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Graphical abstract

Body composition predicts mortality and decompensation in compensated cirrhosis patients: A
prospective cohort study

Automated evaluation
of body composition

quantity and quality of
muscle and fat is a

promising tool

Accurate prognosis in cirrhosis
is critical

to care planning

But clinical tools
are limited
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Body composition improves risk
prediction

Dense fat
denotes
high risk

Cohort Model C Statistics Net Reclassification
Improvement 

P value 

Derivation MELD
MELD and Morphomics

0.65 (0.58-0.72)
0.70 (0.65-0.76)

REF
0.305 *<0.0001 

Validation Cohort  MELD
MELD and Morphomics

0.67 (0.57-0.76)
0.69 (0.58-0.79)

REF
0.219 *0.04

Child A Cirrhosis Subset MELD
MELD and Morphomics

0.60 (0.43-0.76)
0.75 (0.59-0.92)

REF
0.346 *0.0004

Compensated
Cirrhosis Subset

MELD
MELD and Morphomics

0.58 (0.42-0.75)
0.74 (0.62-0.87)

REF
0.346 *0.0001

Validated in two cohorts

Highlights
� Features of body composition can predict clinical

outcomes in patients with cirrhosis awaiting liver
transplantation.

� Data are lacking regarding long-term outcomes
among patients with compensated disease.

� We show that features of muscle and fat are asso-
ciated with decompensation and risk of death
across the spectrum of cirrhosis.

� CT scans obtained for unrelated clinical purposes
can be analyzed as a digital risk biomarker for pa-
tients with compensated cirrhosis.

Lay summary
Am I at high risk of getting sicker and dying? This is
the key question on the mind of patients with
cirrhosis. The problem is that we have very few tools
to help guide our patients, particularly if they have
early cirrhosis (without symptoms like confusion or
fluid in the belly). We found that how much muscle
and fat the patient has and what that muscle or fat
looks like on a CT scan provide helpful information.
This is important because many patients have CT scans
and this information is hiding in plain sight.

https://doi.org/10.1016/j.jhepr.2019.11.005
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Background & Aims: Body composition, particularly sarcopenia, is associated with mortality in patients with decom-
pensated cirrhosis undergoing transplant evaluation. Similar data are limited for non-transplant eligible or compensated
patients.
Methods: A total of 274 patients with cirrhosis were followed prospectively for <−5 years after a CT scan. We utilized Analytic
Morphomics® to measure body composition (fat, muscle, and bone) which was rendered into relative values (percentiles) in
relation to a reference population. The model for end-stage liver disease (MELD) score was used as a reference model for
survival prediction. We validated our models in a separate cohort.
Results: Our cohort had a mean Child-Pugh score of 7.0 and a mean MELD of 11.3. The median follow-up time was 5.05 years.
The proportion of patients alive at 1, 3 and 5 years was 86.5%, 68.0%, and 54.3%; 13 (4.6%) underwent liver transplantation.
Child-Pugh B/C (vs. A) cirrhosis was associated with decreased muscle, subcutaneous, and visceral fat area but increased
subcutaneous/visceral fat density. Decreased normal density muscle mass was associated with mortality (hazard ratio [HR]
0.984, p <0.001) as well as visceral and subcutaneous fat density (HR 1.013 and 1.014, respectively, p <0.001). Models utilizing
these features outperformed MELD alone for mortality discrimination in both the derivation and validation cohort,
particularly for those with compensated cirrhosis (C-statistics of 0.74 vs. 0.58). Using competing risk analysis, we found that
subcutaneous fat density was most predictive of decompensation (subdistribution HR 1.018, p = 0.0001).
Conclusion: The addition of body composition features to predictive models improves the prospective determination of
prognosis in patients with cirrhosis, particularly those with compensated disease. Fat density, a novel feature, is associated
with the risk of decompensation.
Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
The prevalence of liver disease and cirrhosis has almost doubled
in the last decade, resulting in a substantial rise in associated
morbidity and mortality.1,2 The end stage of most chronic liver
diseases is cirrhosis, which is an important clinical landmark
portending increased risk of disability and death.3 Clinical de-
compensations, such as variceal hemorrhage, ascites and he-
patic encephalopathy,4 are the strongest indicators of poor
survival (median <2 years).2 By contrast, the median survival of
patients with compensated cirrhosis is greater than 12 years,
indicating substantial clinical heterogeneity despite similar
histology.2 The Child-Pugh and model for end-stage liver dis-
ease (MELD) scores leverage features of decompensation to
provide excellent short-term survival estimates.5,6 However,
these indices poorly discriminate survival in patients who have
Keywords: MELD score; portal hypertension; liver transplant; sarcopenia.
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not decompensated. Risk stratification tools for patients with
compensated cirrhosis remain an unmet need.

