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Abstract: A small series of indol-3-yl-oxoacetamides was synthesized starting from the
literature known N-(adamantan-1-yl)-2-(5-(furan-2-yl)-1-pentyl-1H-indol-3-yl)-2-oxoacetamide (5) by
substituting the 1-pentyl-1H-indole subunit. Our preliminary biological evaluation showed that the
fluorinated derivative 8 is a potent and selective CB2 ligand with Ki = 6.2 nM.
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1. Introduction

For centuries, Cannabis sativa was used as medicinal plant for the treatment of pain and
inflammatory processes. The discovery by Gaoni and Mechoulam [1] of ∆9-tetrahydrocannabinol
(∆9-THC)—the primary psychoactive ingredient in Cannabis sativa—set the stage for the
identification of the endogenous cannabinoid (endocannabinoid) transmitter system in the
brain. The endocannabinoid system consists of cannabinoid (CB) receptors, endogenous ligands
(e.g., anandamide, 2-O-arachidonoylglycerol) that activate the CB receptors, and the enzymes, which
are responsible for the biosynthesis (e.g., N-acyltransferase, diacylglycerol lipase) and deactivation
(e.g., fatty acid amide hydrolases, monoacylglycerol lipases) of the endogenous ligands [2,3].

Two types of specific Gi/o-protein-coupled CB receptors were cloned in the 1990s, termed CB1

and CB2 receptor [4,5]. CB1 receptors are abundantly expressed in the central nervous system, and
their function has been thoroughly investigated [6]. Recently, the crystal structure of the CB1 receptors
has been reported, providing a tool for a more accurate pharmacological investigation of this receptor
subtype [7,8]. In contrast to CB1 receptors, the CB2 receptor was originally regarded as a peripheral
receptor predominantly expressed in cells of the immune system [5,9,10]. However, more recent
investigations proved the presence of CB2 receptors in glial cells (microglia and astrocytes) [11,12], and
oligodendroglial [13] progenitors in vitro, as well as in microglia [14] and neuronal progenitors [12] in
normal mouse brain in vivo [15].

The predominant expression of the CB2 receptor in cells of the immune system suggests a
modulation of diverse immune functions, including cytokine production, lymphocyte proliferation,
and humoral and cell-mediated immune responses [16,17]. With respect to neuroinflammation,
microglia adopt a key function. Under healthy conditions, the expression of CB2 receptors in the brain
is rather low [18]. However, inflammatory effects result in considerably increased expression levels
of CB2 receptors [19,20]. It was found that neurodegenerative and neuroinflammatory processes in
the brain related to, for example, depression, Alzheimer’s disease, multiple sclerosis, amyotrophic
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lateral sclerosis, or brain tumors such as glioblastoma are associated with an upregulation of CB2

receptor expression [18,21–23]. CB2 receptor agonists lead to a reduction of neuroinflammation
and stimulation of neurogenesis. Therefore, the therapeutic potential of CB2 agonists is related
to neurodegenerative and neuroinflammatory processes [19,24]. Moreover, the availability of CB2

receptors as measured with positron emission tomography (PET) [25] could potentially be used as a
biomarker for neurodegenerative and neuroinflammatory processes in the brain [26–29].

Indole has been a very popular key building block for the medicinal chemistry of cannabinoid
receptor ligands, and a large number of indole-derived CB2 selective ligands have been
developed [30–33]. However, most of these ligands do not comply with the most important
needs of a ligand suitable for the development of a tracer for CB2 brain imaging with PET;
namely, high affinity towards CB2 (Ki(CB2) < 1 nM) and high selectivity over CB1 (Ki(CB2)/(CB1)
> 500) [26,34]. Recently, we reported the development of a highly affine and selective
18F-labeled CB2 radiotracer (Ki(CB2) = 0.4 nM, Ki(CB1) = 380 nM), and proved its applicability
in a mouse model of neuroinflammation [35]. However, this radioligand suffers from low
metabolic stability in vivo, and therefore we redirected our focus on the structure of the literature
known, highly affine N-(adamantan-1-yl)-2-(5-(furan-2-yl)-1-pentyl-1H-indol-3-yl)-2-oxoacetamide
(5, Ki(CB2) = 0.37 nM and Ki(CB1) = 345 nM) [32] for the development of a CB2 radiotracer. In the
present work, we show the synthesis and preliminary biological evaluation of fluorine-containing
indol-3-yl-oxoacetamide derivatives.

