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Abstract
Patients with multiple injuries frequently suffer bone fractures and are at high risk to develop fracture healing complications.
Because of its key role both in systemic posttraumatic inflammation and fracture healing, the pleiotropic cytokine interleukin-6
(IL-6) may be involved in the pathomechanisms of trauma-induced compromised fracture healing. IL-6 signals are transmitted by
two different mechanisms: classic signaling via the membrane-bound receptor (mIL-6R) and trans-signaling via its soluble form
(sIL-6R). Herein, we investigated whether IL-6 classic and trans-signaling play different roles in bone regeneration after severe
injury. Twelve-week-old C57BL/6J mice underwent combined femur osteotomy and thoracic trauma. To study the function of
IL-6, either an anti-IL-6 antibody, which inhibits both IL-6 classic and trans-signaling, or a soluble glycoprotein 130 fusion
protein (sgp130Fc), which selectively blocks trans-signaling, were injected 30 min and 48 h after surgery. Bone healing was
assessed using cytokine analyses, flow cytometry, histology, micro-computed tomography, and biomechanical testing. Selective
inhibition of IL-6 trans-signaling significantly improved the fracture healing outcome after combined injury, as confirmed by
accelerated cartilage-to-bone transformation, enhanced bony bridging of the fracture gap and improved mechanical callus
properties. In contrast, global IL-6 inhibition did not affect compromised fracture healing. These data suggest that classic
signaling may mediate beneficial effects on bone repair after severe injury. Selective inhibition of IL-6 trans-signaling might
have therapeutic potential to treat fracture healing complications in patients with concomitant injuries.
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Introduction

Patients with multiple injuries frequently suffer from bone
fractures and are at high risk to develop fracture healing

complications, including non-unions (Bhandari et al. 2003;
Karladani et al. 2001; Zura et al. 2016). One reason for poor
bone regeneration after severe trauma is the overwhelming
systemic posttraumatic inflammation, which is triggered by
endogenous alarm signals, including cell and matrix debris,
being released from the injured tissues (Bastian et al. 2011;
Claes et al. 2012; Pape et al. 2010). The immune response is
accompanied by a flood of inflammatory mediators, among
them the pleiotropic cytokine interleukin-6 (IL-6) (Lenz et al.
2007; Lord et al. 2014; van Griensven 2014; Volpin et al.
2014). IL-6 is considered to be a key mediator in this complex
scenario because of its significant correlation with injury se-
verity and clinical complications (Alper et al. 2016; Cuschieri
et al. 2010; Frink et al. 2009; Gebhard et al. 2000). It provokes
both pro-inflammatory and protective effects. IL-6 is pivotal
for the amplification of the inflammatory signal by stimulating
leukocyte recruitment and the production of other inflamma-
tory mediators. Furthermore, it induces the acute-phase re-
sponse, activates the complement and coagulation cascades,
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and increases hematopoiesis, thrombocytosis, and vascular
permeability (Tanaka et al. 2016). IL-6 also contributes to
the resolution of inflammation, for example, by inducing the
shift from pro-inflammatory M1 to anti-inflammatory M2
macrophages (Mauer et al. 2014) and the recruitment of mes-
enchymal stem cells from their niches (Loi et al. 2016).

Because of its key role in posttraumatic inflammation, we
hypothesize that IL-6 might crucially contribute to compro-
mised fracture healing in patients with concomitant injuries.
Supporting this, bone healing complications are observed
more frequently in patients with, for example, osteoporosis
and rheumatoid arthritis, which are associated with an inflam-
matory phenotype that includes increased IL-6 levels
(Edwards and Williams 2010; Hardy and Cooper 2009; Oei
et al. 2015). Moreover, IL-6 exerts crucial regulatory func-
tions in all stages of bone repair (Ai-Aql et al. 2008; Kon
et al. 2001; Wallace et al. 2011; Yang et al. 2007). In the
fracture hematoma, IL-6 controls the recruitment and activity
of immune cells and angiogenesis (Ai-Aql et al. 2008; Prystaz
et al. 2017; Walters et al. 2017). In the repair phase, IL-6
regulates intramembranous and endochondral ossification
and fracture callus remodeling (Wallace et al. 2011; Yang
et al. 2007).

Essentially, IL-6 signals are transmitted by two distinct
mechanisms: In IL-6 classic signaling, IL-6 activates its
membrane-bound receptor (mIL-6R), which is mainly
expressed by some immune cells and hepatocytes. In IL-6
trans-signaling, IL-6 binds to its soluble receptor (sIL-6R),
which is preferentially released from leukocytes following
proteolytic cleavage of the mIL-6R, particularly in response
to an inflammatory stimulus (McFarland-Mancini et al. 2010;
Yan et al. 2016). In both pathways, intracellular signal trans-
duction is induced after the association of the IL-6/IL-6R com-
plexes with the ubiquitously expressed transmembrane glyco-
protein 130 (gp130) (Rose-John 2012; Scheller et al. 2014).
Whereas IL-6 classic signaling is regarded to regulate homeo-
stasis and support regeneration, IL-6 trans-signaling rather
acts as a danger signal driving inflammation (Barkhausen
et al. 2011; Rose-John 2012; Scheller et al. 2011; Zhang
et al. 2013). In a recent study, we deciphered IL-6 actions in
bone healing by discriminating between both signaling path-
ways, using a mouse model of isolated fracture healing, which
induces only mild systemic inflammation and leads to un-
eventful bone repair (Prystaz et al. 2017). We demonstrated
that the classic IL-6 pathway is important for a balanced sys-
temic and local immune response after fracture by regulating
the production of acute-phase proteins in the liver, the recruit-
ment of immune cells to the fracture hematoma, and by induc-
ing regenerative downstream processes augmenting bone re-
pair. By contrast, IL-6 trans-signaling plays only a subordinate
role in uncomplicated fracture healing (Prystaz et al. 2017).
Because severe trauma is associated with increased levels of
IL-6 (Alper et al. 2016; Cuschieri et al. 2010; Frink et al. 2009;

