN-TB, GSMN-MB (M. bovis) and
GSMN-BCG (M. bovis BCG) models (81). Lofthouse et al.
tested a range of carbon and nitrogen sources to compare
substrate utilisation between the models; the experimental
validations identified several discrepancies with the predictions,
highlighting the need to verify in silico predictions and to
continually update and curate the models with updated genetic
and enzymatic knowledge. Recent integration of metabolomic
and genomic data into the genome scale models of Mtb complex
predicted genetic mutations and their associated metabolic
vulnerabilities in 18 clinical strains and providing an
alternative approach to the genomic approaches such as
GWAS to relate genetic variations to clinical phenotypes, and
additionally, predicting related metabolic variations (53).
Genome scale modelling has been used to identify drug targets
through gene essentiality predictions (77). Rienksma et al.
Frontiers in Immunology | www.frontiersin.org 6
modelled metabolic state of Mtb during infection using
condition-specific objective function and predicted nutrient
uptake and gene essentiality to identify vulnerable drug targets
in Mtb (76, 77). Till date, there are 16 genome scale models that
vary in network topology and biomass equations, and these
inconsistencies amongst the existing models poses limitations
in their use and applications. It is therefore important that these
models are updated and are standardized for predicting
physiologically relevant phenotypes. Kavvas et al. (82) unified
sMtb and iOSDD, two of the newest reconstructions and
generated iEK1011, a standardized model that explored
metabolic phenotypes of Mtb under various environmental
conditions (82). Recently López-Agudelo et al. (83) conducted
useful comparisons between eight Mtb models and identified
the two best sMtb and iEK1011 models for metabolic state
predictions (83). Although constraint-based genome scale
modelling provides useful predictions on metabolic network
operation and gene essentialities, these predictions are
calculated based on the maximization or minimization of the
assumed objective function in the model and therefore may not
be an exact representation of the metabolic phenotype (84). The
predictions need to be validated through measurement of
metabolically active fluxes supported by experimental data.
METABOLIC FLUX ANALYSIS AND
FLUXOMICS

Metabolic Flux Analysis (MFA), which is an amalgamation of
computational and experimental techniques, provides precise
quantification of metabolic fluxes in the network. The general
workflow of steady state MFA is elaborated in Figure 2. The
experimental part of MFA involves cultivation of microbial or
eukaryotic cells in a growth medium containing isotopically
labelled substrates. Majority of the MFA studies are conducted
on steady state cultures where the cells are grown at a controlled
growth rate using a bioreactor/chemostat setup (73, 85, 86) or
assuming a pseudo-steady state during exponential growth
mainly for eukaryotic cells (87, 88). Metabolic steady state of
the system is confirmed through measurement of substrate
uptake, CO2, and biomass production rates (73). Metabolically
steady state cultures are next checked for isotopic steady state
through addition of isotopic substrates and their incorporation
into the biomass at various time points of cultivation. Cells at
isotopic steady state are harvested for extraction of metabolites
and follow up metabolomic and mass isotopomer distribution
(MID) analyses using mass spectrometry (GC-MS, LC-MS) or
NMR. The computational part of MFA involves construction of a
metabolic model of the system under study; the model includes
atomic transitions for the central metabolic network reactions,
free and measured fluxes and a biomass reaction constructed
from experimentally derived measurements of macromolecular
compositions required to constrain the model. The MIDs are
included in the model as the experimental data set, and the
model is simulated using linear programming to iteratively fit the
experimental MIDs and derive intracellular fluxes. Several
November 2021 | Volume 12 | Article 762315
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computational tools such as 13C-FLUX2 (86), Isotopomer
Network Compartmental Analysis (INCA) (73), WUFlux (89)
are available for MFA calculations and for statistical evaluations
of measured fluxes.

