
Human genetics - linking inherited variation in DNA 
sequence with traits such as susceptibility to disease - 
provides prima facie evidence that a gene and a pathway 
are associated with a disease. The most recent wave of 
genomic technology has allowed human genomes to be 
scanned for variant DNA sequences (or alleles) in many 
people to determine which alleles are associated with a 
particular disease or phenotype of interest. Termed 
genome-wide association studies, or GWASs, this 
approach has identified hundreds of alleles that are 
associated with a variety of human traits [1,2]. By most 
accounts, the GWAS approach has been very successful 
at identifying new regions of the genome (or loci) that are 
important in disease, even though the effect sizes of most 
alleles are modest.

The GWAS approach has been particularly successful 
at uncovering risk alleles for autoimmune diseases. 
Collectively, autoimmune diseases are common, affecting 
more than 5% of the adult population [3]. These diseases 
include rheumatoid arthritis (RA), type 1 diabetes (T1D), 
inflammatory bowel disease (IBD), systemic lupus 
erythematosus (SLE), multiple sclerosis (MS), psoriasis 
and celiac disease (among others). RA is a chronic 
inflam matory disease that destroys free moving joints. 
T1D is a form of diabetes that results from the destruc-
tion of insulin-producing beta cells of the pancreas. IBD 
is a group of inflammatory conditions of the colon and 
small intestine; the two major types are Crohn’s disease 
and ulcerative colitis. In SLE, the immune system attacks 

a wide variety of organs, including the heart, joints, skin, 
lungs, blood vessels, liver, kidneys and nervous system. 
MS is an autoimmune disease in which the fatty myelin 
sheaths around the axons of the brain and spinal cord are 
damaged, leading to a broad spectrum of signs and 
symptoms. Psoriasis is a chronic disease in which the 
skin develops red, scaly patches, which is the result of 
areas of inflammation and excessive skin production. 
Celiac disease is an autoimmune disorder of the small 
intestine caused by a reaction to storage proteins (called 
glutens) found in cereal grains; the ensuing excessive 
immune reaction leads to an attack on the intestinal villi 
and tissue damage, resulting in malabsorption of nutrients.

So far, approximately 150 loci have been identified that 
increase risk of these autoimmune diseases [4-14]. For 
each disease, the strongest genetic risk factors reside 
within the major histocompatibility complex (MHC) 
region on chromosome 6 [15]. Most associated alleles in 
other regions are common in the general population, but 
increase the disease risk by only 10 to 20% (corresponding 
to an odds ratio (OR) of 1.10 to 1.20 per copy of the risk 
allele). (The OR is a measure of the strength of association; 
it refers to the ratio of the odds of an event occurring in 
one group (such as cases) to the odds of it occurring in 
another group (such as controls).) For any given auto-
immune disease, the known genetic risk alleles explain 
between 10 and 20% of variance in disease risk, whereas 
more than 50% of disease risk is estimated to be heritable. 
The remaining 30% or so of unexplained genetic disease 
risk is termed the missing heritability.

The challenges now are, first, to find the causal mutation 
responsible for the signal of association; second, to 
understand which gene is disrupted by the causal mutation 
and how it is disrupted (that is, whether the mutation results 
in gain of function, loss of function, or a new function 
altogether); third, to understand which cell type and 
biological pathways are altered by these mutations; and 
finally to find additional mutations that explain the missing 
heritability [16]. The next wave of genomic technology - 
next-generation sequencing - will be a powerful ally in this 
effort. In particular, next-generation sequencing will help 
localize the causal mutation, as well as help identify rare 
alleles that confer risk of autoimmune disease.
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Thus, an important question remains: what is the most 
appropriate scientific approach to understand function of 
risk alleles discovered in human genetics research? Is the 
mouse the most appropriate model organism, or do these 
genetic discoveries provide new resources to enable 
functional studies directly in human immune cells?

Here, I discuss the confluence of events that create a 
unique opportunity to use human subjects as the ‘model 
organism’ for the study of autoimmune disease patho-
genesis. In addition to GWASs and next-generation 
sequencing, registries of blood draws from healthy, 
consenting human volunteers enable functional studies of 
genetic variants in a wide range of primary human immune 
cells, and human stem cell technology has advanced to the 
point at which induced pluripotent stem (iPS) cells can be 
derived from patients with specific mutations and 
differentiated into diverse immune lineages. These resources 
should allow investigators to understand the altered cellular 
state in diseases that are uniquely human, which should 
ultimately lead to new therapeutics to treat or prevent the 
devastating consequences of autoimmune disease.