Gebhard et al. 2000) and its soluble receptor (Kleber et al.
2015) and trans-signaling is proposed to account for many
deleterious effects of IL-6 (Barkhausen et al. 2011), the pres-
ent study investigated the hypothesis that IL-6 trans-signaling
is involved in the pathomechanisms of trauma-induced im-
paired bone healing. We used a mouse model of combined
femur fracture and thoracic trauma, which provokes systemic
inflammation and compromised bone repair, mimicking the
clinical situation of fracture patients with multiple injuries
(Kemmler et al. 2015; Kovtun et al. 2016). To determine the
role of IL-6, we blocked either global IL-6 signaling, using an
anti-IL-6 antibody, or IL-6 trans-signaling, using sgp130Fc,
an artificial fusion protein, which neutralizes the IL-6/sIL-6R-
complex (Jostock et al. 2001; Rose-John et al. 2007). Our
results revealed that inhibition of IL-6 trans-signaling signifi-
cantly improved bone healing after severe trauma, whereas
global IL-6 inhibition had no effect. This may have therapeu-
tic implications for patients with fracture healing
complications.

Material and methods

Study design

All experiments were performed in compliance with the inter-
national regulations for the care and use of laboratory animals
(Directive 2010/63/EU) and with the approval of the local
ethical committee (Regierungspräsidium Tübingen, Reg. No.
1166 and 1247). Male 12-week-old C57BL/6 J mice were
purchased from Charles River (Sulzfeld, Germany). The mice
were maintained in groups of two to five animals per cage
(370 cm2) on a 14 h light and 10 h dark circadian rhythm with
water and food ad libitum.

To analyze fracture healing, we used a standardized
osteotomy model (Röntgen et al. 2010). The osteotomy was
combined with an additional thoracic trauma as described pre-
viously (Kemmler et al. 2015) to induce systemic inflamma-
tion. The mice were randomly assigned to the following
groups (Table 1): (I) mice with isolated femur fracture (Fx);
(II) mice with combined fracture and thoracic trauma (Fx +

Table 1 Experimental groups and treatments

Group Surgery Treatment Compound

I Fx Control PBS

II Fx + TxT Control PBS

III Fx + TxT IL-6 inhibition Anti-IL-6

IV Fx + TxT IL-6 inhibition sgp130Fc

Fx fracture, TxT thoracic trauma, PBS phosphate-buffered saline,
sgp130Fc soluble glycoprotein 130-Fc fusion protein, anti-IL-6 anti-IL-
6 antibody
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TxT); (III) mice with Fx + TxT, which received an anti-IL-6
antibody to block global IL-6 signaling; and (IV) mice with
Fx + TxT which were treated with sgp130Fc, a selective in-
hibitor of trans-signaling. The animals were euthanized 3 h or
1, 10, and 21 days after surgery using isoflurane overdose and
terminal cardiac puncture. To reduce the number of mice and
address the 3Rs principles for ethical use of animals, vehicle-
treated control mice with isolated fracture derived from a pre-
vious study (Prystaz et al. 2017) were included in the control
group of the present study.

Femur osteotomy and thoracic trauma

Mice were anesthetized with 2% isoflurane (Forene, Abbott,
Wiesbaden, Germany). The femur osteotomy was described
in detail before (Röntgen et al. 2010). Briefly, the right femur
was exposed by penetrating the fascia latae between the glu-
teus superficialis and biceps femoris muscles. An external
fixator (RISystem, Davos, Switzerland) was fitted to the fe-
mur in a cranio-lateral position with four mini-Schanz screws.
An osteotomy gap was created using a 0.4-mm Gigli saw at
the femur midshaft. Then, the muscles were sutured with ab-
sorbable (Vicryl®; J&J, Norderstedt, Germany), and the skin
with nonabsorbable thread (Resolon®; Resorba, Nuernberg,
Germany). For pain treatment, tramadol hydrochloride
(Tramal, Gruenenthal GmbH, Aachen, Germany) was applied
in the drinking water, starting 1 day prior to surgery until
3 days post-surgery. Immediately before surgery, mice were
treated with a single dose of antibiotic (clindamycin-2-
dihydrogen-phosphate, 45 mg/kg, Clinda-saar 600 mg, MIP
Pharma GmbH, Blieskastel, Germany). The thoracic trauma
was applied immediately after fracture, while the mice were
still under general anesthesia (Kemmler et al. 2015; Knoferl
et al. 2003). Briefly, the mice were fixed in a supine position.
A single blast wave was applied on the middle of the thorax
using a blast wave generator, which was centered 2 cm above
the thorax. The blast wave generator consists of two parts; the
upper part serves as an air pressure reservoir, whereas the
lower nozzle is directed towards the animals’ chest. Between
the two parts, there is a thin membrane that ruptures at a
pressure of exactly 13 bar, leading to a single blast wave
hitting the thorax. This induces a standardized bilateral, iso-
lated lung contusion (Kemmler et al. 2015).

