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While historically viewed as an immune-privileged area fully isolated from the immune system,
the central nervous system (CNS) is now appreciated to maintain dynamic bi-directional com-
munication with the immune system across the blood–brain barrier (BBB) (1, 2). In no setting
can this communication be more urgent that acute CNS infection – a dampened or delayed host
response could allow an invading virus or bacterium to gain a foothold within the brain, while
over-exuberant or protracted inflammation might cause substantial collateral damage to sensitive
and non-renewable cells such as neurons. In this opinion piece, we compare host immunity against
one prototype virus and one prototype bacterium known to cause disease either outside or within
the CNS. Allowing for some variability in disease pathogenesis, and leaving aside complex issues
related to chronic intrauterine or neonatal infections, we argue that antimicrobial host responses in
both CNS and non-CNS tissue compartments of adult hosts who acquire these infections exhibit
manymore similarities than differences. In this setting, the concept of CNS immune privilege seems
antiquated.

Immune Surveillance of the Normal CNS and Mobilization of Host
Responses During Acute CNS Infection

It is now accepted that there is a need for constant immune surveillance of the adult CNS as
part of normal host defense, acknowledging that simultaneous mechanisms must keep local CNS
inflammation strongly in check (1). Indeed, blockade of normal lymphocyte homing through the
CNS can occasionally trigger local virus recrudescence (3), and low numbers of lymphocytes and
antigen-presenting dendritic cells (DC) are found in perivascular spaces of the normal brain (4). For
infectious particles that unexpectedly gain access to the CNS, some pathogen clearance occurs via
bulk flow along paravenous routes by means of a process that depends on astrocytic water channels
(4). This so-called “glymphatic system” of the brain ultimately carries antigenic material toward a
specific group of large-caliber veins that drain to deep cervical lymph nodes (CLN) (5, 6). The CLN
are increasingly appreciated as an important site where antigen-specific immune responses bound
for the CNS are generated (7). Blood-borne pathogens, on the other hand, are mostly carried to
the spleen where adaptive immunity occurs. Immune cells then migrate back to the CNS under the
influence of chemokine gradients induced by infection, and bind and traverse the BBB via the actions
of specific adhesion receptors and degradative enzymes.

Infections in the Periphery or the CNS Caused by the Same
Pathogen – How Much do Host Responses Differ?

Streptococcus pneumoniae is an important pathogen because it is themain cause of both community-
acquired pneumonia and meningitis induced by a bacterial pathogen in otherwise healthy older
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TABLE 1 | Pathogenesis and host responses elicited during a prototype bacterial (Streptococcus pneumoniae) or viral (lymphocytic choriomeningitis virus)
infection of adult hosts when localized in either the periphery or the CNS [data adapted from Ref. (10–15)]a.

Streptococcus pneumoniae Lymphocytic choriomeningitis virus

Pneumonia Meningitis Visceral infection
(liver, spleen)

Meningitis

Natural routes of infection
(humans)

Inhalation
Local spread from
nasopharyngeal colonization

Inhalation
Local spread from an infected
sinus or inner ear

Inhalation Inhalation

Direct contact with infected
rodents

Direct contact with infected
rodents

Direct inoculation via infected
solid organ transplant

Direct inoculation via infected
solid organ transplant

Experimental routes of
infection (mice)

Intranasal Intranasal Intravenous Intracranial
Intracisternal Intraperitoneal

Innate immune receptors
activated

TLR2, TLR4, TLR9, NOD2,
NRLP3

Unknown TLR2, PKR, RLR, TLR7,
MDA5

TLR2, CXCR3

Early innate immune
mediators induced

IL-1β, TNF-α, IL-6 IL-1β, TNF-α, IL-6 IFN-α/β, TNF-α, IL-6, IL-10,
CCL2, CCL5, CXCL10

IFN-α/β, CCL2, CCL3, CCL5,
CXCL10

Site of main adaptive
immune priming

Hilar/mediastinal lymph nodes Cervical lymph nodes Spleen Spleen
Spleen Spleen Mesenteric lymph nodes Cervical lymph nodes

Principal effector cells
activated and mobilized

Neutrophils Neutrophils CD8+ CTL CD8+ CTL
MonocytesMonocytes Monocytes NK cells

Dendritic cells Dendritic cells Dendritic cells
Lymphocytes Lymphocytes

Time to mobilize immune
cells to target tissue

Hours Hours Hours–days Hours–days

Soluble immune
mediators involved in
pathogen containment
and/or clearance

IL-1β, TNF-α, NO,
complement C1, IL-10

TNF-α, ROS, NO IFN-α/β IFN-α/β, CXCL10, IFN-γ

Mechanisms of pathogen
clearance

Phagocytosis Phagocytosis Virus-specific CTL Virus-specific CTL
Neutrophil oxidative burst Neutrophil oxidative burst
Complement activation Complement activation

Other relevant immune
features

Disease severity and
complications higher in
asplenic individuals (humans)

Intracranial complications
more common in asplenic
individuals (humans)