2. Results and Discussion

The structure–affinity relationship study which lead to the identification of compound 5 [32,36]
(Scheme 1) and the work performed on the structurally related quinolinone-3-carboxamides as CB2

ligands [37] has proven the importance of the substitution pattern at the 5-indole position, and also
the need of the lipophilic adamantane subunit. Herein, we investigate the possibility of introducing a
fluorine atom by modifying the alkyl chain at the indole 1-position.
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Scheme 1. Synthesis of the key building block 3, lead compound 5, and ether derivatives 6,
7, and 8; (a) oxalyl chloride, diethyl ether (Et2O), 0 ◦C to r.t., 1.5 h, 60%; (b) amantadine,
triethylamine (Et3N), dichloromethane (DCM), r.t., 16 h, 82%; (c) 2-furanboronic acid,
tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4), Na2CO3, EtOH, reflux, 14 h, 60%;
(d) 1-bromobutane (n-BuBr), tetrabutylammonium bromide (TBAB), 20% aq. NaOH, DCM, r.t., 14 h,
72%; (e) bromo-alkyl reagent, KOH, N,N-dimethylformamide (DMF), 90 ◦C, 6 h, 67%–72%; (f) NaH,
methyl iodide (MeI) for 7 and Br(CH2)2F for 8, DMF, 0 ◦C to r.t., 6 h, 85%–90% [32].
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The synthesis of the key building block 3 was performed as described in the literature [32]
and depicted in Scheme 1. Treatment of 5-bromoindole (1) with oxalyl chloride delivered the
corresponding indole-3-oxoacetyl chloride in ~60% yield, which was further reacted with amantadine
(adamantan-1-amine) in presence of triethylamine (Et3N) to give compound 2. Next, Suzuki
coupling was performed using the commercially available 2-furanboronic acid in presence of
Pd(PPh3)4 and Na2CO3 to give 3. The lead molecule 5 [32] was synthesized by treating 3 with
1-bromobutane in basic reaction condition in ~25% yield over four steps starting from 1, as a light
yellow solid. To overcome the high lipophilicity of the indole-N-alkyl chain [38], ether groups
were introduced at this site of the molecule, and simultaneously, the influence of its length on the
CB2 binding affinity was investigated. Thus, the glycol ether compound 6 was synthesized from 3
by using 2-(2-(2-fluoroethoxy)ethoxy)ethyl-4-methylbenzenesulfonate [39,40] as alkylating reagent
in 72% yield. Similarly, alcohol 4 was synthesized by reacting compound 3 with 2-bromethanol.
Alcohol 4 was further etherified via Williamson ether synthesis [41] by using methyl iodide and
2-fluoro-1-bromoethane to give compounds 7 and 8, respectively (for 1H-NMR of compounds 3, 5, 6, 7
and 8 see Supplementary Materials).

The binding affinity towards CB2 receptors was determined in vitro by radioligand inhibition
binding assays according to a recently published protocol [42,43] using cell membranes from CHO
cells stably transfected with the human CB2 (Prof Paul L. Prather, University Arkansas for Medical
Sciences, Little Rock, AR, USA), [3H]WIN55.212-2 as competitive radioligand (KD = 2.1 nM) and
increasing concentrations (100 pM to 10 µM) of compounds 5, 6, 7, and 8 added in triplicate for
each experiment. Non-specific binding was determined using 10 µM WIN55.212-2. The individual
IC50 values were determined by non-linear curve fitting using GraphPad Prism software (version 3.0,
GraphPhad, San Diego, CA, USA), and the corresponding Ki values calculated using the Cheng–Prusoff
equation [44]. As shown by the Ki values in Figure 1b, we could not reproduce the reported
sub-nanomolar CB2 affinity of the lead molecule (compound 5) [32], but recorded a Ki value of
8.5 nM instead. In addition, these values and the individual binding curves in Figure 1a illustrate that
a similar low-nanomolar affinity was observed for the fluorinated derivative 8 (Ki = 6.2 nM), while
slightly lower affinities were determined for compounds 6 and 7 (Ki = 27.3 nM, and Ki = 16.1 nM,
respectively). Additionally, the binding affinities towards the CB1 receptor were investigated for
compounds 6 and 8 by using [3H]CP55.40 as competitive radioligand. None of the two derivatives
could displace [3H]CP55.40 from the human CB1 receptors up to a concentration of 100 µM. Thus,
within this series of fluoro-substituted compounds, the N-alkyl chain of compound 8 is most suitable
to obtain high affinity binding at the CB2 receptor, combined with an excellent selectivity against the
CB1 receptor subtype.
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Figure 1. (a) Individual competition binding curves of compounds 5, 6, 7, and 8. Inhibition of 
[3H]WIN55.212-2 binding by increasing concentrations (100 pM to 10 µM) of compounds 5, 6, 7, and 8 
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mean ± standard deviation of a triplicate in a single experiment; (b) Binding affinity (Ki) of compounds 
5, 6, 7, and 8 for the human cannabinoid receptor type2 (CB2) receptor. a Values are means ± standard 
deviations of two to three experiments run in triplicate; b Ki of compound 5 as reported in [23]. 

