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Aim Allograft rejection is a serious concern in heart transplant medicine. Though endomyocardial biopsy with histo-
logical grading is the diagnostic standard for rejection, poor inter-pathologist agreement creates significant clinical
uncertainty. The aim of this investigation is to demonstrate that cellular rejection grades generated via computa-
tional histological analysis are on-par with those provided by expert pathologists

...................................................................................................................................................................................................
Methods
and results

The study cohort consisted of 2472 endomyocardial biopsy slides originating from three major US transplant
centres. The ‘Computer-Assisted Cardiac Histologic Evaluation (CACHE)-Grader’ pipeline was trained using an in-
terpretable, biologically inspired, ‘hand-crafted’ feature extraction approach. From a menu of 154 quantitative histo-
logical features relating the density and orientation of lymphocytes, myocytes, and stroma, a model was developed
to reproduce the 4-grade clinical standard for cellular rejection diagnosis. CACHE-grader interpretations were
compared with independent pathologists and the ‘grade of record’, testing for non-inferiority (d = 6%). Study path-
ologists achieved a 60.7% agreement [95% confidence interval (CI): 55.2–66.0%] with the grade of record, and
pair-wise agreement among all human graders was 61.5% (95% CI: 57.0–65.8%). The CACHE-Grader met the
threshold for non-inferiority, achieving a 65.9% agreement (95% CI: 63.4–68.3%) with the grade of record and a
62.6% agreement (95% CI: 60.3–64.8%) with all human graders. The CACHE-Grader demonstrated nearly identical
performance in internal and external validation sets (66.1% vs. 65.8%), resilience to inter-centre variations in tissue
processing/digitization, and superior sensitivity for high-grade rejection (74.4% vs. 39.5%, P < 0.001).

...................................................................................................................................................................................................
Conclusion These results show that the CACHE-grader pipeline, derived using intuitive morphological features, can provide

expert-quality rejection grading, performing within the range of inter-grader variability seen among human
pathologists.
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Graphical Abstract

Overview of the ‘Computer-Assisted Cardiac Histologic Evaluation-Grader’ multicentre validation experiment. Nearly 2500 clinical transplant endomyo-
cardial biopsy slides from three transplant centres were used to develop and validate the Computer-Assisted Cardiac Histologic Evaluation-Grader, an
automated histological analysis pipeline for assigning standard-of-care cellular rejection grades. The Computer-Assisted Cardiac Histologic Evaluation-
Grader performance was compared to both the grade of record and to independent pathologists performing re-grading, demonstrating non-inferiority to
expert pathologists, generalizability to external datasets, and excellent sensitivity and negative predictive value.
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..Introduction

Heart transplantation is the treatment of choice for end-stage cardio-
myopathy that is refractory to medical therapy. Cardiac allograft re-
jection (CAR) occurs in up to one-third of transplant recipients,1–3

representing the leading threat to short- and long-term allograft
health. As a result, frequent surveillance endomyocardial biopsy
(EMB) with histological rejection grading has been included in the
International Society for Heart and Lung Transplantation (ISHLT)
guidelines since 1990, with recipients typically undergoing 12 or
more scheduled EMB procedures in their first year post-transplant
alone.4,5

Allograft rejection has histopathological features that have been
recognized for more than a century.6 In the modern era, significant ef-
fort has been invested into developing standardized metrics for
describing these features. To this end, the ISHLT has issued formal
CAR histological grading criteria since 1990,5 aiming to achieve stand-
ardization through reductive simplicity. In the case of cell-mediated
CAR, the longest-recognized and most prevalent form of rejection,
contemporary (ISHLT 2005 guideline) histological grading, utilizes a
four-grade scale from ‘0R’ to ‘3R’ based on the number of inflamma-
tory cell ‘foci’, the extent of cellular infiltration (focal vs. diffuse), and
qualitative assessments of lymphocyte ‘encroachment’ onto myo-
cytes and ‘myocyte damage’.7 Unfortunately, multiple studies have
demonstrated poor reliability of ISHLT histological grading for cellu-
lar rejection, with a Kappa statistic of 0.398 and inter-pathologist
agreement of 60–70%, with particularly poor agreement of 28.4% for
the higher grades of cellular rejection (2R, 3R), which usually result in
major alterations to immunosuppression therapy.9 The poor statistic-
al performance of the current diagnostic standard has significant
clinical and research implications, affecting inter-provider communi-
cation, limiting multicentre research, and potentially misguiding thera-
peutic decisions.

Computational image analysis using ‘machine learning’ (ML) meth-
odologies can capture and quantify subtle patterns from medical
images and has been used to predict disease diagnosis, prognosis, and
therapeutic response in oncology, ophthalmology, and dermatol-
ogy.10–20 Recently, a computational pathology approach for non-
transplant heart tissue achieved excellent diagnostic performance,
suggesting the potential value of these methods within cardiovascular
diseases.21,22 In the context of CAR, computational methods provide
an opportunity to improve grading consistency and sensitivity via
comprehensive and quantitative morphological assessments of EMB
specimens.23 The potential of these methods for transplant EMB ana-
lysis has recently been endorsed by the Banff Foundation for
Allograft Pathology,24 though no definitive demonstration of diagnos-
tic performance with translational potential has yet been published.

