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Abstract
Microbes compose most of the biomass on the planet, yet the majority of taxa remain uncharacterized. These unknown
microbes, often referred to as “microbial dark matter,” represent a major challenge for biology. To understand the ecological
contributions of these Unknown taxa, it is essential to first understand the relationship between unknown species,
neighboring microbes, and their respective environment. Here, we establish a method to study the ecological significance of
“microbial dark matter” by building microbial co-occurrence networks from publicly available 16S rRNA gene sequencing
data of four extreme aquatic habitats. For each environment, we constructed networks including and excluding unknown
organisms at multiple taxonomic levels and used network centrality measures to quantitatively compare networks. When the
Unknown taxa were excluded from the networks, a significant reduction in degree and betweenness was observed for all
environments. Strikingly, Unknown taxa occurred as top hubs in all environments, suggesting that “microbial dark matter”
play necessary ecological roles within their respective communities. In addition, novel adaptation-related genes were
detected after using 16S rRNA gene sequences from top-scoring hub taxa as probes to blast metagenome databases. This
work demonstrates the broad applicability of network metrics to identify and prioritize key Unknown taxa and improve
understanding of ecosystem structure across diverse habitats.

Introduction

For billions of years, microbes and their metabolic activities
have been shaping Earth’s physical, chemical, and miner-
alogical landscape. Although microbes comprise the
majority of the planet’s biomass, most microbial species
and their genomes remain uncharacterized [1, 2]. These
unknown aspects of microbial life, colloquially called

“microbial dark matter” [1, 3] represent a fundamental
impediment to microbial ecology, as microbe-dominated
ecosystems cannot be reliably characterized without a
thorough understanding of the roles microbes and their gene
products play in ecosystem processes.

Currently, most of our knowledge of the microbial world
is skewed by a few taxa that lend themselves to cultivation
and genetic manipulation. Of the cultivated species, 88%
are derived from just four phyla Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes [1]. The uncultured and
unsequenced microbial majority on Earth likely represents
major evolutionary lines of descent within the tree of life
and is expected to have played key roles in ecosystem
formation, evolution, and function. Without a mechanistic
approach to characterize the roles of these currently
Unknown taxa in the ecosystem, we will not have a full
understanding of how these organisms impact their neigh-
bors, environment, or life as a whole.

Recent efforts to provide insight into the uncharacterized
and uncultured majority through next-generation sequencing
technologies have significantly expanded the microbial tree
of life [4–6]. Yet, despite the recent explosion of nucleic
acid sequencing of microbial environments, much remains to

* Ana Conesa
aconesa@ufl.edu

1 Department of Microbiology and Cell Science, Institute for Food
and Agricultural Research, University of Florida, Gainesville, FL
32608, USA

2 Department of Microbiology and Cell Science, Space Life
Sciences Lab, Merritt Island, FL 32953, USA

3 Genetics Institute, University of Florida, Gainesville, FL 32608,
USA

Supplementary information The online version of this article (https://
doi.org/10.1038/s41396-020-00777-x) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00777-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00777-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41396-020-00777-x&domain=pdf
http://orcid.org/0000-0001-5202-5304
http://orcid.org/0000-0001-5202-5304
http://orcid.org/0000-0001-5202-5304
http://orcid.org/0000-0001-5202-5304
http://orcid.org/0000-0001-5202-5304
http://orcid.org/0000-0002-9955-3785
http://orcid.org/0000-0002-9955-3785
http://orcid.org/0000-0002-9955-3785
http://orcid.org/0000-0002-9955-3785
http://orcid.org/0000-0002-9955-3785
http://orcid.org/0000-0001-9597-311X
http://orcid.org/0000-0001-9597-311X
http://orcid.org/0000-0001-9597-311X
http://orcid.org/0000-0001-9597-311X
http://orcid.org/0000-0001-9597-311X
mailto:aconesa@ufl.edu
https://doi.org/10.1038/s41396-020-00777-x
https://doi.org/10.1038/s41396-020-00777-x


be learned [7, 8]. Truly understanding the ecological roles of
Unknown taxa within communities requires a more com-
prehensive assessment of why Unknown taxa persist, or with
whom they interact on a global scale. More importantly, it is
unclear whether the presence of these unknown organisms
confers a value that is not already provided by other, well-
characterized microbes within the same ecosystem.

To more fully understand microbial life, particularly the
contributions of Unknown taxa, it is first critical to under-
stand the connectivity and structure of microbial ecosys-
tems. Networks have long been used as analytical tools to
better understand species’ roles and interactions [9–14]. By
mathematically modeling a microbial community as a net-
work, where nodes are different species and edges represent
their relationships [9, 15], researchers can depict species
interactions and study the structure of the environmental
system. Network metrics, such as hub score, betweenness
centrality, closeness centrality, and degree centrality
[9, 16, 17], can be used to quantitatively describe these
communities and pinpoint the most important taxa of a
given environment, thereby providing essential clues about
how specific taxa or gene products may contribute to eco-
system functioning [18]. Degree centrality is the number of
edges in a network that connects one node (in our case
operational taxonomic unit (OTU) or taxon) and is a mea-
sure of the level at which an OTU co-occurs, i.e., is present
in the same samples and at similar levels, with other OTUs
[19]. Betweenness centrality measures the extent to which a
node lies on paths between other nodes and can be used to
identify which OTUs communicate most with other mem-
bers of the community network, thereby revealing which
taxa are necessary for the co-occurrence with nearby taxa
[19, 20]. Closeness centrality measures how far a node is to
all other nodes and can be used to find the most central taxa
of a given community network [9]. Finally, members of a
network that have both high degree and betweenness cen-
trality are typically the most connected taxa within the
community and are considered “hubs.” Hubs may have
ecological relevance to the community as their removal
affects the largest number of connections and paths, causing
the highest impact on the connectivity of the network
[19, 21]. Although many advances have been made in
microbial ecology using network-driven approaches
[22–37] few, if any, revolve around Unknown taxa. Most
network analyses focus on the role of known species,
usually excluding any taxonomically unassigned or
ambiguous taxa in early filtering steps. If included, any
unassigned taxa are only briefly mentioned in connection to
their interaction with more characterized, abundant phyla,
leaving the role of unknown and uncultured taxa largely
unexplored.