Inhibition of IL-6 signaling

To selectively inhibit IL-6 trans-signaling, mice received
0.5 mg/kg sgp130Fc (CONARIS Research Institute AG,
Kiel, Germany) 30 min and 48 h after osteotomy. Sgp130Fc
is an artificial fusion protein of the extracellular domain of
gp130 dimerized by the Fc domain of human immunoglobulin
G1 (IgG1), which selectively binds to the IL6/sIL-6 complex
(Jostock et al. 2001). For global IL-6 inhibition, 2.0 mg/kg of a

neutralizing rat anti-murine anti-IL-6 antibody (anti-IL-6)
(clone MP5-20F3, BD Biosciences, Heidelberg, Germany)
were applied at the same time points (Barkhausen et al.
2011; Prystaz et al. 2017). Classic signaling cannot be
inhibited specifically. However, its influence can be deduced
by comparing the effects of IL-6 global and trans-signaling
inhibition (Barkhausen et al. 2011). Control mice received
phosphate-buffered saline solution (PBS, Fisher Scientific
GmbH, Schwerte, Germany). IgG as a vehicle solution was
tested in a previous study and showed now effects compared
to PBS (Prystaz et al. 2017). All agents were injected
intraperitoneally.

Multiplex cytokine analysis and ELISA

To assess systemic posttraumatic inflammation, plasma and
serum were obtained 3 h and 1 day after surgery. The fracture
hematoma was harvested and lysed as described previously
(Prystaz et al. 2017). The lungs were flushed with 500 μL of
ice-cold PBS to investigate the pulmonary inflammation (Perl
et al. 2006). Broncho-alveolar lavage (BAL) fluids were cen-
trifuged at 300×g for 15 min and supernatants were stored at
−80 °C for further analyses.

A mouse Multiplex Cytokine Kit (ProcartaPlex,
eBioscience, Frankfurt, Germany) was used to quantify plas-
ma, BAL, and hematoma concentrations of the pro-
inflammatory cytokines IL-6, IL-1β, tumor necrosis factor-α
(TNF-α), and interferon-γ (IFN-γ) as well as the anti-
inflammatory mediators IL-10, IL-13, IL-4, and the
chemokines monocyte chemotactic protein 1 (MCP-1), che-
mokine (C-X-C motif) ligand 1 (CXCL1), and macrophage
inflammatory protein-1α (MIP-1α). Samples were analyzed
using the Luminex® 100 Total System (Bio-Rad
Laboratories, Hercules, USA). The total protein concentration
of the hematoma samples was determined with the Pierce™
BCA Protein Assay Kit (Fisher Scientific GmbH) and the
cytokine values were normalized to the measured protein con-
centration. The sIL-6R serum levels were determined using a
mouse sIL-6R enzyme-linked immunosorbent assay (ELISA;
R&D Systems, Minneapolis, USA). A Simplex Kit (CRP
Mouse ProcartaPlex™ Simplex Kit, Invitrogen™ Carlsbad,
USA) was used to determine C-reactive protein (CRP) levels
in plasma samples 3 h and 1 day after surgery according to the
manufacturer’s protocol and data were analyzed using the
Luminex® system described above.

Real-time PCR

Liver samples were prepared as described previously (Prystaz
et al. 2017). In brief, the samples were stored in RNAlater®-
ICE Frozen Tissue Transition Solution (Fisher Scientific
GmbH). They were homogenized using a disperser
(Miccra®, Müllheim, Germany), incubated with 1 ml Trizol,
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0.2 ml chloroform was added, and the samples were centri-
fuged at 12,000×g for 30 min. RNA was isolated using the
PureLink® RNA Mini Kit (Fisher Scientific GmbH). Further
processing and qPCR analysis were performed as previously
described (Haffner-Luntzer et al. 2014; Prystaz et al. 2017).
Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) served
as a housekeeping gene. The expression of chemokines and
acute-phase proteins was measured using specific primers for
CXCL1, serum amyloid A (Saa), and CRP (Crp) (Table 2).
Relative gene expression was calculated using the ΔΔCt
method with PCR efficiency correction using LinReg PCR
2015.3 (Academic Medical Centre , Amsterdam,
Netherlands) (Ramakers et al. 2003). Cycle threshold (Ct)
values obtained for each sample were normalized to those of
the housekeeping gene Gapdh and the control group with
isolated fracture.