Common SNPs and risk of autoimmune disease
In general, ‘common’ variants are those present at a 
frequency of over 1% in any one continental population 
(such as Europeans, Asians and Africans), whereas ‘rare’ 
variants are those present at a frequency of less than 1% 
in these populations [17]. This simple categorical 
distinction has been made in order to frame the genetic 
approach to discovering and testing DNA variants for 
their role in disease. For common variants, it is possible 
to screen a reference population to identify a catalog of 
variants (the discovery phase), and then test these 
variants in case-control collections using high-through-
put genotyping technologies (the testing phase). A variety 
of resources have been developed to catalog common 
single nucleotide polymorphisms (SNPs), including the 
International HapMap Project [17,18]. More recently, 
data from the 1000 Genomes Project [19] have begun to 
be used to catalog variants in the 1% frequency range.

In order to test whether these common SNPs are 
associated with risk of disease, commercial ‘SNP chips’ or 
arrays have been developed that capture most, although 
not all, common variation in the genome. These geno-
typing arrays can genotype hundreds of thousands of 
SNPs in a single experiment, at a cost of several hundred 
US dollars per sample. Contemporary GWASs use these 
arrays to measure the frequency of alleles in cases 
compared with controls. If the difference in allele 
frequency reaches a stringent level of statistical signifi-
cance that corrects for the fact that there are about 
1,000,000 independent common SNPs in the human 
genome (this significance level is about P < 5 × 10-8), then 
the allele is said to be ‘associated’ with disease.

There are approximately 10 million common SNPs in 
the human genome. A fundamental challenge in human 
genetics is to systematically test each of these 10 million 
common SNPs for its role in disease. Contemporary 
GWASs test several hundred thousand SNPs across the 
entire human genome, most of which are common 
(minor allele frequency over 5%) in the general, healthy 
population. To test the remaining over 9 million common 
SNPs, the GWAS approach relies on the correlation 
structure of nearby SNPs. That is, nine out of ten SNPs 
are highly correlated, and testing one SNP serves to tag 
the remaining nine nearby SNPs. This concept is known 
as linkage disequilibrium (LD).

The underlying rationale for the GWAS approach is 
rooted firmly in population genetics, as most of the 
differences between any two chromosomes are due to 
common SNPs [20]. On the basis of the hypothesis that 
disease alleles reflect the allelic spectrum of diseases in the 
general population, the risk of common diseases will be 
attributable in part to allelic variants that are also common.

GWASs have discovered about 150 loci that harbor 
SNPs associated with risk of autoimmune diseases. 
Several of the earliest GWASs that successfully identified 
common risk alleles were done in autoimmune diseases. 
Crohn’s disease is an illustrative example. Before GWASs, 
only two loci outside the MHC were known to be 
associated with Crohn’s disease risk [21]. In 2006, a 
GWAS of about 1,000 case-control samples identified a 
coding variant in the interleukin 23 receptor (IL23R) 
gene locus [22]. The landmark Wellcome Trust Case 
Control Consortium GWAS, published in 2007, included 
three autoimmune diseases (of the seven diseases 
studied): Crohn’s disease, T1D and RA [23]. Since these 
initial GWASs, over 30 Crohn’s disease risk loci [7], over 
40 T1D risk loci [6] and over 25 RA risk loci have been 
discovered [24].

From these GWASs, an important theme has emerged: 
the overlap among the loci that confer risk of 
autoimmune disease. In 2008, Smyth and colleagues [9] 
studied the overlap between celiac disease and T1D. The 
study [9] found that nearly half of the about 30 risk loci 
contributed to both diseases, whereas the others seemed 
to be disease-specific. Other studies have compared and 
contrasted risk confirmed alleles for a variety of 
autoimmune diseases [9,25-27]. There is clear overlap for 
many of the known risk alleles, consistent with 
epidemiological data of disease clustering within families 
[28]. A partial list of loci associated with multiple auto-
immune diseases is shown in Table 1.

Missing heritability: next-generation sequencing 
and the role of rare SNPs
Although the number of loci associated with autoimmune 
disease is impressive, these loci cannot explain a sizeable 
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fraction of disease risk. In fact, outside the MHC, 
common alleles can only explain 5 to 10% of disease risk 
associated with autoimmune disease. Considering that 
family studies have shown that more than 50% of 
autoimmune disease risk is thought to be genetic, the 
question arises as to why so much of the heritability is 
apparently unexplained by initial GWAS findings. One of 
the most frequently cited explanations for ‘missing 
heritability’ is that rare SNPs contribute substantially to 
disease risk, and contemporary GWAS arrays do not 
adequately capture rare variants [16].