Vicerotropic viral strains may
cause chronic infection and
immunosuppression via CTL
exhaustion (mice)

No evidence of chronic CNS
infection (humans)

IκB and IL-10 polymorphisms
raise susceptibility (humans)

Potential for target tissue
immunopathology
(humans)

Moderate (10% overall
mortality)

High (75% develop
intracranial complications,
25% mortality)

Low (healthy adults) Low (healthy adults)

High (immunocompromised
organ transplant recipients)

High (immunocompromised
organ transplant recipients)

Potential for target tissue
immunopathology (Mice)

High (most models cause
lethal disease with extensive
lung damage)

High Moderate (adult mice) High (adult mice infected with
naturally occurring Armstrong
strain)

Effectors of target tissue
immunopathology

Lipocalin-2, NO,
malondialdehyde, IL-1β,
TNF-α

IFN-γ, TNF-α, glutamate, NO,
ROS, caspase-9/3,
myeloperoxidase

Virus-specific CTL, perforin Virus-specific CTL, perforin

Role of immunotherapy in
improved disease
outcome

No proven role to date
(humans)
IVIG, MALP-2, and
pneumococcal P4 peptide all
improve survival (mice)

Corticosteroids of limited
benefit to prevent hearing
loss (humans)

No proven role to date
(humans)

No proven role to date
(humans)
Virus-specific CTL plus
virus-specific CD4+ T cells
can clear persistent infection
following adoptive transfer
(mice)

Inhibitors of caspases, ROS,
IDO, kynurenine pathway
improve cognitive outcomes
(mice)

a Includes studies where peripheral and CNS responses were not directly compared, and therefore differencesmay reflect how the individual studies were conducted andwhat parameters
were examined.
CCL, C–C motif ligand; CTL, cytotoxic T lymphocyte; CXCL, C–X–C motif ligand; CXCR, C–X–C motif receptor; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; IL, interleukin; IVIG,
intravenous immune globulin; MALP, macrophage-activating lipopeptide; MDA, melanoma differentiation-associated protein; NO, nitric oxide; NOD, nucleotide-binding oligomerization
domain-containing protein; NRLP, NOD-like receptor family, pyrin domain-containing; PKR, protein kinase R; RLR, RIG-I-like receptor; ROS, reactive oxygen species; TLR, Toll-like
receptor; TNF, tumor necrosis factor.
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children and adults. Much has also been learned about host
immune responses elicited by pneumococcal pneumonia or
meningitis using mouse models (8, 9). These infections develop
in both mice and humans following pathogen inhalation and
subsequent local tissue invasion (Table 1). Tissue-resident innate
immune pathways are activated and host immunity is mobilized
within hours. Outcome is determined over days to a few weeks.
Morbidity and mortality, even in previously healthy hosts, is sub-
stantial, as many of the same mediators that have antibacterial
activities also cause direct cellular damage (proteins, membrane
lipids, DNA). Current polyvalent vaccines are effective in prevent-
ing both forms of invasive disease.

Lymphocytic choriomeningitis virus (LCMV) is an arenavirus
to which both mice and humans are susceptible and that
causes varying combinations of visceral (hepatitis, pancreatitis,
myocarditis) and/or CNS (meningitis, encephalitis) involvement
in adult hosts. Murine LCMV infection has served as a proto-
type experimental system to study immunity to viruses for many
years (10). This pathogen gets inhaled or directly inoculated into
susceptible murine and human recipients (Table 1). Both innate
and adaptive immune pathways are mobilized and disease can last
several weeks. Healthy adults generally recover reasonably well,
although the disease is more fulminant in immunocompromised
hosts. In mice, the same virus-specific cytotoxic T cell (CTL)
response that clears virus from infected tissues also causes tissue
immunopathology. For acute CNS infection (choriomeningitis) in
the setting of impaired CTL activity, survival is the trade-off for
poor viral clearance.

The host responses provoked by these two naturally occurring
pathogens are used here to compare how the immune system
recognizes and responds to the same challenge in the periph-
ery and the CNS (Table 1). The availability of mouse models
for both pathogens that can be manipulated to cause infection
either outside or within the CNS allows for the identification of
immune determinants that directly influence disease outcome. It
seems notable thatmanymore similarities than differences in host
immunity are seen, and that there is little evidence suggesting
immune recognition is delayed or immune responses dampened
for those infections localized primarily to the CNS compartment.
Outcome differences for infections occurring at the two sites are
likely driven by mechanisms independent of the host response.

Conclusion

Both the afferent and efferent arms of the immune system are
efficiently activated in the context of either pneumococcal or
LCMV infection, and the kinetics, magnitude, and composition
of immune responses elicited in adult hosts appear remarkably
similar when either a visceral organ or the CNS is the main target
of disease (Table 1). Acute CNS infections generally result in
less favorable outcomes than those localized to the periphery,
but this is more likely explained by the exquisite sensitivity of
the brain to cellular damage rather than any delayed immune
recognition behind the BBB. This comparison leads us to suggest
that the concept of CNS immune privilege in the adult host seems
somewhat obsolete in the setting of acute CNS infection.
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