Flow cytometry

Immune cell populations in the fracture hematoma were de-
termined by flow cytometry. Hematoma samples were har-
vested and homogenized by passing them through a 70-μm
cell strainer (Corning Inc., Durham, NC). The resulting cell
suspension was stained for 30 min on ice with the following
antibodies against the indicated surface markers: anti-Ly-6G-
V450 antibody (No. 560603 BD Biosciences), anti-CD11b-
Alexa Fluor 700 (No. 56-0112 eBioscience), anti-F4/80-FITC
(No. 11-4801 eBioscience), anti-CD3e-PE-Cyanine7 (No. 25-
0031 eBioscience), and anti-CD19-PE antibody (No. 12-0193
eBioscience). Corresponding isotype-matched controls from
the respective manufacturers served as negative controls.
Dead cells were excluded using 7-aminoactinomycin D
(7AAD) staining (Sigma Aldrich, Taufkirchen, Germany).
Live cells were gated for the following cell populations: neu-
trophil granulocytes (CD11b+, Ly-6G+), macrophages
(CD11b+, Ly-6G−, F4/80+), B cells (CD3−, CD19+), and T
cells (CD3+, CD19−). The samples were analyzed using a

LSR II flow cytometer (BD Biosciences) and FlowJo software
(10.0.8r1, FlowJo, Ashland, USA).

Histomorphometry and immunohistochemistry

Lungs (3 h and 1 day) were harvested and fixed in 4% buff-
ered formalin solution (Otto Fischar GmbH & Co. KG,
Saarbruecken, Germany). They were embedded in paraffin
and stained with hematoxylin and eosin (Mayer’s hemalum
solution, Merck KGaA®, Darmstadt, Germany and Eosin Y,
Applichem, Darmstadt, Germany) for morphological investi-
gations. Neutrophil granulocytes were identified using a Ly-
6G-antibody (1:300 LEAF™, No. 127632 BioLegend, Fell,
Germany).

Fractured femurs (days 1 and 10) were fixed in 4% buff-
ered formalin solution, decalcified in 20% ethylenediamine-
tetraacetic acid (EDTA) for 10–12 days, and embedded in
paraffin for immunohistochemistry. Femur samples collected
21 days after surgery were embedded in methyl methacrylate
(MMA) without decalcification. For tissue quantification, fe-
mur sections were stained with either Safranin-O (paraffin
sections; Merck Chemicals GmbH, Darmstadt, Germany),
which stains mainly cartilage, or Giemsa (MMA-embedded
samples; AppliChem). The relative amounts of osseous, car-
tilage, and fibrous tissues were evaluated in the callus between
the inner two pinholes using image analysis software (MMAF
Version 1.4.0 MetaMorph®, Leica, Heerbrugg, Switzerland).
For immunostaining, we used the following antibodies and
dilutions: neutrophil granulocytes 1:300 LEAF™ anti-mouse
Ly-6G antibody (No. 127632 BioLegend), macrophages
1:500 rat anti-mouse F4/80 antibody (No. MCA497GA
AbD Serotec, Puchheim, Germany), and collagen X 1:200
rabbit anti-mouse collagen X antibody (No. ABIN1077945
Antibodies-Online, Atlanta, USA). Secondary antibodies
and dilutions: 1:200 goat anti-rabbit IgG secondary antibody
(No. B2770 Life Technologies, Carlsbad, USA) and 1:200
goat anti-rat IgG secondary antibody (No. A10517 Life
Technologies). Species-specific IgG subtype mixtures obtain-
ed from the respective manufactures were used as negative
controls. For signal detection, Vectastain Elite ABC kit and
Vector NovaRED substrate (both Vector laboratories Inc.,
Burlingame, USA) were applied according to the manufac-
turer’s protocols. Sections were counterstained with hematox-
ylin (Waldeck, Münster, Germany) and analyzed by light mi-
croscopy (Leica DMI6000B, Leica). The relative proportion
of collagen X-positive stained cartilage was evaluated in the
fracture callus between the inner two pinholes using the image
analysis software described above.

Biomechanical testing

To assess the bending stiffness of the fractured femurs
explanted on day 21, a non-destructive three-point bending

Table 2 Primer sequences

Gene Primer

Cxcl1
(CXXL1)

F: 5′-TCT CCG TTA CTT GGG GAC AC-3′

R: 5′-CCA CAC TCA AGA ATG GTC GC-3′

Saa (SAA) F: 5′-GAC ACC AGG ATG AAG CTA CTC A-3′

R: 5′-CTT GGA AAG CCT CGT GAA CA-3′

Crp (CRP) F: 5′-ATC CCA GCA GCATCC ATA GC-3′

R: 5′-AACATGTCTTCATGACCAAAAGTCC-3′

Gapdh
(GAPDH)

F: 5′-ACC CAG AAG ACT GTG GAT GG-3′

R: 5′-GGATGC AGG GAT GAT GTT CT-3′

Genes with protein names in parentheses

CXCL1 chemokine (C-X-C motif) ligand 1, SAA serum amyloid A, CRP
C-reactive protein, GAPDH glyceraldehyde-3-phosphate dehydrogenase
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test was performed (Röntgen et al. 2010). Briefly, after re-
moval of the external fixator, an axial load with a maxi-
mum of 2 N was applied to the top of the cranio-lateral
callus side using a materials testing machine (1454, Zwick
GmbH & Co KG, Ulm, Germany). The bending stiffness
was calculated from the slope of the load-deflection curve
(Röntgen et al. 2010).