There are two ways to test rare variants systematically 
for association with disease. First, it is possible to catalog 
low-frequency variants - those variants present in 
approximately 0.5 to 5% of control chromosomes - in a 
manner analogous to common variants. The only 
difference is that a greater number of subjects need to be 
included in the discovery effort. This is the main premise 
behind the 1000 Genomes Project [19]. Once discovered 
and catalogued, these low-frequency variants could be 
genotyped in a high-throughput manner using geno-
typing arrays.

The second approach is to couple the discovery and 
testing phases into a single experiment. That is, direct 
sequencing is done in case-control collections them-
selves, generating an unbiased catalog of DNA variants 
that are then tested for association with disease.

Until recently, direct sequencing in large patient 
samples was cost prohibitive. Next-generation sequenc-
ing has been developed to sequence large regions of DNA - 
with the ultimate goal of sequencing the complete 
genome - in a high-throughput and cost-effective 
manner. In the near future, next-generation sequencing 
will probably be the technical method of choice for 
conducting GWASs.

From associated SNP to causal allele and causal 
gene
An important promise of human genetics is that GWASs 
offer an unbiased approach to discovering new pathways 
that cause disease. Towards this end, a major challenge is 
to take the expanding list of disease risk alleles and 
understand the effect on gene function. The first step is 
to identify which gene near the associated SNP has its 
function affected by the underlying causal mutation 
(which is rarely known). This step is critical, as the region 
of LD surrounding the associated SNP often contains 
more than one gene (although often there is one likely 
candidate gene from the known biology). A region of LD 
includes neighboring sequence in which a group of SNPs 
are highly correlated (for example, at a correlation 
coefficient of r2 > 0.80). Moreover, it is conceivable that 
the causal mutation exerts its effect at a distance (for 
example, by altering gene expression) or that the causal 
mutation is rare in the general population and located 
some distance from the associated SNP [29].

As shown in Figure 1, there are at least three general 
approaches to get from associated SNP to causal gene 
(and causal mutation). First, fine-mapping of the region 
of LD is performed using resequencing and dense 
genotyping. An allele is considered causal if it is predicted 
to alter function and if direct experimentation demon-
strates altered function. An intriguing result from 
GWASs is that most associated SNPs lie outside coding 
regions, and most of the causal mutations probably also 
fall outside coding regions. It is likely that many causal 
mutations affect gene expression or mRNA splicing.

One of the best examples was fine-mapping and func-
tional studies of IRF5, a gene associated with SLE and 
other autoimmune diseases [30,31]. IRF5 encodes a 
member of the interferon regulatory factor (IRF) family, a 
group of transcription factors with diverse roles, 
including virus-mediated activation of interferon and 
modulation of cell growth, differentiation, apoptosis and 
immune system activity. Studies have revealed three 
functional alleles of IRF5: an exon 1 splice site variant, a 

Table 1. Loci associated with multiple autoimmune 
diseases

 Chromosome Position Gene(s) Disease* References

 1 67466790 IL23R Psoriasis, CD, UC [7,12,53]

 1 114179091 PTPN22 SLE, CD, RA, T1D [7,8,54,55]

 1 116905738 CD58 MS, RA [5,11]

 1 205006527 IL10 SLE, T1D, UC [6,8,14]

 2 102437000 IL18RAP T1D, celiac [9]

 2 191672878 STAT4 RA, SLE [56]

 2 204402121 CTLA4 RA, T1D, celiac [6,13,57]

 4 25694609 RBPJ T1D, RA [6]

 4 123351942 IL2  T1D, Celiac, RA, UC [6,25,58]

 5 150437678 TNIP1 SLE, psoriasis [8]

 5 158650367 IL12B Psoriasis, CD [7,12]

 6 106541962 PRDM1, ATG5 CD, RA, SLE [5,7,8]

 6 138014761 TNFAIP3 Celiac, RA,  [12,13,59-61] 
    SLE, psoriasis

 6 159385965 TAGAP Celiac, RA [5,10]

 6 167357978 CCR6 CD, RA [7]

 7 128376236 IRF5 SLE, RA [31,62]

 8 11377591 BLK SLE, RA [35,63]

 10 6138955 IL2RA RA, MS, T1D [6,64]

 10 6430456 PRKCQ T1D, RA [4,65]