It is notable that a substantial proportion of the published medical
research utilizing ML-enabled image analysis has relied upon ‘deep-
learning’ (DL) approaches using artificial neural networks to examine
images.25 DL methods generate computational models with limited
human input during training and provide no clear explanation for
their predictions, limiting interpretability. Because of the opacity of
this technology,21,25 DL models are often considered ‘black-boxes’, a
criticism that represents a potential barrier to clinical applica-
tions.26,27 In contrast, models based on ‘hand-crafted’ feature extrac-
tion rely on a foundation of biologically inspired, clearly defined
histological principles, and while this approach requires a greater de-
gree of effort and domain-expertise to develop, it may be capable of
providing a more transparent and interpretable option than DL
methods.28,29

In this study, we used a ‘hand-crafted’ approach to translate the
qualitative ISHLT cellular rejection grading criteria into measurable,
quantitative variables describing the infiltration of lymphocytes within
transplant myocardium. We then employed these variables to build
the Computer-Assisted Cardiac Histologic Evaluation (CACHE)-
Grader, an automated pipeline for assigning ISHLT cellular rejection
grades to digitized EMB histology slides. The goal of this first-in-trans-
plant effort was to demonstrate that lymphocyte-related quantitative
features can achieve ISHLT grading performance comparable to that
of expert pathologists who represent the field’s reference standard.
In pursuit of this goal, we sought to validate the CACHE-Grader
pipeline within a large, multicentre cohort of EMB slides (n = 2472),
comparing the CACHE-Grader with the grades of record from the
clinical chart and the grades assigned by independent study patholo-
gists (Graphical Abstract).

Methods

Study cohort and design
The study cohort was selected from the records at the Hospital of the
University of Pennsylvania (UPenn), University Hospitals Cleveland
Medical Center (UH), and the Ohio State University Wexner Medical
Center (OSU). This cohort consisted of 2472 archived, haematoxylin and
eosin (H&E)-stained transplant EMB histology slides, originating from
�546 transplant recipients. These EMBs were obtained as part of usual
care between 2005 and 2018, either as part of scheduled post-transplant
surveillance or in a ‘for-cause’ setting due to suspected rejection, and
occurred from 7 to 6415 days after transplant. The EMBs represented
the grading efforts of 17 different pathologists of record and encom-
passed the spectrum of ISHLT cellular rejection grades, including n = 85
‘3R’, n = 405 ‘2R’, n = 979 ‘1R’, and n = 889 ‘0R’ grades. Only EMBs that
were deemed ‘gradable’ and assigned an ISHLT cellular rejection grade
were included. By design, the full cohort contained a higher proportion of

Translational Perspective
This first-in-field, multicentre investigation provides a convincing demonstration of the diagnostic potential of automated histological
analysis in cardiovascular and transplant medicine. While automated cellular rejection grading may have direct applications for standard-
izing histological analyses in multicentre research, future histological analysis systems, which also address antibody-mediated rejection
and provide more outcome-based predictions, will be required prior to broad clinical deployment of this emerging methodology.
Nevertheless, the degree of accuracy, reliability, interpretability, and generalizability achieved in this multicentre validation experiment
is indicative of a maturing diagnostic technology, which is worthy of continued investment and clinical investigation.

2358 E.G. Peyster et al.
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..grades 2R/3R (�20%) than is seen in routine practice (�8%)9 to ensure
adequate power for assessing CACHE-Grader performance in these
EMBs of highest clinical importance. For model development and demon-
stration of predictive performance, the rejection grade assigned to each
EMB by the pathologist of record in the medical chart was considered the
reference standard. Figure 1 provides an overview of study EMB slide dis-
tribution and utilization, while Figure 2 provides an overview of the
CACHE-Grader pipeline development and deployment. This study was
approved by the UPenn institutional review board.

Slide scanning and quality control
All EMBs were collected, processed, and stained per routine workflows
at each study centre. Archived H&E-stained slides comprising the study
cohort underwent whole-slide scanning at 40� magnification using an
Aperio ScanScope or a Philips UltraFast slide scanner (depending on
centre). Digitized slides underwent quality control (QC) assessments
using HistoQC, an open-source, automated digital pathology analysis
software tool for identifying artefacts and measuring slide quality30 (see
Supplementary material online Figures S1 and S2 for details).

Overview of image analysis workflow
Image analysis was conducted on whole-slide EMB images to enable
whole-slide grade classification via extraction of histological features
inspired by principles of CAR histology.

