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Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and
treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the
phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include
genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused
by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by
environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to
glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-«B, FoxO, etc.).
At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant
neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive
interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms
ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related
mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest
that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or
NF-«B inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia
patients based on oxidative stress-related markers for the administration of redox-correcting treatment.

1. Introduction

Schizophrenia is a complex and heterogeneous mental disor-
der. The heterogeneity of schizophrenia is associated with a
wide range of causative biological pathways. However, the fac-
tor that unites these biological pathways is oxidative stress
(OS). However, there is still no definite opinion on whether
OS is the primary cause of the disease, or it occurs secondarily
under the influence of environmental factors or long-term

treatment. Nonetheless, it is generally accepted that OS plays
an essential role in the pathogenesis of schizophrenia. In the
first part of this comprehensive review, we will analyze the var-
ious mechanisms of schizophrenia pathogenesis associated
with oxidative stress. In the second part, we will consider the
effect of antipsychotic therapy on the parameters of redox bal-
ance, as well as review the prospects for the use of antioxidant
therapy, and also propose new therapeutic strategies for redox
correction based on transcription factor-targeting drugs.
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2. Oxidative Stress in the Central
Nervous System

Currently, there are a large number of facts that indicate the
development of pronounced oxidative stress in various dis-
eases of the central nervous system. It is due to a combination
of many important factors and characteristics of the nervous
tissue. The most significant of these is the high intensity of
oxidative metabolism since 90% of the brain’s energy needs
are provided by aerobic processes [1]. Also important is the
high content of unsaturated lipids in the nervous tissue [2]
and metals of mixed valence (especially iron) [3], the partic-
ipation of free radicals in neuroregulation [4], and the ability
of several mediators and hormones to generate reactive oxy-
gen species (ROS) [5].

The development of radical oxidative reactions in the
nervous tissue is mainly local and depends on the metabolic
characteristics of a particular type of tissue. CNS neurons
are one of the primary consumers of glucose, oxygen, and
ATP, high levels of which are necessary for maintaining
membrane potentials, synthesizing neurotransmitters, and
ensuring reorganization of synaptic connections and synap-
tic plasticity in postnatal development. All this provides an
extreme sensitivity of neurons to OS; also, neurotransmitter
metabolism itself generates prooxidants [6].

An imbalance of Ca** contributes to the aggravation of
OS in neurons. ROS block the Ca** pumps of the endoplas-
mic reticulum and neurolemma, leading to an excessive con-
centration of Ca** ions in the cytoplasm of the neuron [7].
Intracellular Ca** regulates the release of neurotransmitters
in the synaptic terminals, thus modulating synaptic activity
and plasticity. In schizophrenia, there is a disruption of the
synaptic transmission and plasticity [8], including the dis-
ruption of the N-methyl-D-aspartate receptor (NMDAR)
activity, which is also modulated by Ca". Besides, Ca** ions
activate nNOS and the formation of NO, CO;, and NO,
anions that trigger neurodegeneration processes, via the heat
shock protein 90 and apoptosis activation [9].

Increasing the concentration of the intracellular Ca** ion
activates phospholipase A,. Phospholipase A, hydrolyzes
membrane phospholipids, which are rich in cell membranes
and myelin oligodendrocytes, by oxidizing polyunsaturated
fatty acids (PUFAs) [10]. During phospholipase hydrolysis,
PUFA is released from the membrane and further partici-
pates in signal transduction directly or after conversion to
bioactive derivatives. PUFAs and their mediators regulate
brain processes, such as neurotransmission, neurogenesis,
neuroinflammation, and neuron protection. Besides, in neu-
rons, PUFA is used as a substrate for the synthesis of ATP by
B-oxidation due to the higher yield of ATP, compared to the
oxidation of glucose and lactate [11].

Metals with mixed valence (especially iron and copper)
can contribute to the development of OS in neurons [12].
Iron in brain tissues is necessary for metabolic processes, syn-
thesis of aminergic neurotransmitters, and synaptic connec-
tions in neurons [13]. However, the high content of Fe?" in
the central nervous system is potentially toxic due to iron-
generated ROS in an oxygen-rich environment. Also, metals
with mixed-valence properties can bind directly to DNA,
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changing the properties of reparative proteins. Neurons con-
tain a “labile” pool of Cu*(e), which is essential for transmit-
ting cellular signals and excitability of neurons. Also, Cu** is
a significant cofactor for enzymes. The high content of
Cu*(e) ions in neurons (from 0.1 uM to 1.3 uM) encourages
Cu**-catalyzed protein oxidation and may be associated with
a toxic increase in peroxidase activity, which can generate
CO, through HOOCO, and thiol oxidase activity [14]. Cop-
per ions can also participate in the generation of OH® radicals
by reacting with hydrogen hydroperoxide [15].

Having the factors mentioned above of vulnerability to
OS, neurons have extremely weak antioxidant protection.
Neurons have 50 times less catalase content compared to
hepatocytes. The content of reduced glutathione (GSH) is
~50% lower in neurons compared to other cells (for example,
~5uM in neurons compared to 10-11 uM in hepatocytes)
[16]. The reduced ability to synthesize GSH due to the low
content and activity of the transcription factor Nrf2 (nuclear
factor erythroid 2-related factor 2), which binds the pro-
moter, is responsible for the low level of cytosolic GSH in
neurons. Cortical neurons have been shown to express Nrf2
approximately 100-1000 times less than astrocytes [17].
Additionally, the neuronal activity of Nrf2 is limited by the
high content of the Cullin 3 protein, contributing to the pro-
teasome degradation of Nrf2 [18]. All this contributes to the
accumulation of ROS in neurons.