Owing to the centrality of the liver in metabolic and ho-
meostatic processes, predictive power may be available in
measures of body composition.7–9 Loss of core muscle mass
(sarcopenia),8,10–13 and other body features such as adiposity
and bone density,9,14–17 have been associated with mortality in
transplant-eligible patients with decompensated cirrhosis or
liver cancer. Data are limited regarding the prognostic role of
body composition in compensated and transplant ineligible
patients. Herein, we utilize a novel methodology (Analytic
Morphomics®) to examine whether multiple measures of body
composition are predictive of survival in patients prospectively
followed in a general Hepatology clinic.

Patients and methods
Patient cohorts
Herein, we included the cohort of cirrhosis patients seen at the
University of Michigan Hepatology Clinic who were enrolled
prospectively in a chronic disease monitoring system (Avitracks,
Avicenna Medical Systems, https://www.avicenna-medical.
com)18 from March 1, 2010 to July 30, 2015, and who received
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an abdominal or chest CT within 365 days of enrollment. Pa-
tients were enrolled in the program when they received a
diagnosis of cirrhosis based on imaging, laboratory and/or his-
tological parameters from a board-certified gastroenterologist
and were followed clinically thereafter (Fig. S1). A validation
cohort was constructed using an automated search of our hos-
pital’s clinical data repository for patients evaluated between
January 1, 2004 and March 31, 2012, yielding 78 patients who
had a CT scan and liver biopsy consistent with cirrhosis within 6
months of each other. All demographic and clinical details were
extracted from the chart review; death was confirmed with the
national death index and baseline data was obtained within 6
months of the CT date. There were 6 patients who overlapped
with the derivation cohort and were excluded (Table S1). In the
subset analysis of patients with compensated cirrhosis,
decompensation was defined as the development of ascites,
hepatic encephalopathy, or variceal bleeding. Those patients
who were on diuretics underwent chart review by a hepatolo-
gist for the cause for diuretic use. If there was any indication
that the diuretics were used for ascites or hydrothorax, this was
considered as a decompensating event. For those who received
diuretics for edema alone, if the dose was equivalent to less than
40 mg of furosemide, this was considered diuretics as used for
other causes. The Institutional Review Board at the University of
Michigan Health System approved this study.

Analytic Morphomics®

Body composition features were analyzed in CT studies, using
Analytic Morphomics® as previously described.19–21 Briefly, the
de-identified imaging files were loaded into the Analytic Mor-
phomics® server. Using semi-automated high-throughput meth-
odology, scan processing and analysis were performed with
algorithms programmed in MATLAB® (MathWorks Inc., Natick,
MA). The initial processing step was the semi-automated identi-
fication of spinal vertebral levels which served as the anatomical
reference system for subsequent analyses. This “anatomic index-
ing” allowed for precise measurements for each individual that
could be compared to the remainder of the sample or population-
based standards.20 For this study, we examined only measure-
ments that were made from the bottom of the T12 vertebra to
maximize the number of clinically available CT images for future
studies as T12 was most likely available from scans of both the
chest and abdomen. The relational geometries that formed the
basis of all morphomic variables were saved in PostgresSQL and
subsequently retrieved to calculate several shape and pixel-based
measurements. Descriptions of the analytic morphomic mea-
surements used for this study can be found in the online data
dictionary (http://www.med.umich.edu/surgery/morphomics/
data_dictionary). For low vs. normal muscle density, we used
previously published criteria; between 0-30 Hounsfield units
(HU) vs. 31-100 HU, respectively.22 Because age and gender could
be confounding factors for body compositions, all direct mor-
phomicmeasurementswerematched to a referencepopulation to
generate the age and gender matched percentile for each mea-
surement (Fig. 1). The reference population (Reference Analytic
Morphomics Population-RAMP version 0.0.5) consists of over
6,000 patients who underwent CT scans for trauma indications at
the University of Michigan.23