Tissue compartment segmentation and lymphocyte

detection

A stain deconvolution algorithm was applied on tiles of H&E-stained car-
diac biopsy images, enabling the determination of areas containing specific
stain colours.31 Following colour deconvolution, a K-means clustering al-
gorithm32 is used to assign pixels to one of the three tissue-type classes:
myocytes, interstitium/stroma, and non-myocyte nuclei (Figure 3A).

Isolating lymphocyte clusters

Since lymphocytes relevant to ISHLT grading almost exclusively exist
within larger colonies, and because single blue nuclei in isolation can rep-
resent several cell types (some leukocytes, some non-leukocytes), identi-
fication and isolation of lymphocyte clusters is a necessary process. By

Figure 1 Flowchart outlining the distribution of study histology slides by cohort of origin and experiment.
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..performing disc-dilation and area-thresholding, lymphocyte clusters/colo-
nies meeting relevant size criteria are identified while isolated and poten-
tially misleading single-nuclei are omitted (Figure 3B).

From clusters to foci

Detecting lymphocyte foci is essential to ISHLT grading, forming the basis
of grade differentiation. For each lymphocyte cluster identified, proximity
graphs are built on lymphocytes within and between clusters, facilitating
the reproducible ‘lumping’ vs. ‘splitting’ of adjacent clusters into foci via
thresholding of Euclidean distances (Figure 3B). The threshold parameters
of the proximity graphs were initially set based on manually labelled
examples of foci and then refined in an automated fashion based on a sub-
set of graded training-set slides.

Identifying foci neighbourhoods

The local neighbourhood of a lymphocyte focus informs histological grad-
ing, with lymphocytes (i) within endocardium, (ii) neatly within intersti-
tium, and (iii) encroaching upon myocyte borders being explicitly
mentioned in the ISHLT criteria. Myocyte and interstitium segmentations
were achieved via K-means clustering (as described above), while more
gross discrimination between myocardium vs. endocardium compart-
ments was achieved via a disc-dilation method (Figure 3A, right panel).
Spatial analysis of the locations and edge-interactions of lymphocyte clus-
ters/foci were then performed, as illustrated in Figure 4.

Data analysis and statistical methods
Feature selection and classifier construction

Model development and iterative calibration of the CACHE-Grader pipe-
line was conducted in a training subset (St) of 911 randomly selected
slides from Site I (UPenn). Through execution of the study image analysis

workflow, a set of 154 domain-inspired, hand-crafted, quantitative histo-
logical features were extracted from each study image. Broadly, these fea-
tures pertained to three categories: (i) features quantifying number of
lymphocyte clusters/foci in different tissue compartments, (ii) size/density
statistics for lymphocyte clusters, both raw and normalized by size of
relevant tissue compartments, and (iii) the spatial/edge interactions of
lymphocyte clusters and foci (e.g. foci edges encroaching upon myocyte
borders, foci constrained to the interstitium). Specific features are
described in Supplementary material online, Table S1, along with a tabular
summary of conventional ISHLT cellular rejection grading criteria for ref-
erence (Supplementary material online, Table S2). The extracted features
were used to develop two predictive models which would generate the
final CACHE-Grader outputs: one for providing binary low-grade (0R,
1R) vs. high-grade (2R, 3R) classification (M1), and the other for providing
clinical standard 4-grade classification (M2). Several different linear classi-
fiers were employed and compared for generating predictive models,
with a support vector machine (SVM) classification method ultimately
selected for developing both the M1 and M2 final models (Supplementary
material online, Table S3). For creating M1, a Wilcoxon rank-sum test was
used to select top predictive features, with optimal model performance
achieved with an SVM using only two features. For M2, a t-test was
employed to rank predictive features, with an SVM using 15 features
achieving optimal predictive performance while minimizing over-fitting.33

Experiment 1: internal and external validation

CACHE-Grader validation was performed on slides from all three study
sites, using the image analysis workflow and predictive models developed
during training. It should be noted that no further alterations to the image
analysis pipeline or predictive models occurred upon completion of
CACHE-Grader training and the commencement of validation

Figure 2 Summary of Computer-Assisted Cardiac Histologic Evaluation-Grader pipeline development, including image analysis, feature selection,
model training, and grading performance validation. The Computer-Assisted Cardiac Histologic Evaluation-Grader pipeline involves computerized
identification and multi-parameter quantitation of immune cell infiltrates, measuring size, counts, densities, and spatial relationships (panels 1–4, see
Figure 3 for more detailed image feature extraction workflow examples). Following feature extraction (panel 5), features were assessed and ranked
based on ability to discriminate between International Society for Heart and Lung Transplantation histological grades (panel 6). In the descending
order of discriminatory ability, features were added to the Computer-Assisted Cardiac Histologic Evaluation-Grader predictive models until optimal
performance was achieved on the training sets. These features were subsequently ‘locked down’ into the final Computer-Assisted Cardiac Histologic
Evaluation-Grader models which were deployed in the study validation set (panel 7).
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..experiments. The remaining 395 slides from Site I not used during
CACHE-Grader training represented an internal validation set (S1), while
the 1052 slides from sites II (S2) and III (S3) represented two external val-
idation sets. The external validation sets enabled assessments of CACHE-
Grader generalizability, both to groups of pathologists beyond those who
provided grades of record in the training set (as these same pathologists
contributed grades of record in the internal validation set), and to alterna-
tive pathology lab workflows for slide staining and scanning that may cre-
ate variability in slide appearance across centres. In total, 1447 slides
were available as a composite validation set (SV) (Figure 1). Performance
of the CACHE-Grader was assessed based on the percent agreement of
M1 and M2 outputs with the grade of record. Separate analyses were per-
formed for internal, external, and combined validation sets. Additional
measurements including Cohen’s kappa (raw and quadratic weighted)34