Here, we present a network-based approach to assess the
ecological relevance of Unknown taxa within a targeted

community. To provide both a broad and accurate inter-
pretation of results, a comprehensive dataset encompassing
four different aquatic environments was compiled. Networks
were constructed with and without the Unknown taxa and
changes in the network metrics degree, betweenness, close-
ness, and hub score were evaluated. In this manner, the
contribution Unknown taxa provide to the overall community
structure was systematically evaluated and compared across
taxonomic levels. To identify the most ecologically promi-
nent components in each environment, the hub score of all
nodes was calculated, and the frequency of Unknowns
among the top hubs was noted. These hubs were then sub-
sequently removed from the networks to assess their frag-
mentation. Thus, taxa with the highest hub scores were
considered ecologically relevant and critical actors of their
networks by their high connectedness and presence. These
hub network analyses serve as signatures of the potential
importance of the Unknown taxa and provide a means to
prioritize Unknown hubs for future characterization efforts.
We demonstrate one of several possible applications of this
approach, using particularly relevant hub Unknowns as
probes to detect novel adaptation-related genes within
metagenome scaffolds. The application of network theory to
identify and prioritize key unknown microbial members may
thereby help shed light on potential adaptation mechanisms
of successful Unknown taxa while enabling a more com-
prehensive understanding of ecosystem structure under a
diverse range of environmental conditions.

Results

Overall strategy to detect the relevance of Unknown
taxa

A pipeline based on network analysis was developed to detect
and quantitatively measure the overall and individual impact of
Unknown taxa on their environmental communities (Fig. 1).
Briefly, Illumina 16S rRNA sequencing fastq files belonging to
four distinctive aquatic extreme environments (i.e., hot springs,
hypersaline, deep sea, and polar habitats that included both
Arctic and Antarctic samples) were collected from public
databases and 45 different BioProjects (Fig. 2a and Supple-
mentary Dataset S1). We included different environment types
to assess general and environment-specific patterns and chose
to use extreme habitats as they comprise some of the harshest
and relatively understudied habitats on Earth, and therefore, are
likely to contain uncharacterized organisms.

After quality filtering, reads were mapped to OTUs and
annotated against the SILVA (v128) reference database [38]
by an open-reference strategy, i.e., allowing the detection of
Unknown OTUs [39]. Over two million Known and novel
taxa were observed with the vast majority of the taxa
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annotated as Bacteria. Only the bacterial taxa or OTUs
unclassified at the domain-level were targeted for down-
stream network analyses to demonstrate the feasibility of
this approach across ecosystems. As the term “microbial
dark matter” can have a broad meaning, here, we define
Unknown taxa as uncultured, unassigned, or ambiguous by
the reference database at each taxonomic classification level
(e.g., phylum to genus). For each environment, networks
reflecting across-samples co-occurrence relationships
between all taxa, Known and Unknown, were constructed
and referred to as the “Original” networks (Fig. 1). To
assess the role of the Unknown taxa on network structure
and properties, the Unknown nodes were removed from the
‘Original’ network and a new network, referred to as
‘Without Unknown’ was reconstructed. To ensure that

changes in network properties were not caused just by the
number of nodes, a third network, referred to as the
“Bootstrap” network, was created where a random set of
nodes of the same number as the Unknown OTUs was
removed. The relevance of the Unknown taxa was assessed
by comparing changes in degree, closeness, and between-
ness scores between the three network types and by eval-
uating the frequency of Unknowns as top hubs within each
of the “Original” environmental networks.

A similar and significant fraction of Unknown taxa
populates diverse environments

To assess whether there were distinctive patterns or trends
of Unknown taxa within the four targeted environments,
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Fig. 1 Overview of the analysis pipeline. A minimum of 250 samples
was retrieved for each of the four different extreme environments—hot
springs (red), hypersaline (dark green), deep sea (turquoise), and polar
(blue). Sequence reads were quality filtered, assigned to a taxonomy,
and clustered to OTUs. At each classification level, any unassigned,
ambiguous, or uncultured OTUs were designated as Unknowns, or
“microbial dark matter” (MDM). For each environment, at each
classification level, the direct co-occurrence relationship between all
OTUs was mathematically modeled as a network. Networks were

created for each environment, across all taxonomic classification
levels, including all OTUs (Original, orange), excluding MDM
(Without Unknowns, light green), and excluding an equal number of
random Knowns (Bootstrap, blue). Network centrality metrics (i.e.,
degree, betweenness, and closeness) were calculated for each node,
compared, and visualized as boxplots between these network types.
Hub scores were calculated for each node in the Original network and
networks were recreated, resizing by hub score, where the largest size
node indicates a top hub species.
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data from each habitat type were mined from several geo-
graphical locations across the globe (Fig. 2a and Supple-
mentary Dataset S1). Reads were collected from the online
repositories National Center for Biotechnology Information
Sequence Read Archive (NCBI SRA) and Joint Genome
Institute Genomes Online Database (JGI Gold). For each
environment, between 255 and 286 16S rRNA samples and
between 51 and 57 million reads were included in the
analysis, resulting in a total of 219,980,340 reads from
1086 samples (Fig. 2b).

After processing, quality filtering, and OTU assignment
steps were completed, there were 2102,595 unique OTUs
totaling 164,896,127 amplicon read counts derived from
these samples (Fig. 2b). The relative proportions of
Unknown OTUs, which were designated as unassigned,
ambiguous, or uncultured by the SILVA database, were
compared between environments. Results indicated that all
environments showed similar relative contributions of these
three Unknown types, with unassigned and uncultured

OTUs making up the majority of the Unknown component
composition (Fig. 2c). Regardless of environment type,
within each of the four habitats, between 25 and 38% of
unique OTUs were cataloged as Unknown (Fig. 2b, d).
Samples collected from polar habitats were significantly
enriched (Fisher's Exact Test p value < 0.05) in Unknown
OTUs despite having the highest total read counts. The
higher proportion of Unknown OTUs in the polar samples
compared to the other habitats likely reflects the less-well-
characterized biological diversity of these Arctic and Ant-
arctic ecosystems.

Next, the proportion of shared Known and Unknown
OTUs between environments was evaluated. Most OTUs,
regardless of assigned or unassigned taxonomic status, were
environment-specific, with only 11,318 out of the 2,102,595
OTUs present in all four of the environments (Fig. 2d). The
majority of shared OTUs were observed between the
hypersaline and polar environments and between hypersa-
line and hot springs environments, possibly reflecting the

Fig. 2 Summary of environmental 16S rRNA gene data. a Map of
the sample sites used in this study. Circles symbolize sample locations
and are color-coded by environment: hot springs (HS, red), hypersa-
line (HY, dark green), deep sea (DS, turquoise), and polar (PO, blue).
b Summary of data used in this study. OTUs counts are provided at the
genus level. c Proportion of “microbial dark matter” (MDM) OTUs for
each environment labeled as unassigned (dark blue), uncultured (dark
red), and ambiguous (yellow) after SILVA and UCLUST-based

taxonomic assignment to OTU. d Venn diagram of shared OTUs in
four extreme environments. Each pie chart depicts the proportion of
unique OTUs that were Known (lighter shade) and Unknown (darker
shade) for each environment, with the bottom-most pie chart showing
combined data for all environments. e Prevalence curves indicate the
number of unique OTUs consistently present at an increasing number
of samples. Dotted lines signify the prevalence of MDM OTUs and
solid lines signify the prevalence of Known OTUs.
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widespread distribution of hypersaline habitats across
diverse thermal zones. Unsurprisingly, polar and hot springs
environmental samples shared the least number of OTUs
(Fig. 2d). Given this low common OTU pool across
environments, network analyses were applied to each
environment independently.