GSH enhances GABA-activated responses of inhibitory
neurons via GABA receptors. Low GSH levels can lead to a
decrease in GABA-mediated feedback inhibition and affect
the normal function of GABAergic neurons in the prefrontal
cortex by removing inhibitory effects on neurons in this area,
which may be the cause of positive symptoms of schizophrenia
[19]. In patients with schizophrenia, a decrease in the level of
glutathione in the prefrontal cortex has been shown [20].

Astrocytes, in contrast, play a significant role in providing
antioxidant support to neighboring neurons, and redox regu-
lation of the Nrf2 astrocyte pathway is a potent homeostatic
regulator of a large cohort of Nrf2-regulated antioxidant genes
that are expressed by these cells. Even in an inactive state,
astrocytes actively express antioxidant enzymes, including cat-
alytic and regulatory subunits of glutamate-cysteine ligase
(GCL), glutathione peroxidase (GPX), glutathione reductase
(GSR), glutathione S-transferase (GST), as well as reduced glu-
tathione (GSH), and vitamins C and E. Astrocytes also control
the supply of energy substrates to the neurons to activate the
pentose phosphate glucose utilization pathway that supports
glutathione in its reduced state [21]. The NMDAR function
is modulated by redox systems through the forming of disul-
fide bonds in receptor subunits that reduce NMDAR conduc-
tivity [22]. Astrocytic abnormalities in schizophrenia include
disorders of glutamate reuptake, recycling, and turnover of
endogenous NMDAR ligands [23]. The NMDAR hypofunc-
tion leads to cortical oxidative stress, GSH deficiency, and
decreased activity of the thioredoxin/peroxiredoxin system
through transcriptional control of several critical antioxidant
genes [24].

Oligodendrocytes, which are necessary for maintaining a
high speed of signal transmission through axons and main-
taining the metabolism of neurons, are extremely vulnerable
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to OS’s effects. These cells require significant energy costs to
maintain and form massive areas of the membrane, stacked
in myelin sheets throughout the entire period of postnatal
development. Also, myelin itself is a rich source of PUFA.
Among all CNS cells, oligodendrocytes have the highest iron
content, which is also necessary for the production of myelin
[25]. When myelin is damaged, iron is released into the
extracellular space and causes the formation of hydroxyl rad-
icals during the transition of Fe** to Fe’*, thereby contribut-
ing to the development of OS. This may also lead to the death
of microglial cells caused by the absorption of Fe from the
intercellular space [26].

Microglia, as the main immunological compartment of
the central nervous system performing protective and immu-
noregulatory functions, is itself a ROS source. They are
necessary as the central acting units of extracellular effector
and intracellular signaling systems that regulate anti-
inflammatory and antioxidant response and the main tran-
scription programs via NF-«B and Nrf2, respectively [27].
However, in schizophrenia, excessive activation of microglia
was detected, which leads to an increase in ROS production
[28] and the development of neuroinflammation [29].

Different brain regions also differ in their susceptibility to
OS. The regions of the brain that are most sensitive to OS are
the amygdala, hippocampus, and cerebellar granule cells of
the cerebellar cortex. Neurons with different sensitivity to
OS can be found in each brain region [30].

The pyramidal neurons of the hippocampus of the adja-
cent CAl and CA3 regions are similar in morphology, but
not in their sensitivity to OS. A moderate decrease in GSH
has been shown to cause a more pronounced OS in the
CAL1 region [31]. The accumulation of ROS in the CAl area
is accompanied by the significant destruction of neurons,
which is observed in the CA3 region to a much lesser extent
[32]. When creating an OS model by removing GPX4, it was
shown that in the hippocampus, OS causes local neurodegen-
eration [33].

Neurons in the midbrain, namely the dopaminergic neu-
rons of the pars compacta of substantia nigra (A9) and the
adjacent ventral region (A10), also respond differently to
OS. Despite the high content of Fe and Cu ions in these
regions and the processes of dopamine autooxidation occur-
ring in both parts of the midbrain, A9 neurons are more sen-
sitive to OS effects [6].

Granular neurons in the cerebellum are susceptible to
OS. It was shown that the superoxide generated by xan-
thine oxidase in granular cells induced apoptosis both
directly through activation of caspase-3, and indirectly
through a violation of the Ca* balance [34]. In neurons of
the cerebral cortex (layers IV-VI), this reaction was almost
not observed, so it can be argued that this area is less sensitive
to OS [6].

Thus, many signaling and metabolic pathways in brain
tissues provoke enhanced ROS formation, which is often
exacerbated by the region-specific sensitivity of the brain to
OS. In schizophrenia, these features become critical, com-
pounded by the fact that OS plays a significant role in the
pathogenesis of the disease, leading to the formation of stable
disruptions of the redox balance.