Steady state 13C-MFA, which uses 13C-isotopically labelled
substrates has been used to quantify intracellular central carbon
metabolic fluxes of Mtb in vitro and in human THP-1
macrophages. 13C-MFA of Mtb in vitro cultures cultivated at
slow and fast growth rate using 13C-glycerol as the labelled
carbon substrate identified a novel pathway for pyruvate
dissimilation through glyoxylate shunt and anaplerotic
reactions and demonstrated the ability of Mtb to fix CO2 for
synthesizing biomass (86). Recently, the intracellular carbon
fluxes that support co-catabolism of multiple carbon substrates
by Mtb were identified using 13C-MFA (73). This study
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demonstrated that flux partitioning between the TCA cycle
and glyoxylate shunt with a reversible methyl citrate cycle
enables Mtb to co-catabolise cholesterol and acetate. 13C-MFA
derived metabolic flux profiles of BDQ-treated Mtb identified the
operation of a bifurcated TCA cycle and requirement of the
anaplerotic node and methylcitrate cycle, thereby elaborating the
metabolic changes in BDQ-treated Mtb (62). Application of
classical 13C-MFA to measure metabolic fluxes of Mtb inside
human cells is challenging as the system is at non-steady state. To
overcome this challenge Beste et al. (15) developed 13C-Flux
Spectral Analysis (FSA), a computational tool that probed the
uptake and utilisation of carbon sources including a mixture of
amino acids, C1 and C2 compounds by Mtb from human THP-1
macrophages (15). In addition to carbon, Mtb utilises several
nitrogen sources during infection. This was recently
FIGURE 2 | General workflow of steady state 13C-Metabolic Flux Analysis (MFA). The application is shown for measuring metabolic fluxes of Mtb in vitro in
chemostat and during intracellular growth in macrophages. The methodology includes growth of the biological system in isotopically labelled media, followed by
achievement of metabolic and isotopic steady state for chemostat set up or assuming pseudo steady state from macromolecular measurements at various time
points of isotopic labelling. Metabolomics and mass isotopomer distributions (MIDs) are measured using GC-MS, LC-MS or NMR. A minimum of 106-107 cells is
required for robust MID measurements. The computational part of 13C-MFA includes construction of a metabolic model consisting of atomic transitions for central
metabolic reactions. The model is constrained with extracellular flux and biomass measurements. Measured MIDs are incorporated into the model and the model is
cimulated with MFA computational platform to derive best-fit metabolic fluxes that defines the metabolic phenotype of the system under study. Created with
BioRender.com.
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demonstrated by Borah et al. (13) through the application of 15N-
isotopically labelled amino acids to Mtb-THP-1 macrophage and
development of 15N-Flux Spectral Ratio Analysis (FSRA) to
identify the nitrogen sources acquired by Mtb from the host
cell and their intracellular assimilation (13). This research
demonstrated glutamine as the primary nitrogen donor for
intracellular Mtb and that serine biosynthesis is essential for
survival of Mtb in human macrophages.
FUTURE PERSPECTIVES AND
CONCLUSIONS

Till date, several omic technologies have been developed and
applied to investigate host-pathogen interactions in TB and in
other diseases. Each of the five omics discussed in this review uses
unique tools and methodology and specializes in the
measurement of particular type of biomolecules and their
functions. Genomic technologies such as GWAS has led to the
discovery of new biological mechanisms in TB. Transcriptomic
approaches are powerful tools to derive host and pathogen
molecular signatures and for identification of biomarkers for
diagnosis and prognosis. However, both these approaches have
their limitations that needs to be considered while designing
future studies. There are inconsistencies in genomic studies due to
the failure in replicating genetic associations across various
studies and experimental settings; previous transcriptomic
studies have highlighted the need to conduct comparisons
across diverse disease cohorts and between whole blood, tissues,
and cells, thus limiting the precise identification of genetic
signatures between active and latent TB (90, 91). Proteomics,
the complementary approach to genomics and transcriptomics
which has been used to identify host-Mtb interactions and
pathogen physiology, also suffers from limitations such as low
instrument sensitivity (92). Although metabolomics provides the
advanced omic platform for detection of small molecules, the
precision of detection and measurement are affected by extraction
method and conditions. There are variations in metabolomic
analyses performed across research labs due to the variations in
instrument, sample preparations, data integration and statistical
analysis which currently limits the reproducibility, sensitivity and
specificity required for clinical applications (93). The most recent
fluxomic technology measures the metabolic phenotype of a
biological system and provides a systems-wide identification of
active pathways. However, there exists limitations in application
offluxomics to TB disease cohorts, firstly due to the unavailability
of a human TB metabolic and mathematical model of disease and
secondly, fluxomics is currently limited to measuring mainly
Frontiers in Immunology | www.frontiersin.org 8
central carbon fluxes in host and pathogen. Isotopic labelling
studies in Mtb are mainly focussed on single isotope species. Co-
labelling studies with different isotopes such as 13C and 15N are
limited mainly because of the low sensitivities of MS instruments
to precisely distinguish between different isotopic species. As
evident from several studies, there are multiple nutrients that
the TB pathogen utilises inside the human host. To gain a
complete picture of the metabolic characteristics of Mtb
pathogen in humans, there is a need to further develop the
fluxomic technologies to model multiple substrate utilisation
and carbon and nitrogen co-metabolic reactions. There is a
need to develop metabolomics and MS sensitivities to precisely
distinguish and measure isotopic species-specific MIDs obtained
from labelling experiments conducted with multiple isotopic
substrates. Finally, the flux computational platform needs to be
developed to accurately model fluxes for the utilisation of
multiple atoms through the metabolic network.

In conclusion, systems-based omic technologies have
advanced the frontiers of host and pathogen biology and their
interactions in TB disease. Over decades, there has been several
successful attempts in developing and applying various omic
platforms for the identification of diagnostic markers and
therapeutic interventions. However, the current limitations in
these omic approaches limit the investigation of host-pathogen
molecular interactions in clinical settings and to reproducibly
identify and validate diagnostic and therapeutic markers. The
integration of various omic approaches, data sharing, cross lab
validations and application to studying multiple disease cohorts
are plausible ways forward to harness the calibre of various omic
approaches for discovering clinically relevant biological
mechanisms in TB.
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