and, for binary model M1, area under the receiver operating characteristic
curve (AUC), sensitivity, and specificity were also calculated. Uniform
manifold approximation and projection (UMAP) embedding was also
employed to further assess the resilience of CACHE-Grader pipeline to
pre-analytical variations in slide appearance/quality.

Experiment 2: inter-pathologist agreement

A randomly selected subset (n = 166) of SV slides, referred to as the S4

set, were re-graded by three independent study pathologists to assess

inter-pathologist agreement within the study cohort. Inter-grader per-
cent agreement, along with Cohen’s kappa (raw and quadratic-weighted),
was calculated in comparison to the grade of record—the same refer-
ence standard used to test the grading performance of the CACHE-
Grader in Experiment 1.

Experiment 3: non-inferiority determination

Due to well-documented inter-grader variability, true diagnostic ‘accur-
acy’ for rejection grading is difficult to define and difficult to test experi-
mentally.8,9 Recognizing that conventional accuracy and superiority
testing are challenging to interpret in the absence of a high-performing,
objective ‘gold standard’, we performed comparisons of the CACHE-
Grader performance from experiment 1 to the performance of study
pathologists in experiment 2, testing for non-inferiority. Fundamentally,
the purpose of this experiment was to demonstrate that the CACHE-
Grader performs within the expected and established ranges of inter-
grader variability seen among human experts in real-world practice, while
also demonstrating strong reliability and generalizability across a spec-
trum of providers, centres, and eras.

In the large CARGO-II study, composite inter-pathologist percent
agreement on nearly 500 EMB samples undergoing ISHLT cellular rejec-
tion grading was 70.7% [95% confidence interval (CI) 67.7–73.7%], with
most paired-agreements falling within 4–6% of one another.9 Based on

Figure 3 Computer-Assisted Cardiac Histologic Evaluation-Grader feature extraction approach. (A) Workflow for compartment segmentation.
Left panel: a digitized clinical histology slide from EMB tissue stained in haematoxylin and eosin. Middle-left: K-means segmentation into myocytes
(dark grey), interstitium/stroma (light grey), and non-myocyte nuclei (white). Middle-right: Dilated myocyte mask created from myocyte segmenta-
tion, identifying the myocardial compartment. Right: Overlay of myocardial mask onto original tile, demonstrating the ability to independently analyse
lymphocytes within the myocardial vs. endocardial compartments (which in this example contains a Quilty lesion rather than an infiltrating lympho-
cyte focus). (B) Workflow for lymphocyte foci identification. Left panel: green = lymphocytes identified as ‘clustering’ together via area-thresholding
of individual lymphocyte nuclei (overlay of individual lymphocytes in green which comprise a cluster). Middle panel: blue outline = Distinct lympho-
cyte clusters identified for feature extraction. Right panel: Applying proximity graph thresholding to lymphocyte clusters allows merging of nearby
clusters into a common ‘lymphocyte focus’ for reproducing the foci counting as outlined in the International Society for Heart and Lung
Transplantation histological rejection grading scheme.

Automated cardiac allograft rejection grading 2361
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.this large historical result, we pre-specified a significant margin of differ-
ence for excluding non-inferiority to be an absolute pair-wise agreement
difference >6%.

Comparisons of additional agreement statistics, including Cohen’s kappa
and intraclass correlation coefficients35 for all pair-wise combinations of

graders were also conducted to supplement non-inferiority testing. These
included assessments of paired-agreement between the CACHE-grader
and individual study pathologists, and between pairs of study pathologists
themselves when commonly-graded slides were available. All statistical
analyses were conducted in Stata IC v.15.0 (StataCorp LLC).

Figure 4 By-grade examples of image analysis results: The first row shows biopsy specimen of different rejection grades. The second row demon-
strates the proximity graphs (i.e. foci) in green built across the tissue over lymphocytes. The third and fourth rows demonstrate that the clusters of
proximally situated lymphocytes are different in shape and size between high and low rejection grades and also between different grades. One may
appreciate that in 2R and 3R cases (high-grade rejection cases), the lymphocyte clusters covered most of the tissue while in 0R and 1R (low-grade re-
jection cases), lymphocyte clusters are dispersed, small, and they cover only a small proportion of the tissue specimen.