Statistical analysis
The primary outcome was mortality (index from the date of the
CT), which was censored at the last documented clinical visit or
JHEP Reports 2020
liver transplantation. Only 1 CT was used per patient. Prognostic
models of transplant-free survival were developed using Cox
proportional hazard regression analysis. Seven morphomic
variables (normal density dorsal muscle, low density dorsal
muscle, subcutaneous fat area, subcutaneous fat density,
visceral fat area, visceral fat density and bone mineral density)
were selected a priori as the initial input of the multivariate
analysis based on clinical judgement of significance. They also
represent measurements from different body composition
groups (muscle, fat and bone). The final predictive model was
then developed using forward/backward selection under the
Cox regression framework with MELD and morphomic variables
in considerations, which optimizes the Akaike information cri-
terion (AIC).24 The statistical comparison was conducted be-
tween this final predictive model and the MELD model which
serves as a reference model. The performance of the models was
assessed with C-statistics using the method described by Uno
et al., as this methodology was less sensitive to censoring than
Harrell’s C-statistics.25 We also assessed whether the addition of
morphomic features improved prediction accuracy by using a
modification of the continuous net reclassification improve-
ment (NRI) methodology that allowed for the censored data
analysis.26 The continuous NRI does not require risk stratifica-
tion into categories compared with the traditional category-
based NRI. We chose to use the continuous NRI since, to our
knowledge, there is no consensus categorization of mortality
risk in patients with liver diseases. The continuous NRI was
obtained using the Hmisc package for the R statistical pro-
gram.27 To test the generalizability of our model, we examined
its performance in an external validation cohort of biopsy
proven cirrhosis patients. We also provide the additional mea-
sures of the model’s performance in discrimination (Gonen and
Heller’s j statistics and Royston and Sauerbrei’s D statistics),28,29

calibration (Calibration Slope),30 and accuracy (Integrated
Brier’s Score).31 The Gonen and Heller’s j statistics is a measure
of concordance that is robust to censoring and thus may be
preferred to Harrell’s C index for survival data.

As a secondary analysis, we also investigated the morphomic
predictors of decompensation. The Fine-Grey competing-risk
regression analysis was employed to investigate predictors of
the cumulative incidences of liver decompensations and non-
liver disease-related deaths.32 All statistical analyses were per-
formed using R 3.1.0 with packages glmnet, Hmisc, rms, and
survIDINRI.
Results
Cohort characteristics
The baseline characteristics of our study population of 274 pa-
tients are detailed in Table 1. In brief, our patients were aged 58
years on average and 56% were male. Overall, 89 (32%) had
NAFLD, the mean Child-Pugh score was 7.0 (130 [47%] were
Class A), and the mean MELD-Sodium was 12.7 and the average
patient was obese (mean body mass index was 30.2). At base-
line, 163 (59.4%) had at least 1 decompensation (variceal bleed,
ascites or hepatic encephalopathy) episode. Table S1 details the
clinical characteristics of our validation cohort.

The median follow-up time was 1,844 days or approximately
5 years in the derivation cohort. Overall, 114 (41.6%) patients
died and 13 (4.6%) underwent liver transplantation during the
follow-up period. Survival was 86.5% at 1 year, 68.0% at 3 years,
and 54.3% at 5 years. Of the 111 patients who were compensated
2vol. 2 j 100061
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Table 1. Baseline characteristics of the cohort.

