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Abstract: Testicular cancer (TC) is the most frequent tumor in young males. In the vast majority
of cases, it is a curable disease; therefore, very often patients experience a long survival, also due
to their young age at diagnosis. In the last decades, the role of the vitamin D deficiency related
to orchiectomy has become an increasingly debated topic. Indeed, vitamin D is essential in bone
metabolism and many other metabolic pathways, so its deficiency could lead to various metabolic
disorders especially in long-term TC survivors. In our article, we report data from studies that
evaluated the incidence of hypovitaminosis D in TC survivors compared with cohorts of healthy
peers and we discuss molecular mechanisms and clinical implications.
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1. Introduction

Testicular cancer (TC) is the most frequent tumor in young males [1]. In the vast
majority of cases it is a curable disease; therefore, very often patients experience a long sur-
vival, also due to their young age at diagnosis [2]. Consequently, it is essential to consider
all possible issues related to a long life expectancy, including second malignancies and
cardiovascular, metabolic, and endocrinological diseases [3]. In the last decades, vitamin D
deficiency after orchiectomy has become an increasingly debated topic [4]. Many studies
have reported a correlation among hypovitaminosis D and different tumor types, but in
patients with TC, given the young age at diagnosis, this deficiency could lead to long-term
effects [5]. Indeed, vitamin D is essential in bone metabolism and many other metabolic
pathways [6,7], so its deficiency could lead to various metabolic disorders, especially in
long-term TC survivors. Vitamin D is mainly produced in the skin through exposure to
sunlight, especially thanks to ultraviolet-B radiation (UVB, 290–320 nm). The precursor
7-dehydrocholesterol (7-DHC) present in the human skin is converted into an instable
pre-vitamin D3 by a non-enzymatic process [8]. Subsequently a thermal isomerization by
the sun’s heat quickly stabilizes it in cholecalciferol or vitamin D3 [9]. Some factors can
modify the photoproduction of vitamin D, such as latitude, season, atmospheric conditions,
clothing, sunscreen, and skin characteristics [10]. Furthermore nearly 20% of the vitamin
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D comes from dietary intake and includes ergocholecalciferol (vitamin D2), which is syn-
thesized from ergosterol in vegetables after exposure to UVB radiation, and vitamin D3
from animal-derived foods. Oral intake is dependent on season, diet variation between
countries, and intestinal absorption, and consequently, malabsorption syndromes can com-
promise the bioavailability of vitamin D, fats, and other liposoluble vitamins [11,12]. The
two forms of vitamin D (D2 and D3) enter the bloodstream in a protein complex with the
vitamin D binding protein (DBP) after absorption, and they are also stored in adipose tissue
for subsequent release. The quantity of adipose tissue seems to inversely correlate with
vitamin D status; it has been observed that obesity conduces to a decreased bioavailability
of the vitamin [13].

The pre-hormone vitamin D is biologically inactive and requires a double activation in
the liver and then in the kidney. Circulating vitamin D3 is converted to 25-hydroxyvitamin
D3(25 (OH)D3 or calcidiol) by hydroxylation by the microsomal cytochrome P450 en-
zyme CYP2R1 (25-hydroxylase) in the liver. 25(OH)D3 is the main form of vitamin D
measurable in blood and the principal indicator of vitamin D status [14]. 25(OH)D3 is
then converted into the most active metabolite by hydroxylation by the mitochondrial
enzyme 1α-hydroxylase (CYP27B1) producing 1,25(OH)2D3 (or calcitriol) and the iso-
form 24R,25(OH)2D3. This important activation takes place primarily in the proximal
kidney tubule but also in cells of many other extra-renal sites, including immune system
cells [15,16]. Calcitriol circulates binding DBP, but the high affinity for his respective nuclear
receptor, called vitamin D receptor (VDR), determines its selective nuclear uptake from
the bloodstream [17]. VDR heterodimerizes with the retinoid X receptor (RXR) interacting
with specific DNA sequences, leading to the activation or inhibition of transcription and
epigenetic effects. This nuclear receptor is expressed in many tissues, showing the wide
range of effects of vitamin D in human metabolism [18]. Mutation and polymorphism in
genes involved in vitamin D metabolism, catabolism, DBP, or VDR might be associated
with altered vitamin D status and disease [19,20].