 16 11074189 CLEC16A MS, T1D [11,66]

 18 12769947 PTPN2 CD, celiac, T1D [7,13,66]

*CD, Crohn’s disease; MS, multiple sclerosis; RA, rheumatoid arthritis; SLE, 
systemic lupus erythematosus; T1D, type 1 diabetes; UC, ulcerative colitis.
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30-bp in-frame insertion/deletion variant of exon 6, and a 
variant in a conserved poly(A)+ signal sequence that 
alters the length of the 3’ untranslated region and stability 
of IRF5 mRNAs [30]. Haplotypes of these three variants 
define at least three distinct levels of risk to SLE. There is 
an approximately twofold increase in the level of risk 
between carriers of the highest and lowest risk haplotypes.

Second, candidate genes from a region of LD can be 
resequenced to search for independent, rare protein-
coding mutations. The underlying hypothesis is that a 
true causal gene will harbor multiple risk alleles; at least 
one of these might be common (and identified by 
GWAS), whereas many others will be rare. Precedence 
for this hypothesis comes from studies of Mendelian 
disorders, for which disease can be caused by many 
different mutations to the same gene (genetic hetero-
geneity). In a study published in 2009 [32], the coding 
exons of six genes identified by GWASs of T1D were 
resequenced to search for independent rare mutations. 
Two rare SNPs in the interferon-induced helicase C 
domain-containing protein 1 (IFIH1) gene were identified 
that conferred protection from T1D. IFIH1 is a cyto-
plasmic protein that recognizes RNA of certain viruses 
and mediates immune activation. Following infection, the 
IFIH1 protein senses the presence of viral RNA in the 
cytoplasm, triggers activation of nuclear factor (NF)-κB 
and IRF pathways and induces antiviral IFN-β response. 
The non-synonymous SNP with the strongest association, 
rs35667974 (which causes the amino acid substitution 
Ile923Val), was observed on an estimated 3 out of 960 
case chromosomes but 24 out of 960 control chromo-
somes (P = 0.00004); another SNP, rs35337543 (which 
affects a splice donor site), was observed on 7 case 
chromosomes and 23 control chromosomes (P = 0.005). 
Both SNPs were genotyped in more than 20,000 addi-
tional case-control samples: rs35667974 was present in 
about 1% of cases and 2% of controls (P = 2.1 × 10-16) and 

rs35337543 in 1% of cases versus 1.5% of controls (P = 
1.4  × 10-4). Both mutations are predicted to be loss-of-
function mutations, although why these mutations 
influence risk of T1D remains unknown.

The third approach is less direct, but nonetheless very 
powerful, especially when there are many loci associated 
with risk of disease. The underlying hypothesis is that 
there are a limited number of biological pathways that 
are altered to confer risk of disease and that true causal 
genes will be restricted to those specific pathways. 
Examples of such pathways include known signaling 
pathways (such as the NF-κB pathway and risk of RA 
[33]) or catabolic pathways (such as autophagy and risk 
of Crohn’s disease [20]). The challenge of this compu-
tational approach is to define categories of pathways, as 
our understanding of many biological processes is 
incomplete. One successful approach has been to use 
information contained in PubMed abstracts to establish 
connections between gene loci [34]. This approach has 
been used to identify putative causal genes for RA and 
celiac disease [5,13]. In the RA study, three loci were 
identified that contained the genes CD28, CD2/CD58 
and PRDM1, respectively [5]. Both CD2 and CD28 are 
co-stimulatory molecules on the surface of T cells. 
PRDM1 (also known as BLIMP-1) is a transcription 
factor that regulates terminal differentiation of B cells 
into immunoglobulin-secreting plasma cells. Once these 
connections are established among risk loci, direct 
experimentation is still required to prove the pathways 
are critical to disease.

Resources to validate the biological effects of 
causal mutations
Once the causal gene and causal mutation(s) have been 
identified, the next major challenge is to understand the 
underlying biological pathways that lead to autoimmune 
disease. New resources now make it possible to study the 
effects of mutations linked to autoimmune disease 
directly in relevant human tissue.