Characteristic at enrollment Derivation cohort (mean ± SD)

Sample size N = 274
Age (mean ± SD) 57.7 ± 11.2
Male (%) 157 (56%)
Body mass index (mean ± SD) 30.2 ± 8.6
Etiology 89 NAFLD/79 HCV/57 ETOH/49 Other
Child-Pugh score (mean ± SD) 7.0 ± 1.9
Child-Pugh class (A/B/C) 130/108/36
Variceal bleed (%) 44 (16.1%)
Encephalopathy (%) 76 (27.7%)
Ascites (%) 132 (48.1%)
MELD (mean ± SD) 11.3 ± 5.0
Platelet count (mean ± SD) 120.6 ± 70.9
Albumin (mean ± SD) 3.50 ± 0.68
Bilirubin (mean ± SD) 2.1 ± 3.3
INR (mean ± SD) 1.3 ± 0.4
Creatinine (mean ± SD) 0.96 ± 0.80

INR, international normalized ratio; MELD, model for end-stage liver disease.
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Fig. 1. Pictoral representation of the dorsal muscle measurements of the cirrhosis cohort (represented by the dots) within the context of the reference
population as separated by female (left) and male (right). The lines represent the observed percentiles of the reference population. Note the significant
difference in muscle size between male and female and significant decline with age.
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at baseline, 23 (20.7%) developed an episode of decompensation
during follow-up. In the validation cohort, the median follow-up
time was 848 days. Overall, 45 (58%) patients died during
follow-up and none were transplanted.
Baseline features of body composition measured with
Analytic Morphomics®

Table 2 summarizes the morphomic features of our cohort. Pa-
tients with cirrhosis have markedly lower levels of normal
density muscle mass than age- and sex-matched controls from
the reference population, a distribution which worsens with
progressive liver disease (Fig. S2). As liver disease progresses,
the quantity of visceral and subcutaneous fat decreases, while
their density increases (Fig. S3). Bone density showed a trend
towards lower density in Child-Pugh B/C patients which was not
significant.

Table S2A,B presents body morphomic features in patients
with different clinical characteristics. In Table S2A, we note that
3vol. 2 j 100061



Table 2. Body composition features in Child-Pugh A vs. Child-Pugh B/C patients.

Body component Description Overall Child A (n = 130) Child B-C (n = 144) p value

Low density muscle Total low density (between 0–30 HU)
muscle area

62.0 ± 27.0 59.4 ± 30 64.3 ± 24.6 0.14

Normal density muscle Total normal density (between 31–100 HU)
muscle area

33.0 ± 27.2 38.3 ± 27.2 28.4 ± 26.5 0.002

Total muscle area Total dorsal muscle group area 39.1 ± 29.2 44.6 ± 29.5 34.3 ± 28.2 0.003
Low density:Normal
density muscle Ratio

Ratio of low-density area relative to normal
density

0.46 ± 0.42 0.40 ± 0.32 0.51 ± 0.48 0.04

Visceral fat area Area of fat within the visceral cavity 42.8 ± 26.9 47.4 ± 27.5 38.6 ± 25.8 0.007
Visceral fat density Median pixel HU of fat HU range of pixels

inside the visceral cavity.
68.7 ± 28.4 55.6 ± 29.6 80.9 ± 21.0 <0.0001

Subcutaneous fat area Area of fat between skin and fascia 51.8 ± 30.6 63.1 ± 28.3 48.8 ± 31.2 <0.0001
Subcutaneous fat density Median pixel HU of fat HU range of pixels