The main role of vitamin D is the control of calcium and phosphorus homeostasis,
regulating calcium intestinal absorption, increasing the bone mineral content, and pre-
venting bone loss and mineralization defects. Many in vitro and in vivo studies evaluated
the involvement of 1,25(OH)2D3 and VDR in pleiotropic extraskeletal functions acting
in many different transduction pathways in various sites of the body with genomic and
non-genomic effects [21]. Vitamin D is implicated in the endocrine and immune systems,
in the endothelial and cutaneous integrity, and also in fertility and reproduction [22–25].
An insufficient vitamin D status has been associated with higher cardiovascular risk, hy-
pogonadism, and autoimmune disorders (psoriasis, inflammatory bowel disease, type I
diabetes, multiple sclerosis, rheumatoid arthritis) [26–28].

Recently, the study of the relationship between vitamin D and cancer has been placed in
the spotlight, starting from the investigation of its functions at the cellular level up to epidemio-
logical research. 1,25(OH)2D3 has the potential to affect tumor growth, arresting the cell cycle
progression in G1/S phase (action on cyclin-dependent kinase), promoting antiproliferative
and proapoptotic pathways, initiating mechanisms of DNA damage repair, and enabling tumor
attempts of invasion as epithelial-to-mesenchymal transition (EMT), angiogenesis, and metasta-
sis [29–31]. Most convincing data from preclinical studies show how VDR can modulate the
transcriptome in tumor cells, shaping micro RNA expression in a onco-protective way, and how
VDR polymorphisms could increase cancer risk [32–34]. However many studies failed to
find a real correlation between cancer risk and low calcitriol blood status [35]. Vitamin D
daily supplementation has been shown to reduce overall cancer mortality by about 13%
in 3–10 years of follow-up, whereas no statistical significance has been highlighted in
reducing cancer incidence [36,37]. The protective effect of vitamin D3 intake also reduces
the risk of high stage cancer of any type among adults without a diagnosis of cancer at
baseline and normal body mass index [38]. More data from randomized controlled trials
(RTCs) are expected to provide a better understanding of the impact of vitamin D in therapy,
prevention, prognosis, risk of cancer, and follow-up outcomes in cancer survivors.
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In our article, we report data from studies that evaluated the incidence of hypovi-
taminosis D in TC survivors compared with cohorts of healthy peers and we discuss
molecular mechanisms and clinical implications.

2. Results

We found seven studies that evaluated vitamin D status in TC survivors. Data about
vitamin D status from all the studies are summarized in Table 1, whereas correlations
among vitamin D status and other parameters (e.g., testosterone, LH, FSH, etc.) are
summarized in Table 2.

Table 1. Incidence of hypovitaminosis D among all studies. Abbreviations: Hypo-vitD: hypovitaminosis D; NA: not
assessed; NR: not reported; RT: radiotherapy; T0: percentage of deficient vitamin D serum levels at baseline; T1: percentage
of deficient vitamin D serum levels at 12 months; T2: percentage of deficient vitamin D serum levels at 24 months;
T3: percentage of deficient vitamin D serum levels at 36 months; T4: percentage of deficient vitamin D serum levels at
48 months; T5: percentage of deficient vitamin D serum levels at 60 months and beyond; Tpre-s: percentage of deficient
vitamin D serum levels before surgery; Tpos-s: percentage of deficient vitamin D serum levels immediately after surgery.

Study and Country Patients Hypo-Vit D
Cut-Off Level

Hypo-Vit D in TC
Survivors (%)