Figure 1. (a) Individual competition binding curves of compounds 5, 6, 7, and 8. Inhibition of
[3H]WIN55.212-2 binding by increasing concentrations (100 pM to 10 µM) of compounds 5, 6, 7, and 8
to membrane homogenates of CHO cells stably transfected with human CB2. Each value represents the
mean ± standard deviation of a triplicate in a single experiment; (b) Binding affinity (Ki) of compounds
5, 6, 7, and 8 for the human cannabinoid receptor type 2 (CB2) receptor. a Values are means ± standard
deviations of two to three experiments run in triplicate; b Ki of compound 5 as reported in [23].
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3. Materials and Methods

3.1. General Methods

All reagents were used directly as obtained commercially, unless otherwise noted. Reaction
progress was monitored by thin-layer chromatography (TLC) using silica gel 60 F254 (0.040–0.063 mm)
with detection by UV. All moisture-sensitive reactions were performed under an argon atmosphere
using oven-dried glassware and anhydrous solvents. Column flash chromatography was carried out
using E. Merck silica gel 60F (230–400 mesh) (Merck Millipore, Darmstadt, Germany). Analytical
TLC was performed on aluminum sheets coated with silica gel 60 F254 (0.25 mm thickness, E. Merck,
Darmstadt, Germany). 1H-NMR spectra were recorded with a Bruker-400 NMR spectrometer (Bruker,
Billerica, MA, USA) at nominal resonance frequencies of 400 MHz, in CDCl3 or DMSO-d6 (referenced
to internal Me4Si at δH 0 ppm). The chemical shifts (δ) were expressed in parts per million (ppm).
High resolution mass spectra were recorded utilizing electrospray ionization (ESI) at the University of
Notre Dame Mass Spectrometry facility.

3.2. Procedures and Compound Characterization

N-(Adamantan-1-yl)-2-(5-(furan-2-yl)-1-(2-hydroxyethyl)-1H-indol-3-yl)-2-oxoacetamide (4). 2-bromethanol
(55 µL, 1.2 eq, 0.77 mmol) was added to a solution of 3 (300 mg, 1 eq, 0.64 mmol) in 5 mL
N,N-dimethylformamide (DMF) at room temperature, followed by powder KOH (116 mg, 3 eq,
1.93 mmol), and the reaction mixture was warmed to 90 ◦C for 6 h. Saturated aqueous NaHCO3 solution
(15 mL) and ethyl acetate (EA, 15 mL) were added, and the phases were separated. The aqueous phase
was washed 2 × EA (10 mL), the combined organic solutions were dried over MgSO4, filtered, and
concentrated by rotary evaporation. The residue was purified by column chromatography (silica,
EA:Hex, 1/1) to give alcohol 4 (224 mg, 67% yield) as yellow solid. 1H-NMR (400 MHz, CDCl3):
δ (ppm) = 1.67–1.76 (m, 6H), 2.05–2.12 (m, 6H), 2.07–2.11 (m, 6H), 2.14 (br s, 3H), 2.41 (br s, 1H),
3.96–4.06 (t, J = 5.18 Hz, 2H), 4.31 (t, J = 5.18 Hz, 2H), 6.51 (dd, J = 3.28, 1.77 Hz, 1H), 6.71 (dd, J = 3.28,
0.76 Hz, 1H), 7.35 (s, 1H), 7.40 (dd, J = 8.59, 0.76 Hz, 1H), 7.50 (dd, J = 1.77, 0.76 Hz, 1H), 7.65 (dd,
J = 8.59, 1.52 Hz, 1H), 8.71 (dd, J = 1.77, 0.51 Hz, 1H), 8.99–9.10 (m, 1H). 13C-NMR (100 MHz, CDCl3):
δ (ppm) = 29.36 (3C), 36.29 (3C), 41.15 (3C), 49.58, 51.84, 61.26, 104.42, 110.40, 111.72, 112.16, 118.02,
120.29, 126.77, 128.24, 135.74, 141.77, 142.03, 154.59, 161.48, 181.14.