in the fat between skin and fascia.
51.7 ± 32.8 37.8 ± 29.1 64.2 ± 30.9 <0.0001

Bone mineral density Average pixel HU inside a central area
of trabecular bone

42.2 ± 29.0 44.8 ± 30.5 39.9 ± 27.5 0.16

All values are mean percentiles (± SD) for age- and sex-matched population-based estimates. The p values are obtained from 2-sample t test. HU, Hounsfield unit.
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patients with a diagnosis of NAFLD-related cirrhosis had very
significant differences in the fat compartments compared to
those without NAFLD. In Table S2B, we note that baseline
morphomic features of patients with and without a history of
decompensation were also markedly different. We found that
patients with ascites had significantly less normal density
muscle and less fat (visceral and subcutaneous fat), but fat
density was increased. Patients with hepatic encephalopathy
demonstrated similar declines in high quality muscle, specif-
ically a trend towards decreased normal density muscle and an
increase in low density muscle. While hepatic encephalopathy
was not associated with diminished abdominal fat area, there
was a striking increase in fat density, a consistent feature of
worsening liver disease.
Body composition is predictive of mortality in patients with
cirrhosis
In addition to MELD (HR 1.07), features of body composition
were also associated with mortality using univariate Cox pro-
portional hazards regression (Table 3). These included normal
density muscle mass (HR 0.984), visceral fat density (HR 1.014)
and subcutaneous fat density (HR 1.013). To determine if these
morphomic features might be incrementally helpful to MELD in
discriminating survival in cirrhosis patients, we used backward
and forward selection to develop the best predictive model
(Table 4). A priori, we utilized 7 morphomic features (normal
density dorsal muscle, low density dorsal muscle, subcutaneous
fat area, subcutaneous fat density, visceral fat area, visceral fat
density and bone mineral density) as input variables because
they represented features which might have clinical significance
Table 3. Cox regression to assess predictors of mortality in patients with
cirrhosis (n = 274).

Variable Cox univariate HR (95% CI) p value

MELD 1.09 (1.06–1.13) 1.06 × 10–8

Low density muscle 1.004 (0.997–1.011) 0.28
Normal density muscle 0.984 (0.976–0.992) 0.0002
Visceral fat area 0.994 (0.987–1.001) 0.108
Visceral fat density 1.014 (1.006–1.023) 0.0005
Subcutaneous fat area 0.993 (0.986–1.000) 0.04
Subcutaneous fat density 1.013 (1.007–1.019) 3.19 × 10-5

Bone mineral density 0.993 (0.987–1.000) 0.07

For all the morphomic features, the HR is represented by each percentile of change.
HR, hazard ratio; MELD, model for end-stage liver disease.
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and represent different body composition groups. As shown in
Table 4, the final model included MELD, normal density muscle,
subcutaneous fat density and bone density (c-statistic 0.70).
MELD-alone yielded a c-statistic of 0.65. To assess model per-
formance, we calculated the net reclassification improvement
(NRI) and found that addition of morphomic measures out-
performed MELD alone in accuracy (NRI 0.305, p <0.0001). We
then externally validated this model in a different cohort of
patients with biopsy-proven cirrhosis and found similar im-
provements. To further assess the models, we utilized Gonen
and Heller’s k statistics and Royston and Saerbrei’s D statistics to
measure discrimination and calculated the calibration slope on
both the derivation and validation cohorts. Overall prediction
accuracy was evaluated using the integrated Brier score. In all
cases, the models with morphomic features performed favor-
ably compared to MELD alone (Table S3).

Body composition predicts survival in patients with Child-
Pugh A cirrhosis
We then examined the subset of patients within our cohort who
had Child-Pugh A cirrhosis (Table S4). Our best multivariate
model did not include MELD. In the best multivariate models
selected, features that were selected included normal density
muscle, visceral fat density and subcutaneous fat area. We
evaluated model discrimination for mortality and the models
which had morphomic features markedly outperformed MELD
(Table 4). Because not all patients with Child-Pugh A cirrhosis
are considered compensated (i.e. never developed variceal
bleed, hepatic encephalopathy, or ascites), we further analyzed
the subset of patients in our cohort who did not have a history
of decompensation at the index CT. We found 111 patients who
were compensated; 99 patients were Child-Pugh A and 12 pa-
tients were Child-Pugh B. Similar to the Child-Pugh A patients,
prediction models which included morphomic features signifi-
cantly outperformed MELD (Table 4).

Predictors of decompensation
Recognizing that predicting the likelihood of decompensation
in the cohort of patients who are compensated would be an
important clinical tool, we examined the risk of decompensa-
tion in the subset of patients with compensated cirrhosis. The
median follow-up time for the cohort of compensated cirrhosis
patients was 1,921 days. At 1,921 days, 11.4% of patients had
died and 23.3% of patients had decompensated. To account for
4vol. 2 j 100061



Table 4. Summary statistics for mortality risk prediction in all patients with cirrhosis.