2362 E.G. Peyster et al.
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Results

Experiment 1: internal and external
validation of the Computer-Assisted
Cardiac Histologic Evaluation-Grader
In the composite validation set (SV), the CACHE-Grader M1 for pro-
viding high- vs. low-grade classification achieved a percent agreement
with the grade of record of 84.5%, with an AUC of 0.92, a sensitivity
of 0.85, and a specificity of 0.84. The performance of M1 within in-
ternal validation set S1 was similar to, though better than, the agree-
ment in external sets S2þ S3 (88.6% vs. 82.9%, P = 0.008), suggesting
reasonable generalizability of the model to external data. With regard
to model M2 for four-grade classification, the CACHE-Grader
achieved a percent agreement of 65.9% within SV, with very similar
performance in set S1 vs. sets S2þ S3 (66.1% vs. 65.8%, P = 0.91), fur-
ther supporting generalizability. There was no significant difference
(P = 0.22) in CACHE-Grader performance by era, with a 63.0% (208/
330) agreement for older EMBs (years 2005-2011) vs. 66.7% (745/
1117) for newer EMBs (years 2012-2018). The complete results for
CACHE-Grader performance are summarized in Tables 1 and 2 and
Figure 5.

Experiment 2: inter-pathologist
agreement
To further validate the CACHE-Grader, a representative subset of
validation set slides (S4) underwent blinded re-grading by three inde-
pendent study pathologists. In total, study pathologists provided 328
independent re-grades of slides in S4. Inter-pathologist percent

agreement results via comparison to the grade of record, along with
Cohen’s kappa statistics, are summarized in Table 3, with companion
confusion matrices in Supplementary material online, Figure S3.
Overall, the pathologist agreement with the grade of record was fair,
with an averaged percent agreement of 60.7% (95% CI 55.2–66.1%),
a composite raw kappa of 0.41 (95% CI 0.34–0.48), and a composite
quadratic-weighted kappa of 0.65 (95% CI 0.55–0.75). Consistent
with prior reports, percent agreement was far better for grade 0R
(87.9%, 95% CI 80.7–93.3%) than for other grades (Table 3), with par-
ticularly poor cumulative pair-wise agreement for grades 2R and 3R.
When results from all possible pairs of pathologists are tabulated
(n = 495 total available grading pairs, inclusive of pairs of study pathol-
ogists performing re-grading on the same digital slides), the compos-
ite inter-pathologist percent agreement remains similar at 61.5%
(95% CI 57.0–65.8%) with no significant changes in kappa statistics
(Table 4).

Experiment 3: comparison of Computer-
Assisted Cardiac Histologic Evaluation-
Grader and expert pathologists
Comparisons of the CACHE-Grader agreement with the grade of re-
cord from the composite validation set SV (Table 1) to the inter-path-
ologist agreement results from the re-grading set S4 (Table 3)
support a conclusion of non-inferiority in this experiment. The lower
bound of the 95% CI for overall CACHE-Grader percent agreement
is easily within the pre-specified 6% margin of difference when com-
pared to the combined study pathologist percent agreement. In fact,
the 95% CI for the CACHE-Grader suggests superiority given it does
not include the combined study pathologist percent agreement value
(P = 0.002). When all possible pathologist-to-pathologist compari-
sons and all possible CACHE-Grader-to-pathologist combinations
are considered as in Table 4 (including not just paired comparisons
with grade of record, but also study pathologist/study pathologist
pairs and CACHE-Grader/study pathologist pairs), the CACHE-
Grader remains non-inferior, but now without any suggestion of su-
periority (61.5% vs. 62.6%, P = 0.66).

When the highest grade assigned to a slide in S4 by any pathologist
(pathologist of record or study pathologist) is compared to the
CACHE-Grader, the percent agreement is 69.1% (95% CI 62.5–
76.6%), significantly higher than the overall inter-pathologist agree-
ment (P = 0.046). This can be considered evidence of the high sensi-
tivity of the CACHE-Grader for serious histological rejection, a
finding supported by the nearly twice as high percent agreement of

............................................................................. .............................................................................

....................................................................................................................................................................................................................

Table 1 Summary of Computer-Assisted Cardiac Histologic Evaluation-Grader performance in study validation
sets

Validation set Total

slides (n)

Binary classification (M1) 4-Grade classification (M2)

Correctly assigned (n) % Agreement (95% CI) Correctly assigned (n) % Agreement (95% CI)

Internal (S1) 395 350 0.886 (0.851–0.916) 261 0.661 (0.612–0.707)

External (S2 þ S3) 1052 872 0.829 (0. 805–0.851) 692 0.658 (0.628–0.686)

Combined (SV) 1447 1222 0.845 (0.825–0.863) 953 0.659 (0.634–0.683)

CI, confidence interval.

.................................................................................................