Last, the prevalence (i.e., the percentage of samples with
nonzero counts in which an OTU was detected) of Known
and Unknown OTUs was evaluated at the genus level to
assess the consistency of OTU detection within each
environment. The OTU matrix was sparse, with the majority
of taxa observed in ≤50 (~20%) samples (Fig. 2e). How-
ever, prevalence curves were generally very similar for
Known and Unknown OTUs in all four environments,
indicating that Unknown OTUs are not necessarily rarer
than already characterized species (Fig. 2e). Moreover, we
confirmed that Unknown OTUs, like Known OTUs, were
generally present and consistent across multiple studies
within the same environment and did not tend to con-
centrate in any particular project (Supplementary Figs. S1–
4). Consequently, these results indicated that a network
analysis of these data would be a reflection of the co-
occurrence structure of the community and not of potential
compositional bias.

Network analysis of OTU abundance at different
taxonomic levels reveals the connectivity of
unknown microbes

Having demonstrated that the Unknown taxa comprise a
substantial proportion of unique OTUs and have comparable
abundances to Known taxa within a community, network
metrics were used to effectively compare the ecological
relevance of both Known and Unknown taxa in subsequent
networks. Microbial association networks were constructed
that featured only significant co-occurrence correlation
relationships for OTUs with a notable prevalence in each
environment, meaning that any OTUs that were not detected
in a sufficient number of samples were removed. To select a
suitable prevalence threshold, the proportion of Known and

Unknown taxa across a range of sample percentages was
evaluated (Supplementary Fig. S5). Across all taxonomic
levels, the Known and Unknown taxa of hot springs and
polar habitats were more prevalent than those of hypersaline
and deep sea communities; therefore, a slightly more strin-
gent prevalence threshold (40%) was chosen for the former,
and a lower threshold value (30%) chosen for the latter
environments. These thresholds resulted in the retention of a
similar fraction of data from the initial OTU count (Table 1),
with 102–297 nodes present per environment, making the
networks both suitably large and comparable.

The SpiecEasi Meinshausen–Buhlmann (MB) neighbor-
hood algorithm was then used to construct networks (see
“Methods”) that contained at least 100 nodes (i.e., OTUs)
per environment and had edge-to-node ratios that varied
from 1.9 and 2.9 (Table 1). Although most OTUs that
passed the prevalence criteria became elements of the net-
works, no relationship between the initial data size (i.e.,
number of samples and taxa) and the interconnectedness
(i.e., nodes/edges ratio) of the resulting network was
observed (Table 1). The two environments with the highest
number of initial OTUs (i.e., hypersaline and deep sea) had
the lowest number of prevalent members, 193 and 102,
respectively, and very different edge/node ratios, 2.7 and
1.9, respectively, indicating that high prevalence does not
necessarily correlate with high co-occurrence. Similarly, the
polar and hot springs networks retained a high number of
prevalent OTUs but differed in edge number, yet again,
indicating that the observed network structures were the
result of the intrinsic properties of each environment and
were not dependent on the sampling procedure. Interest-
ingly, when evaluating the proportion of Unknown edges
and Unknown-Unknown connections at the genus level,
similar patterns were observed across environments.
Between 45 and 62% of all connected nodes were Unknown
OTUs and a higher proportion of Unknown-Unknown
versus Known-Known links was present at the genus level
(Table 1), for all environments but hot springs, where a
higher proportion of Known-Unknown and Known-Known
links was observed.

Table 1 Breakdown of node and edge attributes across extreme environmental networks.

Environment Prevalence
threshold in number
of samples

Number of selected
nodes [fraction from
initial data]

Number of connected
nodes [number of
Unknown at genus]

Number of edges in network
[K-K, K-U, U-U at genus]

Ratio of number
edges vs.
number nodes

Hot Springs 104 291 [4.4E− 4] 290 [133] 552 [167, 230, 155] 1.9

Hypersaline 85 193 [3.7E− 4] 191 [118] 516 [89, 125, 302] 2.7

Deep Sea 75 102 [1.6E− 4] 97 [51] 194 [59, 65, 70] 1.9

Polar 113 279 [9.6E− 4] 274 [171] 797 [112, 244, 441] 2.9

K-K: the edge connects two Known nodes at the genus level.

K-U: the edge connects one Known and one Unknown node at the genus level.

U-U: the edge connects two Unknown nodes at the genus level.
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The results of this global analysis of network construc-
tion and composition demonstrate that although the general
community connectivity might be environment-specific, the
relative contribution of Known and Unknown taxa to these
networks is similar. Once again, network properties were
not a direct outcome of sampling biases, but more likely,
reflect the biology of their respective ecosystems.

Unknown taxa play important roles in
interconnectedness and connectivity of extreme
environmental microbial networks

Next, the position and neighborhood of Unknown nodes
were examined. At the phylum level, Unknown taxa were
present in the hot spring, hypersaline, and polar environ-
ments, but were not found in the deep sea network (Sup-
plementary Fig. S6). The class level was the first taxonomic
classification rank in which Unknown taxa were present in
all environmental networks. To accurately assess the role of
Unknowns, we evaluated class-level networks and observed
that the hypersaline and polar Unknown OTUs created
distinctive clusters, whereas hot springs and deep sea
Unknown OTUs were intermixed with Known taxa
(Fig. 3a). Hypersaline and polar Unknowns consistently
appeared to be isolated and peripherally located compared
to the centrally positioned hot springs and deep sea
Unknown nodes across almost all classification ranks
(Supplementary Fig. S6). Consequently, these results sug-
gest that the clustering pattern is unrelated to a higher
abundance of Unknowns and is more environment depen-
dent. For example, the targeted hot spring environments had
the highest number of Unknown OTUs yet showed the most
dispersed connections between the these taxa (Fig. 3a).
Thus, the inclusion of the Unknown taxa in our environ-
mental networks models was, as anticipated, not solely the
consequence of their level of prevalence, but rather a
reflection of a particular abundance co-variation pattern.