N-(Adamantan-1-yl)-2-(5-(furan-2-yl)-1-pentyl-1H-indol-3-yl)-2-oxoacetamide (5). This compound was
obtained according to literature. 1H-NMR (400 MHz, CDCl3): δ (ppm) = 0.86–0.94 (m, 3H), 1.28–1.44
(m, 4H), 1.69–1.81 (m, 6H), 1.93 (quin, J = 7.33 Hz, 2H), 2.10–2.20 (m, 9H), 4.16 (t, J = 7.33 Hz, 2H), 6.51
(dd, J = 3.28, 1.77 Hz, 1H), 6.73 (dd, J = 3.28, 0.76 Hz, 1H), 7.37–7.44 (m, 2 H), 7.50 (dd, J = 1.89, 0.63 Hz,
1H), 7.69 (dd, J = 8.59, 1.77 Hz, 1H), 8.73–8.78 (m, 1H), 9.04 (s, 1H). 13C-NMR (100 MHz, CDCl3): δ
(ppm) = 13.94, 22.29, 28.99, 29.38 (3C), 29.60, 36.32 (3C), 41.21 (3C), 47.58, 51.78, 104.35, 110.43, 111.70,
111.91, 118.10, 120.13, 126.67, 128.36, 135.60, 141.62, 141.74, 154.70, 161.58, 180.97.

N-(Adamantan-1-yl)-2-(1-(2-(2-(2-fluoroethoxy)ethoxy)ethyl)-5-(furan-2-yl)-1H-indol-3-yl)-2-oxoacetamide (6).
2-(2-(2-fluoroethoxy)ethoxy)ethyl-4-methylbenzenesulfonate (40 mg, 1.5 eq, 0.15 mmol) and KOH
(25 mg, 5 eq, 0.5 mmol) were added at room temperature to a solution of compound 3 (46 mg, 1 eq,
0.1 mmol) in 3 mL DMF, and the reaction mixture was warmed to 90 ◦C for 6 h. To the cooled
down solution, 15 mL saturated aqueous NaHCO3 solution was added followed by 15 mL EA.
The phases were separated, and the aqueous phase was separated 2 × 10 mL EA. The combined
organic phases were washed with 20 mL brine, dried over MgSO4, and concentrated under reduced
pressure. The resulting residue was purified by column chromatography (silica, EA:Hex, 1/1) to give 6
(44 mg, 72% yield) as yellow solid. 1H-NMR (400 MHz, CDCl3): δ (ppm) = 1.68–1.79 (m, 6H), 2.08–2.19
(m, 9H), 3.51–3.71 (m, 6H), 3.65–3.70 (m, 2H), 3.90 (t, J = 5.43 Hz, 2H), 4.37 (t, J = 5.43 Hz, 2H), 4.40–4.45
(m, 1H), 4.49–4.68 (m, 1 H), 6.51 (dd, J = 3.28, 1.77 Hz, 1H), 6.72 (dd, J = 3.28, 0.76 Hz, 1H), 7.38 (s, 1H),
7.41–7.54 (m, 2H), 7.69 (dd, J = 8.59, 1.77 Hz, 1H), 8.69–8.88 (m, 1H), 9.08 (s, 1H). 13C-NMR (100 MHz,



Molecules 2017, 22, 77 5 of 8

CDCl3): δ (ppm) = 29.38 (3C), 36.32 (3C), 41.20 (3C), 47.43, 51.76, 69.66 (2C), 70.43, 70.62, 70.81, 71.02
(2C), 83.95, 104.37, 110.64, 111.70, 117.98, 120.15, 126.69, 128.21, 135.84, 141.76, 142.29, 181.21. HRMS
(ESI+): m/z (%) = 523.6150 (ccd. 523.6151) [M + H]+.