3. Altered Redox Balance in Schizophrenia

Now, there is overwhelming evidence of redox imbalance in
schizophrenia. This issue is considered thoroughly and in
detail in numerous reviews [35-37] and meta-analyses [38-
46]. The main markers of redox imbalance in schizophrenia
are summarized in Table 1. Regardless of data heterogeneity,
the predominance of prooxidant processes and deficiency of
the antioxidant system, that is, the state of generalized oxida-
tive stress, are mostly observed in schizophrenia. The main
changes in the nonenzymatic antioxidant system consist of
decreasing the concentrations of bilirubin, uric acid, ascorbic
acid, tocopherol, pyridoxal, folate, and polyunsaturated fatty
acids (PUFAs). The data on the reduction of folate and pyr-
idoxal in blood serum of schizophrenia patients were con-
firmed by meta-analyses [42, 44]. The data on the reduction
of PUFAs of the red blood cell membrane in patients treated
with antipsychotic medication and antipsychotic-naive
patients were supported by meta-analysis [41] and seem con-
vincing. Besides, the reduction of uric acid in the serum of
patients was demonstrated and supported by meta-analysis
[40]. Numerous data are indicative of the decreased concen-
tration of reduced glutathione and increased concentration
of oxidized glutathione in plasma [47, 48], erythrocytes
[49], cerebrospinal fluid [50], and different brain regions
[50-52] in first-episode, nonmedicated, medicated, and
chronic schizophrenia patients.

The primary markers of disorders in the fermentative
antioxidant system in schizophrenia are related to oppositely
directed changes in the activity of antioxidant ferments
(Table 1). According to the meta-analysis results, the level
of activity of erythrocyte superoxide dismutase was reduced
in acute relapse of psychosis, drug-naive first-episode psy-
chosis, stable medicated outpatients, and chronic inpatients
[40]. The level of activity of erythrocyte catalase was
decreased in the mentioned groups of patients, except for sta-
ble medicated outpatients, in whom this level was increased
[40]. The level of activity of erythrocyte glutathione peroxi-
dase was reduced in acute relapse of psychosis and chronic
schizophrenia patients [40]. However, according to the
results of other meta-analyses, the changes in the level of
activity appeared to be statistically insignificant [43, 45]. This
is explained by small samples of patients, high heterogeneity
of groups, and the effect of therapy.

Markers of free radical oxidation products (Table 1) prove
the predominance of prooxidant processes in schizophrenia.
Numerous data indicate an increase in the concentration of
thiobarbituric acid reactive substances (for example, malon-
dialdehyde), lipid peroxides, 4-hydroxynonenal, 3-nitrotyro-
sine, 8-hydroxy-2-deoxyguanosine, and others. The most
reliable proof of predominance of prooxidant processes is
the increase of thiobarbituric acid reactive substances in
drug-naive first-episode psychosis, stable medicated outpa-
tients, and chronic inpatients, which is confirmed by the
results of meta-analysis [40, 46]. Another remarkable proof
of redox imbalance in schizophrenia is the reduction of
the total antioxidant status in drug-naive first-episode psy-
chosis, which is also confirmed by meta-analyses and
reviews [35-37, 40, 45].
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TaBLE 1: Changes in oxidative stress-related markers in schizophrenia.
Reviews Meta-analyses
Parameters Yao J. K. and BoskovicM.  Koga M. Zhang M. Flatow J. Fraguas D.  Fraguas D.  Carvalho A. F.
M. S. Keshavan, 2011 et al.,, 2011  etal, 2016 etal, 2010 etal, 2013 et al., 2017 et al., 2019 et al., 2020
[35] [36] [37] [38] [40] [43] [45] [46]

Nonenzymatic antioxidant system

Bilirubin ! !

Biopyrrins® T T

Thioredoxin T 7

Uric acid 1 1 1 AN N.S.

Ascorbic acid (vitamin C)* 1 1 1 1

Tocopherol (vitamin E)* 1 1 l 1

Pyridoxal (vitamin B6) 1
Folate (vitamin B9) 1
Glutathione? l l N.S. N.S.

Free thiols ! !

PUFAs” l l (e l
Enzymatic antioxidant system

Superoxide dismutase’ ) ) ) l "wrle N.S. N.S.

Catalase® 1 1 Ik N.S. 1T Le N.S. N.S.

Glutathione peroxidasea 17 l 7 N.S. Il\: SI\LSlZ N.S. N.S.

Glutathione reductase’ l T

Glutathione transferase’ T

Free radical oxidation product markers

Thiobarbituric acid

reactive substances T ) T T ™1 e N.S T
(TBARS)*

Lipid peroxides T

Pentane’ T T

Ethane’ T T

Isoprostanes’ T

Carbonyl groups T T

4-Hydroxynonenal ) T

3-Nitrotyrosine T 7 T

8-Hydroxy-2-

deoxyguanosine” T

Other markers

NO 7 7 7 mr

Nitric oxide synthase‘s 17 17

Homocysteine 1 v

Xanthine oxidase’ T

Total antioxidant capacity l

The ferric reducing ability !

of plasma

Total antioxidant potential l

Total oxidant status N.S.