For all four environments, Unknown OTUs had more
frequently shared edges among them than with classified
taxa (Fig. 3b). Unknown OTUs were found to frequently
co-occur with each other within each environmental net-
work, although the frequency of within-class interactions
for Unknowns at the class level was found to be statistically
no greater than all other within-class interactions for each
environment (Supplementary Fig. S7). In fact, the pattern of
a high frequency of shared edges among members of the
same class held true for known classes as well (Supple-
mentary Fig. S8). In accordance with other studies, these
results demonstrate that OTUs of the same taxonomic
classification most frequently co-occur with each other
[40, 41]. Furthermore, the high frequency of shared edges
between Unknown classes suggests that Unknown OTUs
might be taxonomically related.

To ensure that the observations found were reproducible,
robust, and not biased by earlier steps of the analysis, the
diversity and position of Unknown taxa in the networks
were examined for several parameters. Although the num-
ber of Unknown nodes changed at each level (Supple-
mentary Fig. S6), the environment-specific network patterns
observed at the class level (Fig. 3a) were retained at other
taxonomic levels. In addition, to determine whether the
topology of the network was a direct consequence of our
correlation metric of choice or the prevalence threshold,
three other network construction approaches were used:
SparCC [11], CClasso [42], and Pearson correlation. Net-
work analyses were performed across a range of prevalence
thresholds (15–35%, at 5% increments). Again, regardless
of the network construction approach or sample percentage
applied, network shape and Unknown OTU position
remained consistent and each environment exhibited a dis-
tinctive pattern of Unknown taxa inclusion. For example,
Unknown nodes continued to occupy peripheral positions
for hypersaline and polar networks, whereas nodes in hot
springs and deep sea environments were more centrally
located when applying different correlation metrics (Sup-
plementary Fig. S9). Although networks appeared “noisy”
at more lenient prevalence thresholds (15–20%; Supple-
mentary Figs. S10–13), the networks and positioning of
Unknowns at higher percent thresholds were similar in
appearance to the “Original” networks for all environments.
Based on these results, we found that our general analysis
strategy was robust across parameter choices and, therefore,
these networks captured critical features of the relationships
among taxa within each distinctive environment.

Microbial dark matter acts as unifiers and frequent
hubs within extreme environmental networks

Although these results suggest that Unknown taxa were
highly interconnected, these observations did not reveal how
the presence of Unknowns affected the overall community
structure. To more fully understand this role, we analyzed
how network properties changed in the presence and
absence of Unknown OTU nodes. We evaluated changes in
degree, betweenness, and closeness, as different network
metrics reveal different aspects of the relevance of nodes
within their networks. This approach has the potential to
ascertain whether certain Unknown OTUs were more cen-
trally positioned (e.g., due to high closeness scores), more
essential for joining other taxa (e.g., high betweenness), or
simply more prevalent and likely to co-occur with others
(e.g., high degree). To control for the effect of node removal
and distinguish effects of Unknown taxa from network size,
networks were generated that excluded several randomly
picked Known nodes equal to the number of Unknown
OTUs. This process was repeated 100 times to create a
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Fig. 3 Analysis of environmental network taxa interconnectedness.
aMicrobial networks at class taxonomic classification level. Nodes are
colored by class assignment, with gray nodes representing Unknown
taxa at the class level. b Bar graphs of the co-occurrence relationships

(i.e., edges) of Unknown OTUs with other taxa at the class level within
each environmental network. Y axis labels and colors signify the dif-
ferent classes with which Unknowns were found to co-occur.
Unknown-Unknown relationships are represented in gray.
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distribution of “Null” or “Bootstrap” networks for statistical
comparisons. Differences in network parameters between
networks without Unknown OTUs and the “Original” or
“Bootstrap” networks were determined by the Wilcoxon test
and p values were adjusted using the Holm method [43].
Strikingly, removal of the Unknown taxa caused a statisti-
cally significant impact on all measured network metrics in
all four studied environments (Table 2, Fig. 4, and Supple-
mentary Figs. S14–24). In the polar environments, for
example, removal of Unknown OTUs caused a significant
decrease in degree (p value < 1E− 5) and betweenness (p
value < 1E− 4) scores and a significant increase in closeness
(p value < 2.22E− 16) scores across multiple taxonomic
levels (Fig. 4), suggesting that the Unknown taxa in the
polar environments are critical to the community structure
and preserve local connections. Closeness score was the
only parameter that behaved differently across environments
(Table 2), increasing upon exclusion of the Unknowns for
hypersaline and polar networks but decreasing at family
level for the deep sea environment, due to the different
topology of Unknown OTUs within their environmental
networks. For example, the removal of centrally located
Unknowns at the family level in the deep sea network
increased node distance and network fragmentation. In
contrast, in the hypersaline and polar networks, the removal
of the peripherally located Unknowns resulted in a more
connected network structure and appearance. The impact of
Unknown node removal on degree, betweenness, and clo-
seness persisted across taxonomical levels for the respective
environments (Fig. 4 and Supplementary Figs. S14–16) and
followed a similar pattern across tested correlation metrics
(Supplementary Figs. S17–20) and prevalence thresholds
(Supplementary Figs. S21–24).

In summary, despite these minor differences in closeness
score changes, these results suggest that Unknown OTUs
had significant and comparable relevance for community
structure in all four environments. The exclusion of
Unknown nodes from their environmental networks led to a
drastic change in network structure and interconnectedness,
illustrating that the Unknown taxa are critical for estab-
lishing co-occurrence relationships and for maintaining
overall network shape within each distinct ecosystem.

Unknown taxa act as important hubs within
extreme environment networks

After studying the overall relevance of the “microbial dark
matter” in extreme environmental networks, we then con-
centrated on finding the most prominent Unknown com-
ponents of each community. To do so, the hub score of each
node was calculated to determine which taxa caused the
most fragmentation or loss of network structure when
removed, and therefore, may be a critical component for the
microbial community structure of the target environment
(Supplementary Dataset S2).

Hub scores were calculated at the genus level for each
node and the environmental networks were recreated,
resizing the nodes as a function of the scores (Fig. 5). The
overwhelming majority of the top hub scores, as symbo-
lized by the largest-sized nodes in each network, were
unknown for the hypersaline and polar environments, even
at higher taxonomic ranks (Supplementary Fig. S25),
different prevalence thresholds (Supplementary Figs. S26–
29), or correlation metrics (Supplementary Fig. S30).
Moreover, at least four of the nodes within the top 20 hub
scores were unknown at the genus level for all environ-
ments (Supplementary Dataset S2), providing further
evidence that Unknown taxa are key components of
microbial community structure in all four extreme
environments.