Hypo-Vit D in Healthy Control
Group (%) Time of Sample Collection

Foresta 2010
[39] ITA 15 <50 nmol/L 60% NA 3–5 years

Foresta 2013
[40] ITA 125 <50 nmol/L 73.6% 7.3% At baseline and at 3 months

Willemse 2014
[41] NED 63 <50 nmol/L 36.5% NR At baseline and then

annually for 5 years

Schepisi 2017
[42] ITA 61

<75 nmol/L
<50 nmol/L
<25 nmol/L

81 0% ≥3 years

Ghezzi 2018
[43] ITA 192 <50 nmol/L

Survivors RT
(T0) 27.9% 21.8%
(T1) 32.8% 59.9%
(T2) 47.6% 83.8%

NA At baseline and then
annually for 2 years

Nappi 2018
[44] ITA 82

<75 nmol/L
<50 nmol/L
<25 nmol/L

(T1) 85%
(T2) 66%
(T3) 80%
(T4) 72%
(T5) 81%

NA

At baseline, every 3 months
for the first 2 years, then

every six months until the
fifth year

Dieckmann 2021
[45] DEU 177

<75 nmol/L
<50 nmol/L
<25 nmol/L

(Tpre-s) 78%
(Tpos-s) 82%

(T1) 97%
(T2) 91%
(T3) 77%

Cohort 2
79.8%

Cohort 3
78%

Before and immediately after
surgery, and then at 5 other
time-points until 2 years of

follow-up

Table 2. Synopsis of all parameters evaluated in the individual studies. Almost all studies demonstrated a statistically
significant reduction in vitamin D values compared with controls. The variations of the other parameters with respect
to controls are also reported. Abbreviations: DEU = Germany; ITA = Italy; NA = not assessed; NED = The Netherlands;
NR = not reported; background is blue = no difference among TC survivors and controls; background is orange = higher
levels in TC survivors than in controls; background is yellow = lower levels in TC survivors than in controls.

Study 25-OH
VitaminD Calcium Phosphorus PTH Calcitonin FSH LH Testosterone Beta-Estradiol Progesterone

Foresta 2010
[39] p < 0.0001 NA NA NA NA NR supplemented NA NA

Foresta 2013
[40] p < 0.00001 p < 0.00001 NA p < 0.00001 p <

0.00001 NA

Willemse 2014
[41] (p = NR) NR NR NR NA NA

Schepisi 2017
[42] p = 0.047 p = 0.002 ns p = 0.996 ns

Ghezzi 2018
[43] p= 0.421 NA p = 0.174 NA NA

Nappi 2018
[44] (p = NR) NA NA NA NA (p = NR) NA NA

Dieckmann
2021
[45]

(p = 0.161) NA NA NA NA NA NA NA

Firstly, we discuss two studies performed by the same authors. The first one was
conducted in a small cohort of 15 TC survivors who underwent bilateral orchiectomy. At
3–5-year follow-up, they reported a significant difference in terms of vitamin D serum
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levels compared with a cohort of 41 healthy males (median serum levels 30.2 nmol/L
versus 74.9 nmol/L, respectively). None presented nutritional deficiencies, and all of
them received testosterone-replacement therapy, so their testosterone levels were into the
normal range [39].

In 2013, Foresta et al. published a second study, conducted in a larger population
of 125 TC survivors who underwent unilateral orchiectomy [40]. As a control group, the
authors recruited the same cohort of 41 males from a center for sexual dysfunction, but all
of them without testicular alterations. The authors tested not only vitamin D levels, but
also several parameters involved in the mechanisms of osteopenia/osteoporosis and in
vitamin D metabolism. A statistically significant difference between the two groups was
found in terms of vitamin D serum levels: in fact, a value of 25OH-Vitamin lower than
50 nmol/L was reported in 77.6% of TC survivors and in 7.3% of control group (p < 0.0001).
Similar differences were found in terms of bone mineral density (BMD) and incidence of
osteopenia/osteoporosis according to the different follow-up period: in fact, bone disorders
were reported in 23% of TC survivors and in 0% of control group, and their incidence
was higher in patients with longer follow-up. Moreover, higher grades of osteopenia and
osteoporosis were reported despite normal testosterone levels.

The potential biases of these two studies were the small sample size and the absence
of a formal healthy male control group: the control group (41 subjects) was composed by
other patients affected by other sexual dysfunctions. Moreover, the authors choose only a
vitamin D cut-off level, but they failed to gather more information about it (e.g., insufficient
versus deficient levels).