Micro-computed tomography

After biomechanical testing, the fractured femurs were
scanned using amicro-computed tomography (μCT) scanning
device (Skyscan 1172; Bruker, Kontich, Belgium) operating
at a voxel resolution of 8 μm (50 kV, 200 mA) to evaluate
bone formation and structural parameters of the fracture cal-
lus. Phantoms with a defined hydroxyapatite density (250 and
750 mg/cm3) were used to calibrate and assess the bone min-
eral density. The volume of interest comprised the periosteal
callus between the two inner pinholes and the fracture gap. A
global threshold of 642 mg hydroxyapatite/cm3 was applied to
discriminate between mineralized and non-mineralized tissues
(Morgan et al. 2009) according to the American Society for
Bone and Mineral Research guidelines for μCT (Bouxsein
et al. 2010).

Statistical analysis

All data are presented as the mean ± standard deviation.
Statistical analysis was performed using GraphPad Prism 6
(GraphPad Software, La Jolla, USA). Data were tested for
normal distribution with Shapiro-Wilk test and then compared
by either Kruskall-Wallis and Dunn’s post hoc test or by one-
way analysis of variation and Fishers LSD post hoc test. The
level of significance was set at p ≤ 0.05. The main outcome
parameter of flexural rigidity of the fractured femur (power:
80%, α = 0.05) obtained from previous studies (Kovtun et al.
2016) was used to calculate sample size, which is indicated in
the figure legends.

Results

Global IL-6 inhibition does not influence
compromised bone repair induced by combined
fracture and thoracic trauma

Confirming our previous studies (Bergdolt et al. 2017;
Kemmler et al. 2015; Kovtun et al. 2016), we found that the
combined fracture and thoracic trauma (Fx + TxT) induced
systemic and pulmonary inflammation and disturbed fracture
healing. The plasma levels of IL-6, MCP-1, and CXCL1 were
significantly increased 3 h after combined trauma compared to
the isolated fracture (Fx) group indicating a systemic immune

response post trauma (Fig. 1a, c, d). The sIL-6R concentration
was significantly elevated in the combined trauma group at
day 1 suggesting increased shedding of the mIL6R (Fig. 1b).
All other measured circulating inflammatory mediators were
not significantly affected compared to mice with isolated frac-
ture. Furthermore, the combined trauma slightly increased
Crp and Saa expression in the liver (Fig. 2a, b). In the lung,
the combined trauma caused tissue damage and inflammation
as confirmed by the presence of blood clots, alveolar wall
thickening (Fig. 3a, b), increased neutrophil numbers
(Fig. 3c, d), and elevated IL-6 and CXCL1 levels (Fig. 3e,
f). In the fracture hematoma, the measured inflammatory me-
diators and immune cell recruitment to the fracture site were
not significantly affected by the additional thoracic trauma
(Fig. 4). However, fracture healing was disturbed by the trau-
ma as indicated by a reduced bone fraction in the developing
callus at day 10 (Fig. 5a, c), poor bony bridging of the fracture
gap (Fig. 6a, b) and decreased mechanical properties of the
fractured bone (Fig. 6c) in the late healing phase at day 21
compared to mice with isolated fracture. The relative amounts
of bone and cartilage were not significantly altered at day 21
(Fig. 6d, e).

To block IL-6 signaling globally during the inflammatory
phase, we administered an anti-IL-6 antibody 30 min and
2 days after combined trauma. The anti-IL-6 antibody consid-
erably reduced IL-6 plasma levels compared to vehicle-treated
mice 3 h after injury indicating efficient IL-6 inhibition. IL-6
plasma levels also remained low after 1 day (Fig. 1a). The
trauma-induced increase of circulating sIL-6R was also sig-
nificantly diminished by the anti-IL-6 antibody, suggesting
that the shedding of the mIL-6R may be mediated by IL-6
(Fig. 1b). Whereas the trauma-induced increase of MCP-1
was not significantly affected after global IL-6 inhibition,
CXCL1 and CRP plasma levels were significantly reduced
3 h and 1 day after combined injury, respectively (Fig. 1c–
e). The hepatic acute-phase response was strongly diminished
by the anti-IL-6 antibody treatment as indicated by signifi-
cantly reduced Crp, Saa, and Cxcl1 gene expression
(Fig. 2a–c). Lung damage (data not shown) and neutrophil
invasion into the lung tissue (Fig. 3c, d) after combined injury
were not influenced by global IL-6 inhibition; however, IL-6
in the BAL fluid was significantly reduced compared to
vehicle-treated mice (Fig. 3e).