Total antioxidant status 1 | (e N.S. I

Notes. Data are for plasma/serum unless otherwise indicated. *In plasma/serum or urine. #In plasma/serum, red blood cells, or brain tissues. In red blood cell
membrane. °In plasma/serum, red blood cells, platelets, or postmortem brain. “In blood, plasma, cerebrospinal fluid, or red blood cells. °In exhaled air. *In urine
or postmortem brain. “Acute relapse of psychosis. "Drug-naive first-episode psychosis. "Stable medicated outpatients. “Chronic inpatients. Abbreviations:

PUFAs = polyunsaturated fatty acids. NO = nitric oxide. N.S. = not significant.

Only a limited number of studies indicate reductive stress
in schizophrenia [53, 54]. Using phosphorus magnetic reso-
nance spectroscopy studies, Kim et al. found a significant
decrease in the NAD+/NADH ratio in both first-episode
patients and chronic schizophrenia patients [53]. Chouinard

et al. replicated this observation and extended it to siblings of
schizophrenia patients with first-episode psychosis [54]. A
decrease in the NAD+/NADH ratio indicates a shift in redox
equilibrium towards a higher recovery potential. The reduc-
tive stress condition can lead to a paradoxical increase in
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mitochondrial ROS production [55]. Thus, both oxidative
stress and reductive stress can contribute to oxidative dam-
age in schizophrenia.

4. Molecular Mechanisms of Oxidative Stress in
the Pathogenesis of Schizophrenia

The redox imbalance can contribute to the development of
schizophrenia at various levels and through various
mechanisms. Diverse oxidative stress-associated molecular
mechanisms (summarized in Figure 1) involved in the
schizophrenia pathogenesis will be discussed in detail below.

4.1. Genetic Predisposition to Oxidative Stress in Schizophrenia.
Polygenic deterministic predisposition to mental pathology is
now proven. Schizophrenia, in particular, falls in the category
of multifactorial diseases, whose development is a consequence
of intergenic gene-environment impacts and interactions [56,
57]. Regarding schizophrenia, the significance of genetic factors
is as high as up to 80%.

According to the literature data, some oxidative stress-
related genetic polymorphisms are associated with schizophre-
nia (reviewed in [58]). First, GSH-related genes, such as gluta-
thione synthesis genes and genes of glutathione-dependent
antioxidant ferments, are associated with schizophrenia. In
particular, the association with genes of glutamate-cysteine
ligase subunits [59-61], being the main rate-limiting enzyme
of glutathione synthesis, has been found. At the same time,
no association with glutathione synthase genes has been
observed in Danish and Swiss populations [61]. Besides, the
association of single nucleotide polymorphisms (SNPs) of
glutathione S-transferase genes with schizophrenia has been
discovered [62-65], whereas no association of SNPs of glutathi-
one peroxidase 1 genes has been revealed [66].

Second, the association of polymorphous variants of genes
of antioxidant ferments with schizophrenia has been shown.
The association of polymorphisms of manganese superoxide
dismutase (Mn-SOD) genes has been demonstrated only for
the Turkish sample, with negative reports from Korean, Japa-
nese, and Caucasian samples [58]. In the Russian [67], Polish
[68], Japanese [69], and Xhosa [70] populations, the associ-
ation of Mn-SOD genes with tardive dyskinesia, which is a
side effect of antipsychotic medications, has been observed.
However, attempts to reproduce these observations in other
populations failed [71-75]. No association of polymorphous
variants of catalase genes with schizophrenia was found
[76-78]. The association with genes of methionine sulfoxide
reductase [79, 80], which regulates the activity of the central
dopamine degradation ferment—catechol-O-methyl transfer-
ase [81], has been observed.

Third, the association of nitric oxide metabolism genes
with schizophrenia has been revealed (reviewed in [82]). In
particular, the association with genes of nitric oxide synthase
1 and nitric oxide synthase 1 adaptor protein has been
shown [82].

Fourth, the association with mitochondrial genes was
found [58]. Indeed, the association with the MTND4 gene
(ND4 subunit of NADH-ubiquinone reductase) [83] and
other genes of mitochondrial DNA was reported [84].

Besides, in nuclear DNA, the association of the DISC1 gene
with schizophrenia was discovered [85-87]. This gene mostly
expresses in mitochondria [87] and takes part in mitochon-
drial transport, neuronal axon, and dendrite outgrowth, as
well as proliferation, differentiation, and migration of
neuronal cells. However, the recent genome-wide association
studies (GWASs) with large groups of patients and healthy
donors failed to prove the mentioned associations with
oxidative stress-related genetic polymorphisms [88-91]. It
seems necessary to carry out GWASs with larger samples.
However, the most important result of the GWASs is
proof of the polygenic nature of schizophrenia [88-91]. The
association with numerous genes, each being a minor con-
tributor to the disease’s pathogenesis, has been revealed.
According to the tentative estimate, the combination of
6,300 to 10,200 individual SNPs can provoke the develop-
ment of schizophrenia [90]. Besides, many discovered associ-
ations can also be related to other mental diseases [92], which
is indicative of some general mechanisms of the development
of mental disorders. Also, the results of GWASs suggest that
the disturbance of the regulation of gene expression is more
significant for the etiopathogenesis of schizophrenia than
changes in exonic regions of the genome (and, correspond-
ingly, in protein sequences) because many associations were
found beyond protein-coding regions of the genome [89, 90].