In the Netherlands, between 2007 and 2009, a small prospective study recruited
63 newly diagnosed TC patients, collecting blood samples at baseline and then every year
for the first 5 years of follow-up. The authors divided patients into two cohorts: non-
metastatic (patients who underwent unilateral orchidectomy only or who were also treated
with adjuvant chemotherapy) versus metastatic patients. The authors reported a vitamin D
deficiency (defined as 1,25(OH)2D3 serum levels <50 nmol/L) at baseline of 36.5%, which
was equally distributed between the two study cohorts, and no significant modifications
of these data were reported thereafter. In accordance with these findings, the metastatic
cohort also demonstrated significant bone loss during the first year of follow-up, which
was maintained even after 5 years [41]. The main biases of this Dutch study were the small
number of recruited patients and those lost to follow-up.

In 2017, we conducted a study [42] testing vitamin D serum levels in a cohort of
61 long-term (3 or more years from diagnosis) TC survivors compared with another cohort
of 40 healthy males of the same age. In our study, we found a significant (p = 0.031)
difference in median vitamin D levels between the two groups (18.6 µg/L = 46.5 nmol/L
in TC survivors and 23.6 µg/L = 59 nmol/L in healthy males, respectively). This difference
was maintained during follow-up, even after 10 years from diagnosis, but at that time, the
data were no more statistically significant.

The potential biases of our study were: (1) the small sample size (58 unilateral and
3 bilateral TC survivors); (2) the retrospective function of our analysis; thus, we collected
serum specimens only after ≥3 years of follow-up—moreover, we were not able to collect
blood samples before treatments, so the number of subjects who presented hypovitaminosis
before tumor diagnosis is unknown; and (3) the period of the blood sample; in fact, all
samples were collected only in winter, so we were not able to assess the seasonal variations
in vitamin D levels according to amount of sun exposure.

Another Italian retrospective study evaluated variations in serum levels of sperm
parameters and vitamin D in a cohort of 131 TC survivors who previously underwent
pelvic radiotherapy. The authors also selected 61 TC patients treated only with simple
surveillance as a control group. Blood samples were collected at baseline and at 1 and
2 years of follow-up. The authors reported a significant decrease of all sperm parameters
at 1 year, whereas at 2 years these values were ameliorated. On the contrary, the LH levels
progressively increased in the radiotherapy group, leading to a potential risk of subclinical
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hypogonadism. Moreover, those pretreated with radiotherapy showed a 5.78 relative risk
of developing hypovitaminosis D (and consequently, osteopenia/osteoporosis), compared
with the surveillance cohort [43]. The biases of the study were its retrospective nature and
the absence of a direct measurement of bone status in the experimental cohort.

The sixth study was conducted in 82 TC patients. The authors reported reduced
vitamin D levels in that patient cohort: in particular, 65–85% of them presented < 30 ng/mL
(<75 nmol/L), 25–36% < 20 ng/mL (<50 nmol/L), and 6–18% < 10 ng/mL (<25 nmol/L).
These results were observed at a median follow-up of 48 months, but the differences
disappeared at a longer follow-up period [44]. The authors found no correlation between
vitamin D deficiency and histology, stage, or antitumor treatment or with testosterone,
FSH, or LH.

The limitations of this study were: (1) its retrospective nature, (2) small sample size
(also a common limitation for the other studies), (3) lack of pre-orchiectomy collection of
vitamin D serum levels, and (4) absence of a formal healthy male control cohort.

Recently, a German study was conducted in a cohort of 177 orchiectomized TC sur-
vivors with the aim of searching for a potential correlation between surgery and hypovi-
taminosis D. They collected samples before and immediately after surgery, and then at
another 5 time-points until 2 years of follow-up. Their findings were compared with non-
oncologic control cohorts, the first of them being a population of 84 males with testicular
problems (Cohort 2) and the other one a group of 237 patients with urological diseases
(Cohort 3), respectively. The comparison among the results from the study cohorts did not
demonstrate any statistical difference in vitamin D levels (p = 0.161): the authors reported
only a transient hypovitaminosis status starting from the postoperative period until 2 years
of follow-up. After this period, the serum levels of vitamin D normalized again; therefore,
the authors suggest that other organs may allow this late recovery, even if one testis is
lacking [45]. The authors also tested other parameters, including testosterone, FSH, age,
and histology, but no association among them and vitamin levels was found.