In the fracture hematoma, IL-6 was also significantly re-
duced after global IL-6 inhibition compared to vehicle-treated
mice (Fig. 4a); however, other measured inflammatory medi-
ators were unaffected. FACS analysis revealed a reduced re-
cruitment of neutrophils to the fracture site in mice with com-
bined fracture and thoracic trauma that received the anti-IL-6
antibody (Fig. 4d). Histological and μCT evaluation demon-
strated that the amount of newly formed bone and cartilage in
the fracture callus were unaffected in the combined trauma
group after global IL-6 inhibition at days 10 (Fig. 5) and 21
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Fig. 1 Inflammatory mediators in
the blood 3 h and 1 day after
fracture (Fx) and combined
fracture and thoracic trauma
(Fx + TxT) in vehicle-, anti-IL-6
antibody-, and sgp130Fc-treated
mice. Data are displayed as
means ± standard deviation. a n =
5–10; b n = 5–6; c, d n = 6–10; e
n = 6. *p ≤ 0.05; **p ≤ 0.01;
****p ≤ 0.0001. Data of untreated
animals are presented in
Supplemental Table 1
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(Fig. 6). Additionally, the mechanical properties of the frac-
ture callus were not significantly influenced (Fig. 6c).

In summary, global IL-6 inhibition reduced circulating IL-
6, sIL-6R, and CXCL1, the hepatic acute-phase response, and
neutrophil numbers in the fracture hematoma but did not in-
fluence the healing outcome after severe trauma.

Inhibition of IL-6 trans-signaling improves
compromised bone repair induced by combined
fracture and thoracic trauma

To selectively block IL-6 trans-signaling, we treated micewith
combined fracture and thoracic trauma with the artificial fu-
sion protein sgp130Fc in the early posttraumatic phase 30 min
and 2 days after injury. IL-6 trans-signaling inhibition signif-
icantly reduced circulating IL-6 3 h after combined trauma,
but significantly increased it after 1 day compared to vehicle-
treated mice (Fig. 1a). The trauma-induced increase of sIL-6R
observed after 1 day was also significantly diminished
(Fig. 1b). Other systemic inflammatory mediators were not
significantly affected by sgp130Fc administration compared
to vehicle-treated mice. In the liver, expression of Crp was
significantly diminished after IL-6 trans-signaling inhibition
(Fig. 2a). Saa and Cxcl1 expression were also slightly re-
duced, although not significantly (Fig. 2b, c). In the lungs,
sgp130Fc treatment affected neither lung damage (data not
shown) nor the inflammatory response induced by the thoracic
trauma (Fig. 3). Additionally, the early inflammation at the
fracture site was not significantly influenced after IL-6 trans-
signaling inhibition (Fig. 4). The bone and cartilage fractions
in the developing fracture callus were unaltered after the
blockade of IL-6 trans-signaling (Fig. 5a, c, d). However, the
amount of collagen type X expressing hypertrophic cartilage
was significantly increased indicating accelerated cartilage-to-
bone transformation (Fig. 5b, e). Confirming this, 21 days
after trauma, bony bridging of the fracture gap (Fig. 6a, b)
and the bending stiffness (Fig. 6c) of the fracture callus were
significantly elevated in mice treated with sgp130Fc,

suggesting that the selective blockade of IL-6 trans-signaling
significantly improved the fracture healing outcome after se-
vere trauma.

Discussion

Here, we investigated the hypothesis that IL-6 trans-signaling
is involved in the pathomechanisms of trauma-induced com-
promised fracture healing. Using a mouse model of severe
injury, we demonstrated that the transient blockade of IL-6
trans-signaling in the early posttraumatic phase with
sgp130Fc significantly improved bone repair. By contrast,
healing was not improved by an anti-IL-6 antibody, which
blocks both IL-6 classic and trans-signaling, suggesting that
the classic pathway rather exerts beneficial effects of aug-
menting bone repair under conditions of severe trauma, as it
similarly does in uncomplicated fracture healing (Prystaz et al.
2017) (Fig. 7).

IL-6 classic and trans-signaling differently modulate
systemic posttraumatic inflammation

In this study, we used a mouse model of combined fracture
and thoracic trauma to elucidate the role of IL-6 in compro-
mised fracture healing after severe injury. As expected
(Bergdolt et al. 2017; Kemmler et al. 2015; Kovtun et al.
2016), the combined injury induced a systemic inflammation
with increased plasma levels of inflammatory mediators, in-
cluding IL-6, and sIL-6R, which indicated enhanced shedding
of the mIL-6R. This is in agreement with experimental
(Kleber et al. 2015) and clinical studies (Beeton et al. 2004)
in subjects with fracture and concomitant injury, and confirms
that IL-6 trans-signaling is activated in posttraumatic
inflammation.

To discriminate between IL-6 actions, we applied an anti-
IL-6 antibody, which inhibits IL-6 globally, and sgp130Fc,
which selectively blocks IL-6 trans-signaling (Jostock et al.