4.2. Gene Expression Dysregulation, Noncoding RNAs,
Environmental Impact, and Oxidative Stress in Schizophrenia.
Gene expression dysregulation in different tissues in
schizophrenia is confirmed by numerous postmortem studies
[93-96]. The transcription studies of the PsychENCODE
consortium with the use of RNA-sequencing techniques and
state-of-the-art analysis methods are indicative of complex spa-
tiotemporal, sexual, cell-specific alterations in gene expression,
splicing, and transcript isoforms levels in the brain of schizo-
phrenia patients [97, 98]. It is noteworthy that the top pathways
for diurnal rhythms in prefrontal cortex gene expression that
were different in schizophrenia compared to healthy controls
are oxidative phosphorylation and mitochondrial dysfunction
[99]. The results of proteomic studies also confirm gene expres-
sion dysregulation in schizophrenia [100-102]. Prabakaran
et al. showed that almost half of the proteins with altered
expression were associated with oxidative stress responses
and mitochondrial function [103]. Thus, genetic risk factors,
along with gene expression dysregulation, form the basis of eti-
ology and pathogenesis of schizophrenia and are associated
with redox imbalance.

The available data on gene expression dysregulation in
schizophrenia can be explained by dysregulation of tran-
scriptional factors [96], particularly those participating in
redox signaling. Indeed, SNPs of PDCD11 gene, coding the
NEF-«B-binding protein (NFBP) or the protein RRP5 homo-
log, have shown a statistically significant association with
schizophrenia according to the GWAS results [91]. It is
known that NFBP specifically binds to p50 and p65 subunits
of nuclear factor kappa B (NF-«xB) [104]. Besides, the associ-
ation with TRIMS (Tripartite Motif Containing 8) gene [91],
coding E3 ubiquitin-protein ligase TRIMS, has been shown.
E3 ubiquitin-protein ligase is known to potentiate TNFa-
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FiGurek 1: Oxidative stress-related mechanisms of schizophrenia pathogenesis. The involvement of each mechanism increases the likelihood
of phenotypic realization and the manifestation of schizophrenia. The red line indicates the probability of developing schizophrenia; various
causal mechanisms are plotted along the axes. All of these mechanisms can be involved both together and separately and during different
critical periods. Various genetic causes (1) contribute to the increased susceptibility of individuals to oxidative stress. Genetic
predisposition due to environmental impact at various critical periods contributes to redox imbalance, which leads to dysregulation of
gene expression and redox signaling (2). These changes promote mitochondrial dysfunction and metabolic abnormalities (3). These
processes, in turn, contribute to aberrant neuronal development (4) and abnormal myelination (5). These factors promote the
neurotransmitter anomalies (6) and dysfunction of parvalbumin-positive interneurons (7). Immune dysfunction (8) also contributes to
oxidative imbalance. All these mechanisms ultimately contribute to the manifestation of psychosis and the development of schizophrenia.
Abbreviations: PV = parvalbumin; NMDAR = N-methyl-D-aspartate receptor.

and IL-1f-induced activation of NF-xB [105]. Shotgun pro-
teomic analysis revealed that TRIM3 was upregulated in
postmortem dorsolateral prefrontal cortex samples obtained
from schizophrenia patients compared to its level in healthy
individuals [106]. One of the missense mutations revealed
in schizophrenia in TRIM genes is located in the catalytic
RING domain. Therefore, this variant may alter ubiquitin
ligase activity of this protein [106] and thus disturb NF-«xB
activation. Accordingly, some GWAS-identified SNPs associ-
ated with schizophrenia can affect NF-«B signaling. Taking
into account that NF-xB participates in redox signaling, dys-
regulation of this factor can favor redox imbalance.

Gene expression dysregulation in schizophrenia is also
associated with abnormalities in noncoding RNA-mediated
regulation [107]. Noncoding RNAs (ncRNAs) are known to
take part in redox regulation; moreover, ncRNAs affect ROS
generation and ROS affect ncRNA transcription (reviewed in
[108]). Among numerous ncRNAs dysregulated in schizo-
phrenia [107], some are related to oxidative stress responses.
Indeed, microRNA-30b expression was reduced [109],
whereas the expression of microRNA-181la was increased
[110] in brain samples of the prefrontal cortex of patients with
schizophrenia. One of the target genes of microRNA-30b is
CAT (encoding catalase), and the target gene of microRNA-

181a is GPX1 (encoding glutathione peroxidase 1) [108]. In
another example, the level of expression of microRNA-146a,
which regulates the SOD2 gene (encoding superoxide dismut-
ase 2) expression, was increased in peripheral blood mononu-
clear cells [111]. Besides, in the systematic review by Smigielski
et al,, dysregulation of microRNA-34a (mostly upregulation)
and microRNA-132 (mixed pattern) was identified in different
tissues of patients with schizophrenia [112]. These micro-
RNAs take part in the regulation of nuclear factor erythroid
2-related factor 2 (Nrf2) that regulates the expression of
numerous antioxidant proteins [113]. The increase in the level
of expression of microRNA favors the silencing of the target
gene. In contrast, the reduction of microRNA expression
favors the increase of the target gene expression, although
some exceptions are possible. Thus, the discovered abnormal
level of microRNA expression in schizophrenia can globally
affect the redox balance. However, it cannot be excluded that
the change in the ncRNA level can also respond to a shift in
redox balance [108].