Student’s t tests were performed to evaluate the sta-
tistical significance of the differences between hub score
values of Known and Unknown genera. Unknown genera
in the hypersaline (p value= 2.01E− 13) and polar (p
value= 2.41E− 9) habitats had significantly higher hub
scores than Known genera, whereas in the deep sea
environments the Unknown nodes were marginally sig-
nificant (p value= 1.77E− 3). No significant differences
were observed between the Known and Unknown nodes
(p value= 0.6) in the studied hot springs environment.
Based on these analyses, we concluded that while
Unknowns OTUs occupied and dominated key positions
within the hypersaline and polar networks, all environ-
ments harbored relevant Unknown hubs within their
microbial communities.

Table 2 Impact on network
metrics of the removal of
Unknown OTUs from the
network.

Environment Degree Betweenness Closeness Proportion of Unknown OTUs out of 20 top hubs

Hot Springs ↓ (F, G) ↓ (G) n.s. 40%

Hypersaline n.s. ↓ (G) ↑ (P to F) 100%

Deep Sea ↓ (all) ↓ (F, G) ↓ (F) 20%

Polar ↓ (all) ↓ (P to G) ↑ (P to G) 90%

Downward pointing arrow: significant decrease; upward pointing arrow: significant increase.

P Phylum, F Family, G Genus, all all taxonomic levels, n.s. not significant.
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Network analysis of Unknown hubs as a tool to
prioritize taxa for the search of novel genes with
targeted functions

The high frequency of currently unknown microbes as top
hubs within their habitats implies that these organisms have
high prevalence and co-occurrence within their microbial
communities, indicating that they have successfully adapted
to survive in these harsh ecosystems. Therefore, we hypo-
thesize that our network approach, particularly using the
hub score to prioritize Unknowns, could serve as a critical
foundation to study novel pathways and gene functions
present in these yet-uncharacterized microbes. This
hypothesis, however, poses two problems. First, this
network-based approach relies on 16S rRNA sequencing
data, which holds no additional functional information, and

second, reference genomes for these uncultured organisms
are lacking. To circumvent these challenges, we used the
16S rRNA sequences of the top Unknown hubs to probe
large metagenomics databases, where extensive and diverse
genome information is available on these microbial habitats,
thereby facilitating the recovery of gene content associated
with these unknown organisms. In parallel, we searched the
literature for gene functions described to be associated with
adaptation to our four studied extreme environments,
resulting in a list of 86 “adaptation”-related terms that
mostly contained metabolic and stress response processes
(Supplementary Table S1). Once high-confidence matching
scaffolds were found, putative novel genes with the targeted
functions could be computationally identified by searching
for genes of unknown function in the neighborhood of
genes previously annotated with the list of targeted terms.
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for each taxonomic level. For each comparison, p values after Holm
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To explore this idea, a blastn search was performed on the
16S rRNA gene sequences of the top five Unknown and
Known hubs at the genus level for each environment against
100 draft and permanently assembled metagenomes in the
IMG/M database [44]. Hits with high similarity (i.e., >95%)
and equivalent partial taxonomic classification in SILVA to the
query hub 16S rRNA gene sequences were selected. To make
sure that this search was not misled by incorrect 16S rRNA
gene assembly in the metagenome scaffolds, we selected
70 such 16S rRNA genes obtained as hits of Known OTUs
and performed a blastn search of these hits against the NCBI
Microbial Genomes database. We obtained that the great
majority (84%) of these 16S rRNA genes in scaffolds had
>98% identity and between 97 and 100% sequence coverage
with their corresponding genome sequence, while remaining
16S rRNA gene sequences belonged to species poorly repre-
sented in the NCBI database. Therefore, we concluded that 1S
rRNA gene sequences in metagenome scaffolds could con-
fidently be used in our analysis pipeline. Identified scaffolds
were then filtered for a high (≥ 50) gene content and searched
for operons containing gene descriptions matching any of the
terms in our “adaptation” list, as well as genes labeled as
“hypothetical proteins” or of “unknown function.” Hierarchical
clustering of gene distance between pairs of genes was used to
identify putative operons, with all results validated by checking
gene neighborhood information for each scaffold using the
IMG/M genome browsing and annotation platform.

Overall, metagenomic screening with the 16S rRNA
gene sequences of the top Known and Unknown hubs
returned numerous high-match, gene-rich scaffolds that
varied by environment (Supplementary Table S2). The
variation between habitats likely reflected the compositional
differences of the metagenome database. Nevertheless,
similar numbers of genes labeled as “adaptation,” “hypo-
thetical genes,” and similar “putative adaptation-related”
operons (see “Methods” for assignment criteria) were
identified for all environments, regardless of hub type, with
scaffolds consistently containing an average of three to four
potential adaptation-related genes to extreme environments.
Interestingly, the average number of hypothetical genes
found per scaffold differed most between environments.
Deep sea hubs consistently had the lowest average number
of hypothetical protein genes per scaffold (12.8 for
Unknown, 20.6 for Known), whereas polar, hypersaline,
and hot springs scaffolds had similar, larger numbers of
hypothetical genes (up to 35 for Known hypersaline hubs).
These results suggest that a low total scaffold count does
not prohibit detection of a high, equally abundant, number
of hypothetical genes across environments or hub types.
Importantly, across all habitats, an equivalent mean number
of putative operons, where hypothetical and environment-
relevant genes were found in close genomic proximity, were
detected. Altogether, we recovered 6,734 un-annotated
genes present in 535 putative operon structures potentially
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Fig. 5 Hub analysis of extreme
environmental networks.
Environmental networks at the
genus level with nodes sized as a
function of hub score. Nodes are
colored by genus classification
with ambiguous, unassigned, or
uncultured taxa depicted in
dark gray.

A network approach to elucidate and prioritize microbial dark matter in microbial communities 237



involved in the metabolic and stress responses to extreme
environmental conditions (Supplementary Table S2).