Fig. 2 Hepatic acute-phase reaction 1 day after fracture (Fx) and
combined fracture and thoracic trauma (Fx + TxT) in vehicle-, anti-IL-
6- antibody-, and sgp130Fc-treated mice. Relative gene expression of a

CRP C-reactive protein, b SAA serum amyloid A, and c CXCL1
chemokine (C-X-C motif) ligand 1 in the liver. Data are displayed as
means ± standard deviation. n = 4–5. *p ≤ 0.05; **p ≤ 0.01
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2001). It is not possible to inhibit IL-6 classic signaling selec-
tively. However, by comparing the effects of global and trans-
signaling inhibition, indirect, but valid conclusions can be
drawn about the role of IL-6 classic signaling (Barkhausen
et al. 2011; Prystaz et al. 2017). The anti-IL-6 antibody effi-
ciently reduced IL-6 levels in the blood and BAL fluid. Global
IL-6 inhibition also decreased serum levels of the sIL-6R,
suggesting that IL-6 directly and indirectly stimulates the
shedding of its membrane-bound receptor during posttraumat-
ic inflammation (Lokau et al. 2017). While sgp130Fc dimin-
ished the trauma-induced increase of circulating IL-6 less ef-
ficiently after 3 h, it notably enhanced it after 1 day. The initial

reduction of IL-6 may result from trapping of the IL-6/sIL-6R
complex by sgp130Fc, which favors the restoration of the
initial equilibrium of IL-6/sIL-6R complexes and, thus, re-
duces circulating free IL-6 molecules (Garbers et al. 2011).
The later increase of IL-6 may be caused by a delay of IL-6
degradation after interception of IL6/sIL-6R complexes by
sgp130Fc and was also found in patients, who were treated
with the anti-IL-6R antibody tocilizumab (Nishimoto et al.
2008).

The anti-IL-6 antibody also abolished the trauma-induced
increase of CXCL1 in the circulation and its hepatic expres-
sion. By contrast, selective inhibition of IL-6 trans-signaling

Fig. 3 Pulmonary inflammation 3 h and 1 day after fracture (Fx) and
combined fracture and thoracic trauma (Fx + TxT) in vehicle-, anti-IL-6
antibody-, and sgp130Fc-treated mice. a Representative images of
hematoxylin and eosin (H&E) stained lungs of vehicle-treated mice
after 3 h and b 1 day. c Representative images of lungs stained for
neutrophils (Ly-6G+); arrowheads indicate positively stained cells. d

Neutrophil (Ly-6G+) number in lung tissue. e IL-6 and f CXCL1
chemokine (C-X-C motif) ligand 1 concentrations in the broncho-
alveolar lavage fluid after 3 h. Data are displayed as means ± standard
deviation. D n = 5–6; E, F n = 8–9. *p ≤ 0.05; **p ≤ 0.01. Data of
untreated animals are presented in Supplemental Table 1
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did not significantly reduce circulating CXCL1. This is in
agreement with our previous data (Prystaz et al. 2017) indi-
cating that the liver is a major source of CXCL1 after injury,
and that hepatic CXCL1 production is regulated by IL-6 clas-
sic signaling. The classic IL-6 pathway is known to induce the
hepatic acute-phase response (Schmidt-Arras and Rose-John
2016). Confirming this, the posttraumatic expression of CRP
and SAA in the liver was significantly reduced by the anti-IL-
6 antibody, whereas inhibition of IL-6 trans-signaling pro-
voked only minor effects. Hepatic IL-6 classic signaling is
suggested to act pro-regenerative, as it induces the first-line
defense against pathogens and limits inflammatory responses
(Schmidt-Arras and Rose-John 2016).

IL-6 classic and trans-signaling differently modulate
inflammation at the site of fracture

In the fracture hematoma, the anti-IL-6 antibody reduced IL-6
as expected, but neither global nor trans-signaling inhibition
affected the concentration of other inflammatory mediators.
The proportion of neutrophils was significantly reduced after
global but not after trans-signaling inhibition, indicating that
IL-6 classic signaling regulates neutrophil recruitment and/or
apoptosis directly or indirectly. This corroborates our previous
study in the isolated fracture model (Prystaz et al. 2017) and
can be explained by the reduced plasma concentrations of the
neutrophil chemoattractant CXCL1. Studies about direct IL-6

Fig. 4 Inflammatory mediators and immune cells in the fracture
hematoma 3 h and 1 day after fracture (Fx) and combined fracture and
thoracic trauma (Fx + TxT) in vehicle-, anti-IL-6 antibody-, and
sgp130Fc-treated mice. Data are displayed as means ± standard
deviation. a IL-6, b MCP-1 monocyte chemotactic protein 1, and c

CXCL1 chemokine (C-X-C motif) ligand 1 concentrations after 3 h. d
Proportion of neutrophils (CD11b+, Ly6G+), e macrophages (CD11b+,
F4/80+), fB cells (CD19+), and g Tcells (CD3+). a–c n = 6–7, d n = 6–8,
e–g n = 7–8. **p ≤ 0.01, ***p ≤ 0.001
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effects on neutrophil functions are conflicting. In an air-pouch
model, neutrophil trafficking was induced by IL-6 trans-sig-
naling (Rabe et al. 2008), whereas in a mouse model of peri-
toneal inflammation, IL-6-induced STAT3-signaling dimin-
ished neutrophil recruitment (Fielding et al. 2008). Others
reported that IL-6 did not directly act as a neutrophil
chemoattractant or induce apoptosis (Wright et al. 2014), al-
though its therapeutic inhibition by tocilizumab induces neu-
tropenia (Espinoza et al. 2017; Wright et al. 2014). The pro-
portions of other immune cell populations in the fracture he-
matoma were not affected by global or trans-signaling inhibi-
tion. This is in contrast to the isolated fracture model, where
monocytes, macrophages, and lymphocytes were significantly
reduced after IL-6 inhibition (Prystaz et al. 2017). The reason
for the different results in the isolated fracture and combined
fracture and thoracic trauma models could be that severe trau-
ma affects the phenotype and function of many immune cells

(Flohe et al. 2008; Lord et al. 2014), possibly also their re-
sponsiveness to IL-6.