Various environmental insults can contribute to gene
expression dysregulation and redox imbalance in schizophre-
nia. Primarily, inflammation-mediated immune responses
are also accompanied by abnormal gene expression, as well
as by the oxidative stress. Indeed, animal model studies
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confirm that lipopolysaccharide- (LPS-) induced maternal
immune activation leads to an increase of expression profiles
of oxidative stress-related genes and a decrease of expression
profiles of critical neurodevelopmental genes in the fetal
brain [114]. Other environmental insults associated with oxi-
dative stress and schizophrenia are pre- and postnatal pro-
tein malnutrition [115] and hypoxia [116]. Besides, it was
shown with the mouse model that prenatal hypovitaminosis
D alters the gene expression of several biological pathways,
including oxidative phosphorylation and redox balance
[117]. Studies in the human population confirm the influence
of neonatal vitamin D status on the risk of schizophrenia
[118]. Early life adversity, for instance, maternal separation,
favors oxidative stress in parvalbumin- (PV-) positive neu-
rons [119] (more on the role of parvalbumin-expressing neu-
rons is discussed further). Prenatal stress also supports
oxidative stress and neuronal loss in the rat hippocampus
[120]. At the same time, human epidemiological studies con-
firm that prenatal stress due to grief, famine, and major disas-
ters has effects on vulnerability to schizophrenia [121]. It
addition, it was shown that postweaning social isolation dis-
turbs antioxidant defense mechanisms in cortical parvalbumin-
(PV-) positive interneurons, supposedly mediated by downreg-
ulation of peroxisome proliferator-activated receptor-gamma
coactivator 1-alpha (PGC-1a), which is a transcriptional coac-
tivator and participates in the regulation of mitochondrial
energy metabolism [122]. The oxidative stress after social isola-
tion in rats was caused by increased expression of hypoxia-
inducible factor-1a (HIF-1«) and redox-sensitive transcription
factor c-fos. A treatment NOX inhibitor apocynin prevented
histopathological and behavioral alterations [123].

Epigenetic mechanisms can serve a connecting link
between environmental and genetic factors (reviewed in
[112, 124, 125]). The following impairments of epigenetic
regulation were found in schizophrenia: aberrant DNA
methylation at approximately 100 loci, including genes regu-
lating glutamatergic and GABAergic systems, genes of the
stress response, and genes regulating the development of
the nervous system, was shown; an alteration in the methylation
status of different genes led to a change in symptoms of a
disease; increased activity of DNA-methyltransferase 1 in inter-
neurons of the hippocampus and striatum was found; increased
levels of methyl group donor-S-adenosylmethionine was
revealed in the prefrontal cortex of patients; increased level
of homocysteine in blood serum was observed in acute schizo-
phrenia; and histone modifications leading to dysregulation of
different genes were found [112].

A considerable part of the epigenetic alterations in
schizophrenia can be acquired through numerous environ-
mental factors, and epigenetic changes can affect brain func-
tions throughout the entire life. They can be inherited via
epigenetic germline inheritance [91]. Besides, epigenetic
modifications may be the molecular basis of the phenotypic
heterogeneity of schizophrenia [125].

Thus, genetic susceptibility and gene expression dysregu-
lation caused by abnormal regulation of transcriptional fac-
tors, noncoding RNAs, and epigenetic mechanisms favored
by environmental insults form the basis of the prooxidant
state underlying the pathogenesis of schizophrenia.

4.3. Altered Redox Regulation and Redox-Dependent
Signaling in Schizophrenia. Maintenance of redox balance is
essential for the cell and the entire organism. The redox reg-
ulation is controlled by different mechanisms [113] and is
closely related to redox signaling [126]. Accurate redox regu-
lation is necessary for cellular signaling because reactive oxy-
gen and nitrogen species (ROS and RNS) participate in
numerous signaling pathways [127, 128]. ROS or RNS in
physiological concentrations take part in cell-signaling
mechanisms, but in high levels, they favor oxidative stress
[127, 128]. In the broad sense of the term, redox signaling
is signaling processes accompanied by electron transfer reac-
tions in which ROS and RNS or reductive equivalents are
involved [129].

Oxidation and reduction of cysteine residues in transduc-
ing signal proteins are assumed to be the fundamental mech-
anisms by which ROS and RNS integrate into cellular signal
transduction pathways [126]. Many signal events are accom-
panied by the generation of ROS serving as secondary mes-
sengers, thus leading to oxidative modifications of cysteine
[127, 128]. Oxidative posttranslational modifications of cys-
teine residues in proteins under the effect of ROS include oxi-
dation of cysteine thiols to sulfenic acid (SOH), sulfinic acid
(SO,H), and irreversible sulfonic acid (SO;H) [130]. RNS
interacts with cysteine thiols with the formation of reversible
S-nitrosothiol [130]. The following reaction consists of intra-
molecular disulfide bond formation or conjugation with GSH
(S-glutathionylation) [130]. S-glutathionylation can occur
chemically or fermentatively via glutathione S-transferase
(GST), peroxiredoxins, and occasionally glutaredoxins
[130]. Reversing the oxidized cysteine residues in the sulfenic
acid state occurs through the thioredoxin or GSH-dependent
pathway [131]. Reversing the sulfinic acid state requires sul-
firedoxin [131]. The reductive cellular environment (GSH)
or catalysis by glutaredoxins remove protein-bound GSH
and restore the protein cysteine [130]. Thus, glutathione
is an essential molecule in signal transduction regulation.
Oxidative stress and GSH deficiency, which are observed
in schizophrenia [132, 133], can break the oxidation and
reduction cycles of the cysteine residues, thereby disrupting
redox signaling.