On a methodological level, the article by Dieckmann et al. [45] is more accurate than
the previous ones: (1) it provided for a pre-orchiectomy dosage and immediately after
surgery, with subsequent periodic samplings; (2) it had two control groups; (3) its sample
size was much larger than in previous studies. The results therefore seem to be more
supported also on a statistical level. However, the subdivision of patients into subgroups
may have limited the sample size. Another potential bias was the seasonal variations in
blood samples, which could affect the overall results.

3. Discussion

Currently, although an internationally validated optimal serum cut-off concentration
of vitamin D has not been determined, 30 ng/mL (=75 nmol/L) and 20 ng/mL (50 nmol/L)
are considered as upper cut-off levels for insufficiency and deficiency, respectively [7,46].

A small number of studies reported low vitamin D levels in TC patients compared with
healthy matching controls [40,42,47,48]. However, as evidence of the uncertainty regarding
the limit values, each study established its own cut-off levels: Foresta et al. chose a different
cut-off to discriminate between normal levels and hypovitaminosis D (40 nmol/L in [49]
and 50 nmol/L in [40]); Ghezzi et al. [42] and Willemse et al. [41] used an even higher
cut-off level, >50 nmol/L, without distinguishing subjects with hypovitaminosis D; other
authors [42,44] chose the abovementioned two cut-off levels, 30 ng/mL (=75 nmol/L) and
20 ng/mL (=50 nmol/L).

In the U.S., a study performed in a cohort of long-term survivors who underwent
hematopoietic cell transplantation reported inadequate vitamin D levels in 35% of patients,
even in cases of regular vitamin D supplementation [50]. These data could also be consid-
ered for TC survivors who underwent unilateral orchiectomy, as stem cell transplantation
also represents a therapeutic option for them [51,52].

In our previous study [42], we also reported that lower levels were observed during
the first year. Then, they remained stably low, even after ≥5 years of follow-up; the
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same variations were reported elsewhere [44]. In our study, we did not find any case of
deficient vitamin D serum levels in the healthy male cohort, but we cannot exclude possible
selection bias. In a supplemental study conducted within the French SUVIMAX project,
the authors found 0–7% of hypovitaminosis D in a population of Mediterranean young
males, unselected for TC [53]. Zitterman et al. found hypovitaminosis D in up to 40% of
the general population in Germany [54]. In this regard, the article by Dieckmann et al.
confirms the nadir of hypovitaminosis D at 6–12 months of follow-up; these values seem to
be recovered after 2 years post-orchiectomy, but they are similar to the values found in the
control groups [45]. Thus, including a healthy control group is mandatory in these studies,
and its absence limits the results of the article, for example in Foresta et al. [40].

When assessing serum levels of vitamin D, its two main sources must first be con-
sidered: primarily solar exposure (especially UV radiation between 290 and 305 nm) and,
secondly, diet: the first is responsible for the conversion into cholecalciferol (D3); the second
is involved in the supply of ergocalciferol (D2) of plant origin. The sun exposure, of course,
has seasonal variations; hence, vitamin D serum levels have differences as well, reaching
their zenith at the end of summer [4]. Therefore, when testing serum levels of vitamin D,
samples should be taken at different times of the year [27].

The efficiency of solar radiation in the formation of cholecalciferol is maximum at
latitudes below 40◦, while its effectiveness gradually decreases toward the poles, where
diet can instead represent an excellent alternative source of vitamin D [11]. In this regard,
the two German studies previously reported confirm a high rate of hypovitaminosis D
in the German population [54] and in the two control groups [45], respectively. A study
conducted in some nomadic populations of northern Russia, who commonly have a diet
rich in ergocalciferol, has shown that hypovitaminosis occurs especially in those individuals
who have abandoned traditional lifestyles to follow Western habits [55].

Several studies reported that lower vitamin D levels are frequently associated with hy-
pogonadism [4,47,48], which is one of the long-term TC problems, not only after chemother-
apy [56] but also after radiotherapy, as reported by Ghezzi et al. [43], probably through
treatment-related damage to the Leydig cells—in fact, it is known that these cells are also
involved in vitamin D 25-hydroxylation. In a study conducted in Slovakia, in a cohort
of 823 unilateral TC survivors, the authors reported a 19.5% testosterone deficiency, a
19.1% LH increase, and 50.6% had osteopenia with/or osteoporosis [57]. More recently, the
authors confirmed these results in an updated article on the same study, with more than
1200 subject enrolled [58].