Registries have now been established at academic 
medical centers to study the functional consequences of 
common genetic mutations in blood cells from healthy 
control subjects [35]. Human immune cells (such as B 
and T lymphocytes) are easily accessible through a simple 
blood draw. These immune cells are of direct relevance to 
pathogenesis of autoimmune diseases, as indicated not 
only by recent genetic studies but also by previous studies 
in patients with autoimmune diseases [36]. Human 
immune cells derived from healthy control subjects have 
been used successfully to gain insight into function of 
common mutations at several autoimmune genes. A 
missense mutation in the PTPN22 gene is associated with 
several autoimmune diseases. PTPN22 encodes a protein 
tyrosine phosphatase that is expressed in lymphoid 

Figure 1. From associated SNP to causal gene/mutation. There 
are at least three ways to go from an associated SNP in a GWAS 
to the causal mutation(s) and causal gene. The first is to perform 
dense genotyping to identify the set of common SNPs that yield 
the strongest signal of association, followed by hypothesis-driven 
functional studies. The second is to perform deep re-sequencing 
to search for rare mutations that are independent of the common 
mutation and that alter protein function. The third is to use 
bioinformatics approaches to establish connections among genes 
across associated loci.

(1) Fine-mapping and functional
studies

(2) Re-sequence for independent
rare mutations

(3) Connections across multiple
loci 

Causal
gene 
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tissues and implicated in T-cell activation [37]. Functional 
studies in T cells derived from healthy human partici-
pants have shown that the PTPN22 risk allele alters 
secretion of IL2 from T cells stimulated through the 
T-cell receptor [38]. Other autoimmune risk alleles have 
been studied in a similar manner: a common multiple 
sclerosis risk mutation at CD58 can explain about 40% of 
the variance of CD58 cell surface expression on 
peripheral blood mononuclear cells (PBMCs) [39]; and a 
common T1D mutation in IL2RA alters IL2RA cell 
surface expression on CD4+ memory T cells [40].

Another new approach is to generate iPS cells from 
patients who carry specific genetic mutations. First 
described in 2006 [41], several studies have shown that 
iPS cells can be derived from patients with with Mendelian 
disorders [42]. By definition, iPS cells are pluripotent and 
can be differentiated into any human cell type. Specific 
protocols are required to direct differentiation into a 
specific cell lineage. In the case of immune lineages, 
protocols have been developed to differentiate human 
embryonic stem (ES) cells into B cells, T cells, natural 
killer cells, and other immune lineages [43-50]. Because 
of the similarities between ES and iPS cells, differentiation 
protocols developed in ES cells should be applicable to 
differentiation of iPS cells into these same immune 
lineages.

Whether iPS cells derived from patients with auto-
immune disease will be useful for functional studies of 
human genetic mutations is a hypothesis that needs to be 
rigorously tested. Human iPS cells offer several theo-
retical advantages over primary human immune cells 
derived from healthy patients. First, although many 
immune lineages can be isolated from peripheral blood, 
many reside within lymph nodes and other privileged 
sites not accessible through the blood. Moreover, it is 
impractical to isolate more than a few immune lineages 
in the amount of blood drawn from a single individual at 
a single point in time. Second, in studies of primary 
human immune cells, it is important to investigate 
carriers and non-carriers of mutations on the same day to 
minimize technical variability. iPS cells have the 
theoretical advantage of repeated measurements under a 
set of controlled conditions. Finally, primary human cells 
have a limited lifespan in culture. As a consequence, it is 
difficult to manipulate primary cells with transfections 
and other cellular perturbations.

Most genetic discoveries have concerned the risk of 
disease overall, rather than relevant subsets of disease; 
this applies not just to autoimmunity but also to other 
diseases. As a consequence, a new challenge is to corre-
late genotype with clinically relevant phenotypes, such as 
response to therapy and disease severity. For genotype-
phenotype correlation studies, the major bottleneck is 
setting up large registries of patients with biospecimens 

for genomic studies and detailed clinical data. Traditional 
patient registries and clinical trials - the workhorse for 
sample collection over the past decades - are unlikely to 
achieve the size required to obtain thousands of 
autoimmune patient samples for these studies. New 
approaches - next-generation registries - will be required 
to break this bottleneck. In theory, it should be possible 
to collect data as part of routine patient care. Increased 
use of electronic medical records [51] and new 
approaches to mining clinical data from such records [52] 
is one exciting approach to expanding sample collections.

Contemporary GWASs of common variants have 
identified approximately 150 loci that confer risk of 
common autoimmune diseases. Once the causal genes 
and causal mutations have been identified, the next 
challenges will be to understand the underlying biological 
pathways and to correlate genotype with clinically rele-
vant phenotypes. New resources are now available to 
enable these translational immunology studies in 
humans. Over the next few years, great strides should be 
made towards accomplishing these ambitious yet 
attainable goals.

Published: 5 May 2010
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