Table 2 Computer-Assisted Cardiac Histologic
Evaluation-Grader M2 performance, by grade

ISHLT grade Total

slides (n)

Correctly

assigned (n)

% agreement

(95% CI)

0R 623 420 0.674 (0.636–0.711)

1R 633 405 0.640 (0.601–0.677)

2R 150 110 0.733 (0.655–0.802)

3R 41 18 0.439 (0.285–0.603)

CI, confidence interval; ISHLT, International Society for Heart and Lung
Transplantation.
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the CACHE-Grader with the grade of record for 2R/3R rejection
when compared to study pathologists within S4 (39.5% vs. 74.4%,
P < 0.001). Related to this higher sensitivity, the CACHE-Grader also

demonstrates a much lower ‘false-negative’ rate, never assigning a 0R
to an EMB with a grade of record of 2R or 3R (0/201), compared to a
9% rate (8/86) for study pathologists.

Figure 5 Computer-Assisted Cardiac Histologic Evaluation-Grader validation results: confusion matrices and Receiver-operating characteristic
curves demonstrating M1 and M2 performance on independent validation sets (S1, S2, and S3).

....................................................................................................................................................................................................................

Table 3 Performance of study pathologists and the Computer-Assisted Cardiac Histologic Evaluation-Grader within
S4

Pathologist 1 Pathologist 2 Pathologist 3 Combined CACHE-Grader

Grade 0R, % agreement (n) 0.929 (39/42) 0.743 (26/35) 0.949 (37/39) 0.879 (102/116) 0.746 (44/59)

Grade 1R, % agreement (n) 0.564 (22/39) 0.605 (23/38) 0.367 (18/49) 0.500 (63/126) 0.762 (48/63)

Grade 2R, % agreement (n) 0.529 (9/17) 0.238 (5/21) 0.393 (11/28) 0.379 (25/66) 0.788 (26/33)

Grade 3R, % agreement (n) 0.400 (2/5) 0.667 (4/6) 0.500 (2/4) 0.45 (9/20) 0.600 (6/10)

All grades, % agreement

(95% CI) (n)

0.699 (0.601–0.786)

(n = 72/103)

0.580 (0.479–0.678)

(n = 58/100)

0.552 (0.461–0.641)

(n = 69/125)

0.607 (0.552–0.661)

(n = 199/328)

0.752 (0.678–0.815)

(n = 124/165)

Cohen’s kappa 0.54 (0.40–0.67) 0.38 (0.25–0.51) 0.35 (0.24–0.45) 0.41 (0.34–0.48) 0.64 (0.54–0.74)

Quadratic kappa 0.72 (0.54–00.92) 0.65 (0.46–0.85) 0.60 (0.45–0.75) 0.65 (0.55–0.75) 0.85 (0.70–0.99)

CACHE, Computer-Assisted Cardiac Histologic Evaluation; CI, confidence interval.
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..Discussion

In this work, we presented a novel computational approach to histo-
logical rejection grading of transplant EMB tissues. Starting with his-
torical evidence of poor inter-grader agreement using ISHLT criteria
and an unmet need for more reproducible grading approaches, we
successfully demonstrated that an automated image analysis pipeline
can provide cellular rejection grading with statistical performance on-
par with that of expert pathologists.

Comparisons with other computational
histology research
The present research represents by far the largest application of
computational histological analysis within cardiovascular medicine or
solid organ transplant medicine to date. In contrast, within the tissue-
rich field of oncology, ML approaches for digital pathology are more
established, presenting better opportunities for comparison to this
experiment.20,36–40 Two investigations using DL methods to perform
histological grading of prostate biopsies39,40 were recently published,
with multicentre validation results showing performance on-par with
expert pathologists much as we have shown in the present work.
Perhaps the closest research related to the work presented in this
study is that of Nirschl et al.22 where an ML approach was used to
analyse heart tissue samples for the presence or absence of clinical
heart failure. However, all the aforementioned and cited studies have
relied upon DL methodologies employing neural network models.
Neural networks use largely unsupervised feature generation
approaches, performing automated and repeated image transforma-
tions to find representations that best distinguish categories of
interest. While this approach is powerful and does not require sub-
ject-specific expertise to employ, the abstract and automated nature
of DL image transformations often preclude any clear, biologically
meaningful explanation of the image features that are responsible for
model predictions.

Strengths of our approach
Recognizing that adoption of automated image analysis platforms into
clinical practice will require not only convincing statistical demonstra-
tions but also clear, transparent, and biologically inspired methods,
we chose to employ a ‘hand-crafted’ feature-engineering approach in
this work.28 This approach relied on careful supervision during the
initial feature extraction process, which generated feature maps
based on fundamental principles of rejection histopathology. The fea-
tures employed in the CACHE-Grader are derived from the

interactions between myocytes and lymphocytes, describing foci
counts, lymphocytic infiltrate distribution/extent, and various cellular/
compartment interactions in a quantitative manner. The extraction
of these domain-relevant histological features allows the CACHE-
Grader to assign rejection grades in a manner that has clear parallels
with human grading workflows. Perhaps as a result of the strong bio-
logical foundation, the final CACHE-Grader required only a relatively
small number of quantitative lymphocyte and myocyte features to
achieve optimal ISHLT grading performance. The relative simplicity
of these models stands in contrast to DL approaches, which tend to
produce models that are much less parsimonious, possibly because
there is no initial biological foundation which helps prevent the inclu-
sion of noisy, artefactual, or nonsensical variables.