Inhibition of trans-signaling, but not global IL-6
inhibition, ameliorates the deleterious effects
of a concomitant injury on bone repair

Our study demonstrated that global IL-6 inhibition did not
affect trauma-induced impaired fracture healing. By contrast,
inhibition of IL-6 trans-signaling accelerated cartilage-to-bone
transformation in the intermediate healing phase, and en-
hanced bony bridging of the fracture gap and mechanical cal-
lus properties in the late stage. This suggests that, under con-
ditions of severe trauma, IL-6 trans-signaling mediates nega-
tive effects on bone repair, whereas classic signaling may act
rather pro-regenerative, as it similarly does in uncomplicated
fracture healing (Prystaz et al. 2017). But how can the positive
effects of IL-6 trans-signaling inhibition be explained

Fig. 5 Histomorphometrical analyses of the fracture callus on day 10 after
fracture (Fx) and combined fracture and thoracic trauma (Fx + TxT) in
vehicle-, anti-IL-6 antibody-, and sgp130Fc-treated mice. a
Representative histological images of the fracture callus stained with
Safranin-O: Ct cortex, FG fracture gap. Boxed areas in a indicate the

location of the higher magnified images in b. b Immunostaining of
collagen type X. c Relative amount of bone and d cartilage in the fracture
callus. e Proportion of collagen type X (ColX)-positive stained cartilage of
the total cartilage determined by immunohistochemistry. Data are displayed
as mean ± standard deviation. c, d n = 6; (e) n = 4–5. *p ≤ 0.05
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mechanistically? One difference between both treatment
groups was the reduced neutrophil number in the fracture
hematoma after global but not after trans-signaling inhibition.
Neutrophils are the most abundant immune cell population in
the early fracture hematoma (Hoff et al. 2016). They remove
pathogens, coordinate the transition to a more sustained pop-
ulation of mononuclear cells, and contribute to the resolution
of inflammation (Bastian et al. 2011; Kovtun et al. 2016).
Neutrophils may augment bone regeneration, because it is
impaired after neutrophil depletion (Chan et al. 2015;
Kovtun et al. 2016). However, after severe trauma, neutrophils
can become dysfunctional and aggravate tissue damage, for
example, by the massive production of reactive oxygen spe-
cies (ROS) and neutrophil extracellular traps (NETs)
(Hazeldine et al. 2014). Therefore, the role of neutrophils in
fracture healing might depend on trauma severity. A limitation
of the present study is that we did not assess neutrophil activ-
ity at the fracture site. Therefore, their role remains unclear.

Further work is necessary to elucidate neutrophil functions in
fracture healing and how they are regulated by IL-6. Another
striking observation, which could possibly explain improved
bone repair was the altered kinetics of circulating IL-6 in
sgp130Fc-treated mice. After initial reduction, IL-6 plasma
levels were moderately, but significantly increased after
1 day, whereas they remained low after anti-IL-6 antibody
treatment. As explained above, this could result from delayed
IL-6 degradation after sgp130Fc treatment (Rose-John et al.
2007). Possibly, the free IL-6 then provokes rather pro-
regenerative effects by activating classic signaling, because
trans-signaling might still be inhibited. However, a limitation
of the present study is that we did not include enough early
investigation time points to unravel the interconnection be-
tween the early immune response and regenerative processes.
Further investigations are needed to mechanistically explain
improved bone regeneration in trauma-induced compromised
fracture healing by sgp130Fc.

Fig. 6 Micro-computer tomography, histomorphometrical, and
biomechanical analyses of the fracture callus on day 21 after fracture
(Fx) and combined fracture and thoracic trauma (Fx + TxT) in vehicle-,
anti-IL-6 antibody-, and sgp130Fc-treated mice. a Representative μCT
three-dimensional reconstructions of the fracture callus. b Representative

Giemsa-stained histological images of the fracture callus. c Bending
stiffness of fractured femurs. Relative amount of d bone and e cartilage
determined by histomorphometrical analyses. Data are displayed as
mean ± standard deviation. n = 7–9 (c–e). **p ≤ 0.01
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Conclusions

In summary, the present study demonstrates for the first time that
IL-6 trans-signaling is involved in the pathomechanisms of com-
promised fracture healing after severe injury, whereas IL-6 clas-
sic signaling rather mediates pro-regenerative effects augment-
ing bone regeneration. However, further studies are necessary to
elucidate the underlyingmechanisms in detail. Nevertheless, our
results can help to develop new treatment strategies to reduce
fracture healing complications after severe injury.
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