Many protein tyrosine phosphatases (PTPs) participating
in signal cascades are direct targets of ROS and RNS [131].
Generation of ROS in response to, for example, receptor acti-
vation leads to inactivation of PTPs, thus leading to an
increase of phosphorylation of numerous kinase targets,
which is a necessary event for downstream signaling [131].
ROS inactivate not only PTPs but also dual-specificity
phosphatases (for example, PTEN (phosphatase and tensin
homolog deleted on chromosome 10)), low-molecular-
weight PTPs, and cell cycle phosphatase [134]. Besides,
ROS activate indirectly mitogen-activated protein kinases
(MAPK), in particular, apoptosis signal-regulated kinase 1
(ASK1), through cysteine oxidation of thioredoxin, which
directly inhibits its kinase activity [127]. The prooxidant state
in schizophrenia can favor abnormal signaling.

Redox imbalance can also influence transcriptional fac-
tors. There are multiple ROS sensors and pathways involved
in the redox-gene transcription regulation, in particular, Nrf2



(nuclear factor erythroid 2 related factor 2), NF-«B (nuclear
factor kappa B), FoxO (forkhead box class O), AP-1 (activa-
tor protein 1), CREB (cAMP response element-binding pro-
tein), HSF1 (heat shock factor 1), TP53 (tumor protein p53),
HIF-1 (hypoxia-inducible factor 1-alpha), SP1 (specificity
protein 1), and other proteins [113].

The Nrf2-Keapl (Kelch-like ECH-associated protein 1)
pathway is one of the primary regulators of responses to oxi-
dative stress [113]. Under normal conditions, Nrf2 is inacti-
vated by Keapl-mediated ubiquitination and subsequent
proteasomal degradation. Sulthydryl groups of Keapl act as
ROS sensors, and their oxidation in the presence of ROS
leads to nuclear translocation of Nrf2 and increased expres-
sion of antioxidant genes [113]. Transcription factor Nrf2
has shown the ability, both in in vitro and in in vivo experi-
ments, to activate a series of vitagenes including (Hsp)
Hsp32, Hsp70, and thioredoxin, conferring protection
against oxidative stress, and contributing to establish a cyto-
protective state in inflammation and neurodegenerative dis-
orders [135, 136]. In the normal state, these pathways are
considered as hormetic mechanisms of adaptive cellular
stress response [137, 138]. In schizophrenia patients under
conditions of systemic oxidative stress, the decreased Nrf2
expression in peripheral blood lymphocytes was discovered
[139]. Besides, expressions of Nrf2 and Keapl proteins in
the parietal cortex from brain samples of schizophrenia
patients were lower than those of healthy individuals [140].

NF-«B takes part not only in the regulation of genes of
immune response, development, proliferation, and apoptosis
but also in redox regulation [141]. ROS promote dissociation
of inhibitory proteins and activation of NF-«B [113]. The
increases in mRNA levels for NF-«B family members,
NF-«B activation receptors, kinases, and inhibitor protein
(IxkBar) were found in the prefrontal cortex of schizophre-
nia patients [142].

The forkhead box class O (FoxO) family of transcription
factors are critical regulators of the expression of genes
involved in cellular oxidative stress response, ROS detoxifica-
tion, DNA repair, energy homeostasis, and glucose
metabolism (reviewed in [143]). FoxO transcription factors
regulate numerous genes coding for intra- and extracellular
antioxidant proteins such as Mn-SOD and Cu,Zn-SOD,
peroxiredoxin-3 and peroxiredoxin-5, mitochondrial thiore-
doxin (Trx2) and mitochondrial thioredoxin reductase, glu-
tathione peroxidase 1, and selenoprotein P [143]. Several
protein kinases such as protein kinase B (Akt), extracellular
signal-regulated kinase (ERK), p38 mitogen-activated pro-
tein kinases (p38MAPK), and c-Jun N-terminal kinase
(JNK) phosphorylate FoxO transcription factors in response
to elevated levels of ROS and upon exposure of cells to stress-
ful stimuli [143]. Moreover, the effects are different depend-
ing on protein kinases; for instance, phosphorylation by
Akt usually inactivates FoxO1la, FoxO3a, FoxO4, and FoxO6
proteins, whereas JNK activates FoxO4 and inactivates
FoxO3a [143]. It was shown in the mouse model that behav-
ioral stress can activate FoxO3a in the cerebral cortex
through inactivation of Akt and is accompanied by activation
of glycogen synthase kinase-3f (GSK33) [144]. It was shown
that the expression and activity of AKT1 were reduced in
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lymphocytes and in the frontal cortex and hippocampus of
individuals with schizophrenia [145]. In another study, the
reduction of expression of Akt and other Akt-mTOR signal-
ing pathway proteins in the dorsolateral prefrontal cortex in
schizophrenia was demonstrated [146]. The expression of
JNK1 and JNK2 was decreased in the anterior cingulate cor-
tex of schizophrenia patients, while the expression of ERK1/2
or p38 was unchanged [147]. Besides, different antipsy-
chotics and psychoactive substances affect dopamine-
associated behaviors through modulation of the Akt/GSK3p3
signaling pathway [148]. It is also known that clozapine can
regulate the activity of the Akt/FoxO3a signaling pathway
via phosphorylation of Akt and FoxO3a [149]. Thus,
alteration of the activity of protein kinases, in particular, as
a result of antipsychotic treatment, can modulate FoxO
activities. This opens new ways of using inhibitors of pro-
tein kinases in the modulation of redox-regulated tran-
scription factors.