Interpretation of findings
The CACHE-Grader achieved similar percent agreements within
both the internal and external validation sets in this experiment, sug-
gesting that the models are both generalizable to external data and
robust, capable of strong performance even when different slide
scanning and tissue processing workflows are applied. The UMAP
plots showing unbiased two-dimensional representations of all image
quality metrics and all quantitative rejection features provide further
support for the resilience of the CACHE-Grader to site-specific
batch effects (Supplementary material online, Results and Supplemen-
tary material online, Figures S4 and S5). Comparing the combined
CACHE-Grader-to-pathologist agreement to the combined inter-
pathologist agreement clearly supports a conclusion of non-inferior-
ity, with nearly identical agreement metrics. Interestingly, within the
re-grading S4 subset where there is full overlap of graded slides be-
tween the CACHE-Grader and the study pathologists, the CACHE-
Grader actually has a significantly higher percent agreement with the
grade of record than do the independent pathologists. This is likely
due to the by-chance higher percentage of high-grade EMBs in S4 as
compared to the total cohort (26% vs. 14%), along with the CACHE-
Grader’s demonstrated high sensitivity for high-grade rejection.

The top-ranked features comprising the CACHE-Grader describe
the counts of and (normalized) areas covered by lymphocyte foci
found within the myocardial compartment. This is unsurprising, as
estimates of foci count and infiltrate extent represent core criteria of
the ISHLT cellular rejection grading framework.7 The specific import-
ance of lymphocyte activity within the myocardial compartment also
suggests a relative lack of predictive importance for lymphocyte activ-
ity outside the myocardium. ‘Extra-myocardial’ lymphocyte activity
largely consists of endocardial infiltrates corresponding to ‘Quilty’

....................................................................................................................................................................................................................

Table 4 Comparison of study pathologist agreement statistics and Computer-Assisted Cardiac Histologic Evaluation-
Grader agreement

Inter-pathologist agreement CACHE-pathologist agreement

Combined % agreement (95% CI) (n) 0.615 (0.570–0.658) (n = 302/491) 0.626 (0.603–0.648) (n = 1111/1775)

Average Cohen’s kappa (95% CI) 0.42 (0.39–0.45) 0.44 (0.41–0.47)

Average quadratic kappa (95% CI) 0.67 (0.57–0.77) 0.65 (0.61–0.70)

Intraclass correlation coefficient 0.66 (0.59–0.74) 0.65 (0.62–0.70)

CACHE, Computer-Assisted Cardiac Histologic Evaluation; CI, confidence interval.
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.
lesions, and lymphocyte activity found within areas of prominent vas-
culature, corresponding to ‘peri-vascular’ infiltrates.7,8,41 Since these
histological processes play a minor part within the ISHLT criteria for
discriminating between different histological grades of cellular rejec-
tion,7 it is understandable that quantitative features associated with
these processes were not valued highly by the models comprising the
CACHE-Grader. Finally, it is notable that quantitative features
describing lymphocyte activity ‘respecting’ vs. spatially ‘encroaching’
upon myocyte borders were not required to achieve strong predict-
ive models. The concept of myocyte encroachment/damage, while
codified within the ISHLT grading criteria and of intuitive mechanistic
importance, has also long been recognized as a particularly subtle,
vague, and subjective finding.42,43 Given this, it is conceivable that the
degree of variability in pathologist assessments of encroachment/
damage is substantial enough to render associated quantitative fea-
tures unhelpful when designing models to reproduce pathologist
quality ISHLT grades. This does not mean that such features are with-
out biological value, but rather that they do not add value for this par-
ticular modelling task. Understanding the true value of these
myocyte/lymphocyte relational features may require models
designed to predict more clinical or outcome-based endpoints.

In the S4 re-grading set, it is noteworthy that there were several
episodes of ‘major discordance’ in which one human grader assigned
a grade that was at least two grade-points different from another
grader. This occurred in 3.0% (15/491) of paired human-grader com-
parisons, affecting 6% (10/165) total slides in the S4 set. While it is ini-
tially surprising to see such large differences in grading assessments,
this finding has been seen in prior published work. In the largest study
on inter-grader agreement using data from the CARGO-II clinical
trial,9 11/59 (18.6%) of ‘high-grade’ EMB slides as determined by the
pathologist of record were re-graded 0R by a centralized panel of
trial pathologists. The most likely primary cause of these major dis-
cordance events pertains to the determination of infiltrating ‘Quilty’
lesions. These infiltrates of endocardial origin can be quite large, can
invade into the myocardium, and depending on interpretation, can
vastly affect grade results. It is notable that 9/10 slides with major dis-
cordance in S4 had Quilty lesions noted by at least one pathologist.
Example slides resulting in major discordance are shown in
Supplementary material online, Figure S6.