An example of the outcome of this approach for the
targeted hot springs habitat is depicted in Fig. 6. Blast
results showed a 97% sequence similarity match to the
fasta sequence of Unknown hub AB176701.1.1510 (Sup-
plementary Dataset S2) within the metagenomic scaffold
Ga007390_1000203, which was originally generated from
Dewer Creek hot spring sediment in British Columbia. The
scaffold contained 98 genes in total, of which 19 were
annotated as “Hypothetical Proteins” and distributed across
seven operons (Fig. 6a). One of the identified operons
contained three putative genes with predicted proteins of
unknown function (i.e., two were labeled as hypothetical
and one was labeled with unknown function). Further, this
operon contained a gene annotated as Fe–S oxidoreductase
and two well-known oxidative stress genes encoding DNA-
binding ferritin-like protein (DPS) and rubrerythrin (RBR),
suggesting possible roles in oxidative stress-related func-
tions. An exact match for all six of the protein sequences in
the same operonic structure was found in the genome of the
bacterium Blastocatellia by searching the NCBI non-
redundant database (Fig. 6b), which was recently
sequenced as part of a hydrothermal vent metagenome
project [45]. Further bioinformatic analysis of the poorly
characterized open reading frames in this operon led to the
identification of Ga0073930_100020343 as a domain of
unknown function (DUF) DUF3501 family member and
Ga0073930_100020344 as part of the COG0247 family
(Fe–S oxidoreductase). The link with oxidative stress was
reinforced by the clustering of these same four genes
with the hydrogen peroxide-inducible genes activator
OxyR in Sideroxydans lithotrophicus ES-1 (Fig. 6c). The
two other hypothetical genes, Ga0073930_100020341 and

Ga0073930_100020340, were identified as a putative SH3-
domain-containing protein and a putative lysine synthase
protein, respectively. Notably, the DUF3501-COG0247-
RBR functional association had already been reported in a
previous study where the authors proposed that the
DUF3501 and COG0247 protein families enabled the
functional adaptation of RBR from a thermophilic/anaero-
bic to a mesophilic/aerobic environment [46]. The identi-
fication of DUF3501 by our OTU prioritization analysis of
the hot spring habitat supports this prior work suggesting
the gene may be part of the microbial adaptation strategy to
high temperatures. These results illustrate how the hub
score prioritization can be successfully combined with
computer-intensive mining of publicly available metage-
nomic data to identify novel and potentially ecologically
relevant genes and gene products.

Discussion

Microbial communities are complex and dynamic, however,
with the vast majority of Earth’s microbes yet to be cultured
or characterized, our understanding of these systems is
likely limited or skewed by this large gap-in-knowledge. To
more fully understand the impact of “microbial dark matter”
on ecosystem structure and function, we have developed a
network theory-based approach to assess the relevance of
the uncultured and Unknown taxa within their microbial
communities. Implementation of this bioinformatic pipeline
demonstrated that: (1) specific patterns of the microbial
network could be identified and compared for targeted
ecosystems across taxonomic levels; (2) the comparison of
centrality metrics between networks including and exclud-
ing the Unknown taxa is an effective strategy to reveal the

Fig. 6 Metagenomics analysis of top Unknown OTU AB176701.
1.1510. a Overview of operon annotation in scaffold hit
Ga0073930_1000203 obtained from the JGI metagenomics browsing
platform, which matched with 97% similarity to Unknown
AB176701.1.1510. Genes in light yellow color represent hypothetical
genes or genes of unknown function. b Zoom-in of the selected operon
with adaptation-related gene annotations. Bioinformatic function

predictions for genes of unknown function are indicated under their
gene boxes. c DUF3501-RBR containing operon for Sideroxydans
lithotrophicus, including the OxyR gene. RBR Rubrerythrin gene,
COG0247 Fe-SA Fe–S oxidoreductase gene, DUF3501 domain of
unknown function 3501, DPS DNA-binding ferritin-like protein, SH3
SH3-domain-containing protein, LysW lysine synthesis protein W.
OxyR: hydrogen peroxide-inducible genes activator.
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relevance of these organisms within their communities, (3)
Unknown taxa, just as Known taxa, can act as key hubs in
ecosystem structure due to their high prevalence and strong
central connections; and (4) network metrics can be used to
prioritize Unknown taxa for downstream analysis by using
the 16S rRNA gene sequences of top-ranked hubs as probes
to screen publicly available metagenomic datasets for the
identification of ecologically relevant gene functions.

Harnessing the power of networks to elucidate
“microbial dark matter”

No matter the environment, previous research has shown
that “microbial dark matter” represents a significant lim-
itation to the exploration of the global microbiome
[1–3, 47–53]. To address and overcome this challenge, we
developed a combined bioinformatics pipeline and network
theory approach that was applied to a large, geographically
diverse 16S rRNA dataset of four extreme aquatic envir-
onments to determine the ecological relevance of the
unknown organisms in these communities. Although
correlation-based microbial networks cannot infer the nature
of ecological relationships, such as syntrophy or competi-
tion, they are indicative of social interactions within the
community and can serve as important focal points for
downstream analyses [54]. Our analysis clearly showed that
the unclassified and uncultured taxa were prevalent and
represented a significant proportion of the microbial diver-
sity in all ecosystems examined, and therefore, should not
be overlooked when examining community dynamics. Both
Known and Unknown OTUs were found to be environ-
ment-specific, agreeing with previous reports of habitat-
specific, niche-partitioning species of hypersaline lakes
[55], deep sea vent communities [56, 57], and polar lakes
[58, 59]. Furthermore, our work extended beyond simple
composition analysis and demonstrated the consistent and
significant contribution of Unknown OTUs to microbial
community structure.

By using network metrics to study these four extreme
environment networks, additional insights into the ecological
relevance of these unknown organisms could be gained. The
Unknown OTUs positively contributed to betweenness and
degree centralities (i.e., denoting microbial interactions). More
importantly, the exclusion of Unknown taxa was more det-
rimental to the overall network than the exclusion of random
Known components, as more central node connections (e.g.,
ecotype interactions) were lost, causing a greater network
fragmentation. Moreover, Unknown taxa established co-
occurrence relationships with themselves, suggesting that
they might be phylogenetically related, as is the case for
Known taxa [40, 41]. The results presented here reveal that
Unknown taxa are frequently key members of extremophilic
microbial ecosystems and strongly advocate for the inclusion

of Unknown taxa in any metagenomics or amplicon compo-
sition and interaction studies, as key biological interactions
may remain undiscovered otherwise.

Networks can prioritize the most ecologically
relevant Unknown taxa in a community

Unclassified microbial taxa often occurred as top hubs
across all examined environments. Since hubs, by defini-
tion, significantly contribute to network structure and
cohesiveness, these unknown microbes can be considered
keystone taxa, most likely playing vital and meaningful
roles within key ecosystem processes in these habitats.
Moreover, hub positions indicated that these Unknown taxa
were prevalent in their environments and co-varied with
many other Known taxa, and hence can be considered
successful components of their microbial communities.
During the elaboration of the network analyses described in
this work, a new version (138) of the SILVA database was
published. Re-running our pipeline with SILVA v138, and
latest DADA2 (version 1.14.1)/DECIPHER (version
2.14.0) software [60, 61] returned similar results as pre-
sented here (not shown), confirming our conclusions held
through software updates. These results support the value of
our analysis and suggest that this approach could be used to
identify the highly interacting OTU components of any
microbial community. The frequent dominance of
Unknown taxa as top-scoring hubs stresses the need for
further exploration and functional characterization of these
novel species and also offers new tools for prioritizing
novel taxa for follow-up studies.