Cohort Model C-statistics Net reclassification
improvement

p value

Derivation MELD
MELD and Morphomics

0.65 (0.58–0.72)
0.70 (0.65–0.76)

Ref.
0.305 <0.0001

Validation cohort MELD
MELD and Morphomics

0.67 (0.57–0.76)
0.69 (0.58–0.79)

Ref.
0.219 0.04

Child-Pugh A cirrhosis subset MELD
MELD and Morphomics

0.60 (0.43–0.76)
0.75 (0.59–0.92)

Ref.
0.346 0.0004

Compensated cirrhosis subset MELD
MELD and Morphomics

0.58 (0.42–0.75)
0.74 (0.62–0.87)

Ref.
0.346 0.0001

The derivation cohort represents all patients who were prospectively followed in general hepatology clinic as described in Table 1. The validation cohort represents all
patients in a separate cohort of patients with biopsy proven cirrhosis identified retrospectively using an automated search of the medical record as described in Table S1.
MELD, model for end-stage liver disease.
the competitive risk of death, we utilized competing risk
regression. Only subcutaneous fat density was significantly
associated with mortality, subdistribution HR 1.018 (1.07–1.34)
(Table S5). MELD was not associated with the risk of decom-
pensation. Fig. 2 presents a cumulative incidence curve for both
outcomes, demonstrating a significant association with fat
density.
Discussion
Risk assessment is a fundamental part of clinical practice and
patient counselling. We have excellent tools such as MELD to
predict short-term mortality in patients who present for
transplant evaluation. In contrast, tools for patients with
compensated cirrhosis are limited. In this study, we show that
information on body composition derived using Analytic Mor-
phomics® from incidental CT scans ordered for other clinical
purposes provide validated, clinically valuable predictive infor-
mation, even after adjusting for a suite of established predictors.
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Fig. 2. Subcutaneous fat density is associated with first decompensation.
In this cumulative incidence curve, individuals with a subcutaneous fat
density greater than the median (68.7 Hounsfield units) had a higher risk of
decompensation or death. The y-axis represents the proportion of patients
experiencing a decompensation.
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These data extend the literature on the prognosis of cirrhosis
and the impact of body composition in several important ways.

Body composition enhances prognostication in compensated
cirrhosis
First, by providing associations with decompensation and out-
performing MELD, these data indicate that body composition
data derived from Analytic Morphomics® represent a promising
solution for risk prediction in patients with compensated
cirrhosis. Several strategies have emerged for compensated
patients, albeit with limited outcomes data available for com-
parison. Portal pressure measurements, for example, accurately
predict mortality for compensated patients.4,33 However, they
are invasive, costly, and largely unavailable. Similarly, costly and
specialized direct measures of liver metabolic function such as
Indocyanine Green clearance are predictive of short-term (i.e.
after liver resection) and long-term outcomes in selected co-
horts.34 It is increasingly recognized that sarcopenia (loss of
muscle mass) may have a significant influence on overall mor-
tality.35–38 Given the widespread use of CT scans for clinical
purposes, muscle features are an attractive target for refining
cirrhosis prognosis. The presence of sarcopenia, adjusting for
MELD, has been linked with worsening pre- and post-transplant
outcomes in patients with decompensated cirrhosis.8,39 In this
prospective cohort study, we confirm that sarcopenia is com-
mon in patients with cirrhosis and that progression of liver
disease is associated with greater muscle loss, particularly of
normal density muscle. However, we also show that other fea-
tures of body composition are associated with progression of
liver disease, including loss of fat and increased fat density. In
comparing predictive models, we found that models which
included both muscle and fat features showed greater risk-
discrimination than MELD alone. We further validated our
models in a separate cohort, highlighting the incremental value
of body composition measures over liver-specific indices in
predicting survival in patients with cirrhosis. As hypothesized,
in the subset of patients with Child-Pugh A cirrhosis, the best
multivariable model did not select MELD. Furthermore, Analytic
Morphomics®, particularly subcutaneous fat density, identified
patients at risk of first decompensation.