Limitations
There are several notable limitations of the present work. In clinical
workflows, pathologists examine slides under microscopes and, in
challenging cases, may choose to examine serial sections before arriv-
ing at a final grade. It is possible that study pathologists, who are not
accustomed to digital pathology and ‘one slide, one grade’ workflows,
may have had their performance hindered by these departures from
conventional practice. This might explain why the CACHE-Grader
tended to have slightly better performance than the pathologists
throughout the various study analyses. Arguing against this is the fact
that study pathologist agreement when compared to one another
(grading via digital, ‘one slide, one grade’ workflows) vs. when com-
pared to the grade of record (graded via conventional workflows)
was identical at 60.8%.

Another notable, and unavoidable, limitation of this study is reli-
ance on the cellular rejection grade of record as the ‘diagnostic truth’
label for CACHE-Grader training. Although ISHLT histological

grading is the accepted diagnostic standard, it is an imperfect standard
and does not represent objective diagnostic truth. As we have dem-
onstrated in this study, there is significant inter-grader variability in
this field. Given that the grades of record used for both training and
validation represent the work of many different individual patholo-
gists, it is certain that different pathologists providing grades of record
would have assigned different grades to specific EMBs in this experi-
ment. As a result, there is no single, consistent grading ‘ruleset’ for
the CACHE-Grader to learn from during training, nor an irrefutable
standard to compare predictions to during validation. This imposes
an upper-limit on the degree of percent agreement that is achievable
for the CACHE-Grader, as it will always be constrained by the de-
gree of inter-pathologist agreement within the image set used to train
it. This limitation is inherent to not only the question of histological
rejection but also many similar diagnostic scenarios in pathology and
medical imaging for which the reference standard is derived from ex-
pert visual interpretation.28,44,45 It is also the justification for pursuing
non-inferiority study designs, which permit an assessment of whether
performance is comparable to that of a typical expert evaluator.

Finally, it should also be noted that the CACHE-Grader was
only developed to provide assessments of cellular rejection.
Antibody-mediated rejection (AMR) is an important clinical entity
as well, but substantial inter-centre variation in the frequency and
approach to AMR screening, along with the need for immune-
staining and serologic testing for proper evaluation,46 make AMR
challenging to address in this multicenre cohort. While computa-
tional image analysis methods should be similarly well-suited to
the task of AMR diagnosis as they are to cellular rejection grading,
a carefully designed cohort with a harmonized AMR diagnostic
protocol would likely be required to perform an appropriate val-
idation experiment.

Translational implications
In light of the CACHE-Grader’s combination of consistency and po-
tential for remote (cloud-based) accessibility, the CACHE-Grader
could function as a ‘core lab’ for standardized grading in future multi-
centre research. It is also tempting to envision clinical translation of
the CACHE-Grader, though it is quite unlikely to replace the role of
pathologists in rejection grading. In complex cases, expert patholo-
gists provide additional annotations and perspectives beyond cellular
rejection grade alone (e.g. AMR-related features, as discussed above),
something the CACHE-Grader is not currently designed to do. The
CACHE-Grader may also struggle with slides containing major proc-
essing/staining artefacts, at least until automated QC is more seam-
lessly connected to the pipeline. Slides with major processing/staining
artefacts, which are deemed to abnormal by automated QC, would
also necessarily require a trained pathologist to evaluate. Instead or
replacing the pathologist, given the high sensitivity for high-grade re-
jection and low false-negative rate, the CACHE-Grader may some-
day be deployed as a screening tool or quick-reference ‘second
opinion’ in clinical practice. Finally, it is worth noting that the quantita-
tive histological rejection features generated by the image analysis
workflow may also be useful for predicting more granular patient-
level outcomes such as overt allograft injury or future rejection risk.
Such applications could prove clinically valuable and could help move
the field beyond conventional grading, establishing histological crite-
ria, which are anchored in more clinically meaningful metrics.
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Conclusion

The CACHE-Grader is the first rigorously validated tool for auto-
mated histological diagnosis in cardiovascular or solid organ trans-
plant medicine. In this multicentre validation experiment, the
CACHE-Grader demonstrates statistical non-inferiority to the field’s
diagnostic standard, excellent sensitivity, generalizability to external
datasets, and resilience to variations in slide processing. This convinc-
ing statistical performance, along with the clear, biological principles
underlying it, should inspire confidence in future end-users of the
CACHE-Grader and future pipelines built using these methods.

Supplementary material

Supplementary material is available at European Heart Journal online.
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