Filling in gaps-in-knowledge of ecosystem
functioning with hubs of Unknown taxa

Understanding the emergent properties of an ecosystem, i.e.,
those taxa, genes, and functions that are important for a
particular niche, can have a big impact on our understanding
of that environment. Using amplicon-based approaches to
address these questions, however, can be limited. For exam-
ple, amplicon-focused tools, such as PICRUSt [62] and
Tax4Fun [63], can retroactively predict gene function from
16S rRNA gene data [64] under an assumption that taxonomy
and function are well conserved. However, this approach
might only work for major pathways and more importantly,
these tools require reference genomes to be present and well-
annotated for each ecotype, and therefore, cannot be applied
to novel, uncultured organisms.

Here, we envisioned an alternative approach to probe
metagenomics databases with 16S rRNA sequences prior-
itized from the top Unknown hubs of a given environment
and used those sequences to investigate gene content of
associated scaffold hits. While this is by no means a
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comprehensive characterization of the functional potential of
unknown organisms in extreme environments, which would
require a targeted experimental study, our approach leverages
the wealth of metagenomics data currently available within
public databases to gain novel insights on microbial function.
These resources encompass hundreds of terabytes of data
[7, 65] and represents untapped sources of valuable infor-
mation that can, and should be, exploited both for funda-
mental science and for potential biotechnological applications.

The successful retrieval of unknown genes, potentially
involved in environmental stress responses, from uncultured
and unclassified organisms, indicated that this network and
hub identification approach is an effective strategy to use
prioritized OTUs for direct data-mining efforts. Notably, in
this proof-of-concept effort, just a few top hub score OTUs
within the hot spring networks were used to screen a fraction
of the available metagenomics information, still recovering a
substantial number of candidate genes. With one specific
example, we illustrated the power of this methodology to
unveil interesting gene functions. Supported by sufficient
computational resources, up-scaling of this concept holds the
potential for the large-scale discovery of novel gene functions
and pathways, further unraveling roles that these Unknown
taxa may play within their respective ecosystems.

In summary, this approach has the potential to be extended
to other aspects of the environmental microbiome, including,
but not limited to, the archaeal and eukaryotic taxa, as well as
other multi-omic platforms (e.g., metaproteomics, metabo-
lomics, and metatranscriptomics). As reference databases
continue to grow, taxa and gene co-occurrence network
analyses and measurements can also be used to evaluate
changes in ecosystem structure over different temporal and
spatial scales. The application of this strategy to a variety of
microbial ecosystems from all environments could be used to
more fully understand those features of the hidden microbial
world that are critical for environment-specific or global
attributes of microbial ecosystems.

Methods

Data retrieval

To mine samples from public databases, search queries of
“16S,” “V4”, “V3,” “Illumina,” “hot springs,” “hypersaline,”
“Arctic,” “Antarctic,” “deep sea,” and “hydrothermal” were
utilized to find suitable studies from NCBI SRA and JGI
Gold. A complete list of all samples and accession numbers
for published data used in this study are listed in Supple-
mentary Dataset 1. All samples were classified into their
respective environmental categories (i.e., hot springs, hyper-
saline, deep sea, and polar) using available information pro-
vided by the studies in the public repositories. All raw data

were converted to fastq format using the NCBI SRA Toolkit
(http://ncbi.github.io/sra-tools/). Although the complete data-
set included both paired-end and single-end samples, only the
forward reads of paired-end samples were used in subsequent
steps, due to the consistently noted lower quality of reverse
reads of Illumina samples.

Sample preprocessing, filtering, and OTU mapping

Quality filtering and preprocessing of all sequence data
were performed through the split_librairies_fastq.py script
from the Quantitative Insights into Microbial Ecology
(QIIME) pipeline (Version 1.9.1) [39] using a Phred quality
threshold of 19. All sequences passing quality filtering were
clustered at 97% sequence similarity and classified to OTUs
using the SILVA (v128) SSU reference database by the
pick_open_reference_otus.py script. All singletons were
discarded. The filter_taxa_from_otu_table.py script was
used to remove any OTUs related to Archaea, mitochondria,
or chloroplast so that the analysis would be targeted to the
Bacteria. The collapse_samples.py script was used to
compare OTU presence across environments (i.e., hot
springs, hypersaline, deep sea, and polar). The filter_sam-
ples_from_otu_table.py script was used to separate the
global OTU biom table into four environment-specific biom
tables. All subsequent statistical and network analyses were
conducted in R (v 3.5.1).

Identification strategy for Unknown taxa

At each taxonomic level, from phylum to genus, Unknown
taxa were identified as any OTU taxonomically assigned as:
“uncultured,” “uncultured bacterium,” “Unknown,”
“Unassigned,” “Ambiguous taxa,” or “NA” by the open-
reference picking strategy. These OTUs were renamed as
“Unknown” for all subsequent analyses and comparisons.
An OTU was only labeled as “Unknown” at the specific
taxonomic classification level at which it could not be
taxonomically assigned beyond the higher classification
descriptors. For example, if an OTU had a known order but
unknown family description assigned by the reference
database, it would only be designated as an Unknown in the
network analysis for family and genus taxonomic classifi-
cation and, at all higher classification ranks, would be
referred to its known classification status.

Network creation

To create networks of each environment, OTU biom tables
and corresponding mapping information (i.e. sample ID,
geographic location, longitude, and latitude) were imported
into R using the package phyloseq (version 1.28.0) [66].
OTU tables, now converted into phyloseq objects, were
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filtered using the filterTaxonMatrix() function from phylo-
seq, keeping only taxa present in a given percentage (from
30–40%) of samples per environment to reduce sparsity and
ensure robust results. For each environment, the filtered
OTU phyloseq object was normalized, transformed, and
converted into an adjacency matrix based on covariance by
the spiec.easi() function from the package SpiecEasi (ver-
sion 1.0.7) [67], using MB’s neighborhood selection
(method= “mb” parameter) to estimate the conditional
dependence of each pair of OTUs. This approach is robust
and ideal for sparse, compositional amplicon, and metage-
nomic data and, unlike other correlation methods, prevents
most spurious, indirect relationships from being included in
the networks [67, 68]. The Stability Approach to Regular-
ization Selection (StARS) method was used to find the
optimal sparsity parameter, with the StARS variability (i.e.,
minimum λ) threshold set to 0.05 for all networks [69].
Each adjacency matrix was then converted into an igraph
object and visualized as a network using the adj2igraph()
and plot_network() functions from SpiecEasi. Networks
were created and visualized at each taxonomic classification
level, using the function plot_network() of phyloseq, with
nodes representing OTUs and edges representing direct co-
occurrence relationships between OTUs. Each resulting
network contained at least 100 nodes (i.e., OTUs) per
environment and edge-to-node ratios that varied from 1.9 to
2.9 (Table 1).