N-(Adamantan-1-yl)-2-(5-(furan-2-yl)-1-(2-methoxyethyl)-1H-indol-3-yl)-2-oxoacetamide (7). NaH (60%
suspension in mineral oil, 10 mg, 2 eq, 0.25 mmol) was added to a solution of 4 (65 mg, 1 eq, 1.12 mmol)
in 2 mL DMF at 0 ◦C, and the mixture was stirred at 0 ◦C for 15 min. MeI (64 µL, 8 eq, 1.02 mmol)
was added, the ice bath was removed, and the reaction was magnetically stirred at room temperature.
After 5 h, the reaction was quenched by slow addition of 2 mL cold water followed by 10 mL saturated
aqueous NaHCO3 solution and 15 mL EA. The phases were separated, and the aqueous phase was
washed three times with 10 mL EA. The combined organic phases were washed with brine, dried over
MgSO4, and concentrated under reduced pressure. The resulting material was purified by column
chromatography (silica, EA:Hex, 1/1) to give 7 (55 mg, 84% yield), yellow solid. 1H-NMR (400 MHz,
CDCl3): δ (ppm) = 1.75 (m., 6H), 2.10–2.20 (m, 9H), 3.25–3.39 (s, 3H), 3.77 (t, J = 5.43 Hz, 2H), 4.34
(t, J = 5.43 Hz, 2H), 6.46–6.55 (m, 1H), 6.68–6.78 (m, 1H), 7.39 (s, 1H), 7.40–7.45 (m, 1H), 7.47–7.54 (m,
1H), 7.69 (dd, J = 8.59, 1.77 Hz, 1H), 8.74 (d, J = 1.77 Hz, 1H), 9.01–9.10 (m, 1H). 13C-NMR (100 MHz,
CDCl3): δ (ppm) = 30.00 (3C), 31.81, 36.43 (3C), 39.23 (3C), 47.15, 59.15, 70.73, 104.46, 110.37, 111.71,
120.26, 138.52, 141.71, 161.32, 181.22. HRMS (ESI+): m/z (%) = 447.5457 (ccd. 447.5455) [M + H]+.

N-(Adamantan-1-yl)-2-(1-(2-(2-fluoroethoxy)ethyl)-5-(furan-2-yl)-1H-indol-3-yl)-2-oxoacetamide (8). This
compound was synthesized by employing the same procedure as for compound 7, and it was obtained
in 75% yield as yellow solid. 1H-NMR (400 MHz, CDCl3): δ (ppm) = 1.75 (m, 6H), 2.07–2.21 (m, 9H),
3.58–3.66 (m, 1H), 3.66–3.72 (m, 1H), 3.92 (t, J = 5.56 Hz, 2H), 4.38 (t, J = 5.43 Hz, 2H), 4.42–4.48 (m, 1H),
4.52–4.60 (m, 1H), 6.46–6.55 (m, 1H), 6.73 (dd, J = 3.28, 0.76 Hz, 1H), 7.37 (s, 1H), 7.46 (dd, J = 8.59,
0.51 Hz, 1H), 7.50 (dd, J = 1.77, 0.76 Hz, 1H), 7.70 (dd, J = 8.59, 1.77 Hz, 1H), 8.75 (dd, J = 1.64, 0.63 Hz,
1H), 9.07 (s, 1H). 13C-NMR (100 MHz, CDCl3): δ (ppm) = 29.38 (3C), 36.32 (3C), 41.20 (3C), 47.44, 51.79,
69.88, 70.47, 70.67, 82.31, 83.99, 104.39, 110.59, 111.70, 112.25, 118.00, 120.23, 128.21, 135.82, 141.76,
142.14, 154.65, 161.45. HRMS (ESI+): m/z (%) = 479.5627 (ccd. 479.5625) [M + H]+.

4. Conclusions

In this study, the N-alkyl chain of the high affinity and selective CB2 ligand 5 was modified for
the possibility of introducing a fluorine atom. The herein developed fluorinated compound 8 retained
the high affinity of the lead compound, and will be considered for the development of an 18F-labeled
radiotracer for CB2 receptors imaging with PET.

Supplementary Materials: The 1H NMR spectra of compounds 3, 5, 6, 7 and 8 are available online at http:
//www.mdpi.com/1420-3049/22/1/77/s1.
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Author Contributions: Rareş-Petru Moldovan and Andrew G. Horti conceived and performed the chemical
syntheses. Winnie Deuther-Conrad and Peter Brust planned and performed the radioligand binding studies.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/1420-3049/22/1/77/s1
http://www.mdpi.com/1420-3049/22/1/77/s1


Molecules 2017, 22, 77 6 of 8

Abbreviations

CB2 cannabinoid receptors type 2
CB1 cannabinoid receptors type 1
PET positron emission tomography
DMF N,N-dimethylformamide
TBAB tetrabutylammonium bromide
Et3N triethylamine
CHO Chinese Hamster Ovary
EA ethyl acetate
Et2O diethyl ether
DCM dichloromethane
Pd(PPh3)4 tetrakis(triphenylphosphine)palladium(0)
n-BuBr 1-bromobutane
MeI methyl iodide
Hex hexane
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