In this regard, Sprauten et al. showed that the longer the follow-up, the higher the
risk of hypogonadism. Moreover, they found an increased risk of precocious hormonal
aging and age-related decline of sex hormones compared with healthy peers, mostly in
pretreated TC survivors [59]. In this regard, some studies suggest a possible correlation
with the expression of VDR both at the gonadal and hypothalamic level [4,47]; other
authors highlight the common phylogeny among the members of the nuclear receptor
family, which includes both VDR and sex hormone receptors [60]. Notwithstanding,
a correlation among vitamin D, testosterone, LH, and FSH was not reported in some
studies [42]. Dieckmann et al. tested these parameters, but they did not observe any
correlation among them [45]. Higher serum levels of FSH have been described in TC
survivors after surgery alone and especially after radiation/chemotherapy: a reduced
fertility was reported in those patients [61].

However, even if the correlation between vitamin D and hypogonadism is not entirely
clear, it must be considered that the expression of hydroxylases (CYP2R1 and CYP27B1)
and VDR in testis tissue [47,62–64] also represents a further indication of the importance
of the testicles in the metabolism of vitamin D [65–67]. It seems apparent in contrast
with the finding of some vitamin D recovery starting from the second year of follow-up,
but in reality, this could be explained in two ways: (1) progressive compensation by the
contralateral testis (if unilateral), or (2) compensation by other organs that normally express
hydroxylases CYP2R1 and CYP27B1, such as liver and kidney (especially in the case of
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bilateral tumor). This latter explanation seems to find confirmation in animal studies [27].
In contrast to those data, Willemse et al. demonstrated that bone loss persisted even after
5 years of follow-up [41].

As we previously said, VDR expression in testis could represent another clue in favor
of the role of testes in the vitamin D metabolism. Nappi et al., having found different
VDR expressions based on tumor histology (greater expression in non-seminomas than in
seminomas), suggest a possible different expression even before surgery and even suspect
some interaction with the oncogenesis mechanism. However, the same authors found no
link between receptor expression and hypovitaminosis in their study cohort [44].

To date, in the International Guidelines on Survivorship [68], there are only generic
recommendations about vitamin D supplementation in cases of deficiency, especially in
long-term survivors; curiously, in Guidelines for TC patients this is not even reported [69–71].

According to Nappi et al. [44], whereas it has been demonstrated that stable in-
sufficient vitamin D serum levels are related to a high risk of several pathologies, such
as cardiovascular diseases [72,73], osteopenia/osteoporosis [40,74] and infertility [75], it
would be useful to monitor this condition, especially in long-term CT survivors, so that the
problem can be eventually remedied by adequate supplementation.

4. Materials and Methods

Our review was performed by following the PRISMA guidelines for reporting system-
atic reviews and meta-analyses [76] (Figure 1).
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We conducted a systematic review of English-language literature until March 2021.
Our research was performed into the main web databases (Medline, Scopus/EMBASE,
and Google Scholar), with the aim of finding relevant studies dealing with the incidence
of hypovitaminosis D in TC survivors. We used the following search terms: vitamin d
OR cholecalciferol AND testicular OR testis OR germ cell AND cancer OR tumor. After
reading the abstracts, we more thoroughly analyzed the articles’ full text. We also looked
through their references in order to identify further interesting studies.

5. Conclusions

Analyzing the abovementioned studies, we found conflicting results in terms of
vitamin D deficiency. The reasons are unclear, but the main study biases (in particular,
small sample sizes and methodological issues) could in part represent an explanation
for that. In the future, it would be appropriate to carry out prospective studies with
larger sample sizes, and with adequately large control groups (including more patients
with bilateral orchiectomy as well). Furthermore, on a methodological level, it would be
essential to plan the blood samples at least at the baseline and annually, paying attention
to any seasonal bias in the choice of the blood collection period.
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