Body measurements need not be taken at L3-L4
Second, our validated body composition features were obtained
from the T12 level. Whereas nearly all studies of body composi-
tion in cirrhosis utilize measures obtained at L3-L4,8,37,39–42 by
using features from a higher vertebral level we expand the
number of CT scans (i.e. chest or abdominal-alone vs. abdomi-
nopelvic) that can be utilized for prognostic purposes. Previous
5vol. 2 j 100061
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studies have shown that multiple muscle areas such as psoas
muscle at L4 and skeletal muscle at L3were predictive of survival
in cirrhotic patients undergoing liver transplantation.8,42 We
have previously shown a high correlation in muscle measure-
ments from healthy kidney donors between T12 and L3-L4.43,44

We also note that there is strong correlation between body
composition measurements between T12 and L3 in our cohort
(data not included). Thus it is perhaps not surprising that mea-
surements at T12 could also predict mortality in liver trans-
plantation45 and in this paper we further expand on this body of
data that morphomic features at T12 can be predictive of survival
and decompensation in patients with compensated cirrhosis.

The importance of muscle and fat quality (in addition to
quantity)
Third, we expand the concept of body composition’s relation-
ship with risk to include tissue quality. We show that fat den-
sity and muscle density are associated with specific cirrhotic
complications and mortality. For example, given the metabolic
functions of muscle in ammonia homeostasis,46 hepatic en-
cephalopathy (HE) should be associated with sarcopenia.
However, rather than total muscle area, we find that HE is
associated with predominant lower quality (low-density)
muscle. We also report novel data regarding density as a pre-
dictor for mortality. Previous retrospective studies have asso-
ciated fat quantity with clinical outcomes by measuring
adipose tissue area in imaging studies.41,47 We show that in
addition to area, the density of both visceral and subcutaneous
fat was associated with complications such as ascites and en-
cephalopathy. Increased subcutaneous fat density was the
single best predictor for decompensation. These data suggest
that changes in the adipose compartment, which may not be
otherwise appreciated, occur with progression of liver disease.
Increased density may reflect edema. Since fat is less dense
than water, edema within this compartment would increase
the density of fat. Alternatively, increased inflammatory burden
would appear the same way. Although, the mechanism for fat
density’s association with risk requires further study, both
JHEP Reports 2020
edema (vis-a-vis portal hypertension) and inflammation are
plausible candidates. These data also confirm similar findings
from our study of patients with hepatocellular carcinoma un-
dergoing transarterial chemoembolization,21 as well as a study
linking mortality with increased fat density both in the visceral
and subcutaneous compartments of elderly (non-cirrhotic)
patients.48 Taken together, these findings suggest that fat
density may be an important radiographic biomarker that
warrants investigation.
Contextual factors
These data must be interpreted in the context of the study
design. First, the use of CT scan with contrast restricts the cohort
to one with relatively preserved renal function which may in-
fluence outcomes. Second, in contrast to other studies of CT-
defined sarcopenia, our morphomic features can be both
handled as continuous variables and in reference to population
norms. Many studies have examined the prognostic importance
of psoas muscle area and used specific cut-offs to define sar-
copenia.37 Statistically optimal cut-offs for sarcopenia derived
from single center studies are fundamentally confounded,
reflecting the local demographics, management decisions, and
secular trends that drive clinical outcomes.39 Conversely, our
study renders all morphomic features into percentiles from
generalizable population norms taken from a repository of over
4,000 CT scans obtained from a random population of patients.
Third, all values evaluated are taken at baseline. Further study is
underway to determine the role of longitudinal assessment of
Analytic Morphomics®.
Conclusion
Body composition features derived with Analytic Morphomics®

are predictive of clinical outcome in a prospective cohort that
adjusts for conventional predictors. For patients with chronic
liver disease who have received CT scans for clinical purposes,
our findings clearly indicate that important prognostic infor-
mation is waiting for extraction.
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