To create reduced networks, either excluding Unknown
OTUs (“Without Unknown” network) or randomly selected
Known OTUs (“Bootstrap” network), the delete_vertices()
function (package igraph (version 1.2.5)) was used. To
create bootstrap networks, Known nodes were randomly
selected by the sample()function, with the x parameter equal
to the total number of OTUs, Known and Unknown, at that
specific taxonomic classification level for the chosen
environmental network and size parameter equivalent to the
number of Unknown OTUs for that network. Networks
were created using the same SpiecEasi pipeline as described
above. These randomly reduced networks were created 100
times for each taxonomic classification level from phylum
to genus for each of the four target environments (i.e., hot
springs, hypersaline, deep sea, and polar habitats).

Neighborhood analysis

For each environmental network, the as_edgelist()function
from igraph was applied to identify all edges between nodes.
Using the taxonomic classification information found in the
original OTU table that was retrieved by tax_table() function
on the phyloseq object, all nodes were matched up with their
taxonomic classification. A data frame containing all taxo-
nomic information of each pair of connected OTUs was then
used to identify which classes shared edges.

Network analysis strategy

For each environment, at each taxonomic level from phy-
lum to genus, network-level and node-level measures of
networks including Unknown OTUs (i.e., “Original”),
excluding them (i.e., “Without Unknown”), and excluding
an equal number of randomly selected Known OTUs (i.e.,
“Bootstrap”) were evaluated and compared against each
other and visualized as boxplots. The network measures
evaluated for all nodes present within each network were
degree, closeness, betweenness, and hub score and were
calculated by using the igraph package functions: degree(),
betweenness(), closeness(), and hub_score(). Wilcox test
was used to evaluate the statistical significance of changes
in degree, betweenness, and closeness between the three
network types using the stat_compare_means()and com-
pare_means() functions from the ggpubr (version 0.3.0)
package. P values were adjusted using the Holm method
[43], and boxplots were created using the package ggplot2
(version 3.3.0).

Hub blast against metagenomes

For each environment, the fasta sequences of the five
Known and Unknown taxa with the highest-ranked hub
scores were retrieved with the subseq function from the
SEQTK toolkit (version 1.0-r64-dirty) (https://github.com/
lh3/seqtk), using a text file of the hub sequence names and
the fasta file of complete sequences (new_refseqs.fna) pro-
duced by the QIIME pick_open_reference_otus.py script as
the input. Next, using the selected genomes blast feature in
IMG/M, we performed a blastn search of the five Known
and Unknown hub sequences (using the default number of
hits (500) and e value (1E− 05) specified) against 100
publicly available finished, draft, and permanent draft
metagenomes pertaining to each environment. Blast results
were exported and saved in.txt format and further analyzed
in R. Only blast hits meeting ≥95% match and ≥95% query
cover to the query hub sequence were retained. Of these
hits, only metagenome scaffold hits, where at least 50 genes
were present, were retained. For each scaffold that met the
percent identity for the 16S rRNA gene (i.e., ≥95%) and
gene number (≥50%) criteria, the gene content information
was accessed manually and exported. The gene name,
strand position, and start and end coordinate positions given
in the file were used to identify the number of functionally
annotated and unknown hypothetical protein genes and also
used to identify putative operons of genes with similar
functions. To verify that we were not being misled by
misassembled 16S genes in the metagenome scaffolds, we
obtained the 16S gene sequences from 70 scaffolds identi-
fied as hits of Known OTU hubs and conducted a blastn
search against the Microbial Genomes database in NCBI.
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We evaluated the percent identity, taxonomic classification,
and query cover results obtained after blast.

Identification of hypothetical and putative
adaptation genes and operons

The term “hypothetical” was used in the grep()function in
base R to identify hypothetical protein genes on each strand
for each scaffold. A list of keywords related to metabolic
and extreme environmental stress response functions
retrieved from literature was used to parse for adaptation
gene matches among all genes present on each strand
(Supplementary Table S1). To identify closely related
genes, hierarchical clustering was performed based on the
distance between gene start and end coordinate positions of
each gene pair using the packages ape (version 5.3) and
dendextend (version 1.13.4), and the function hclust()in
base R. Closely clustered genes on a single strand (in the
same direction) represented putative operons and any ten
genes within 5000 bp or less to one another were considered
to belong to one operon. If targeted genes were among the
ten closest neighbors (i.e., <5000 bp away) to a hypothetical
gene, we defined this set of hypothetical and potentially
extreme stress adaptation-related neighboring genes as a
putative adaptation operon. Gene clusters were then ana-
lyzed using the PubSeed database [70] and visualized with
the Gene Graphics tool [71].

Sample criteria validation

To account for the possible confounding effect of sample
size, all networks were reconstructed and reanalyzed, using
a range of different percentages (from 15 to 40% at 5%
increments) of samples in the initial filtering process of the
OTU table, discarding any taxa that did not meet this
sample percentage threshold from being included in the
networks. Networks excluding unknown and random
Known nodes were constructed using the same methods as
described previously and network measures were recalcu-
lated and visualized as boxplots to determine the effect of
different sample size criteria and its statistical significance.

Network tool validation

To determine whether other measurements of species’ co-
occurrence relationships changed our final network analysis
results, three other methods were used to calculate the
relationship between pairs of species in R: SparCC [11],
CCLasso [42], and Pearson correlation. The R rcorr()func-
tion, with the parameter type set to “pearson” from the
package Hmisc (version 4.4-0) was used to calculate Pear-
son correlation. The R cclasso()function (https://github.
com/huayingfang/CCLasso/blob/master/R/cclasso.R) was

used to calculate CCLasso correlation, and the adapted
sparcc()function in the SpiecEasi package was used to
calculate SparCC correlation. Subsequent networks were
created using igraph. Boxplots were created to compare the
median network measure scores of degree, betweenness,
and closeness for the three network types at all classification
levels for the four (SpiecEasi, SparCC, CCLasso, and
Pearson) correlation networks.

Scripts and documentation

To encourage a deeper investigation into the role of
microbial dark matter, ready-to-use scripts, and doc-
umentation to apply this methodology to other ecosystems
are available. All scripts used in this analysis, along with a
complete documentation of the bioinformatics pipeline, are
available at http://github/Conesalab/MDM.
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