Another mechanism of regulation of FoxO activities con-
sists of acetylation and ubiquitination of lysine residues. His-
tone acetyltransferases and deacetylases catalyze reversible
lysine acetylation. The ubiquitination of FoxOs proceeds by
ubiquitin-protein ligases and promotes proteasomal degra-
dation of FoxOs. Oxidative stress caused by increased intra-
cellular levels of ROS and RNS, particularly H,O,, has been
identified as a critical mediator of the state of acetylation
and ubiquitination of FoxOs [143]. Indeed, exogenous
H,0, induces the formation of heterodimers between
coactivators (p300 and CBP (CREB-binding protein) acetyl-
transferases) and FoxO4 through intermolecular disulfide
bridges between redox-sensitive cysteine residues and stimu-
lates acetylation of FoxO4 [150]. Brunet et al. have shown
that NAD-dependent deacetylase sirtuin-1 (SIRT1) is a cru-
cial regulator of the activity of FoxOs [151]. The activity of
SIRT1 depends on the redox state of a cell, is regulated by
the NAD+/NADH ratio, and is activated at a restriction of
reduction equivalents [143]. SIRT1 is associated with the
depression behavior in the mouse model [152] and with
depressive symptoms in schizophrenia patients [153]. It is
noticeable that there exist medicines increasing SIRT1 activ-
ity, for example, resveratrol [152] or salvianolic acid B [154],
which can promote correction of redox imbalance through
an increase in activity of Nrf2 [154] and, likely, FoxO, as well
as through a decrease in the activity of NF-«B. However, an
increase in the activity of SIRT1 in the nucleus accumbens
may favor anxiety- and depression-like behaviors [152].

The transcriptional coactivator PGC-la (peroxisome
proliferator-activated receptor-gamma coactivator la) is an
upstream regulator of energy metabolism and mitochondrial
biogenesis. PGC-1a has been shown to regulate FoxO tran-
scription factor activity in various cells [143]. GWASs have
identified that PGC-1« is one of the candidate genes for
schizophrenia [155]. PGC-1a knockout mice presented some
characteristic features of schizophrenia [155]. Besides, PGC-
la gene deletion delayed maturation of PV interneurons,
including their perineuronal nets [155]. As stated above,
postweaning social isolation leads to the downregulation of
PGC-1a in mice [122]. PGC-1la-dependent transcripts in
postmortem cortical tissue from schizophrenia patients were
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reduced and accompanied by a decrease in expression of
Nrfl as well as PV [156]. The data presented relate redox
imbalance and altered redox regulation to the pathology of
PV interneurons [156] (more on PV neuron pathology will
be discussed below).

Thus, there are some data on the altered redox regulation
and signaling in schizophrenia, which is related to prooxi-
dant processes, glutathione deficiency, and impaired expres-
sion of transcriptional factors and multiple ROS sensors.

4.4. Effect of Oxidative Stress on Neuronal Development. The
dysontogenetic hypothesis of schizophrenia was first formu-
lated more than three decades ago [157, 158]. Today, it is
proved by a wide range of studies whose results are indicative
of neuroanatomical and cytoarchitecture brain disorders,
such as disorders in the structure of synapsis and mediator
systems, decrease of oligodendrocytes, and reduction of mye-
lination. Many factors affecting the pre- and postnatal
periods of development are considered as causes for these
disorders. The prenatal causes include in utero exposure to
viral and bacterial infections during pregnancy, maternal
chronic diseases, severe nutritional disturbances of a mother
during pregnancy, obstetric complications, and influence of
alcohol, narcotic substances, and pharmaceutical products
on the fetus. The main postnatal factors are social depriva-
tion and psychogenic stress at an early age [159, 160].
Several studies are confirming the relation of schizophre-
nia to such viral diseases as influenza, herpes (Herpes Sim-
plex Virus Type 2 (HSV-2)), and rubella [161]. The
response of the maternal organism to an infectious disease
leads to the activation of cytokines, which, in turn, gives rise
to the risk of psychotic disorder. Buka et al. have found that
the increased level of TNFa in mothers with infectious dis-
ease in the third trimester of pregnancy leads to an eightfold
increase in the risk of psychotic disorder in the child as an
adult [162]. Maternal TNF« penetrates through the placental
barrier into fetal CNS [163] and leads to ROS generation
through activation of NADPH oxidase [164]. The studies in
animals show that cytokines penetrating through the fetal
blood-brain barrier (BBB) significantly affect the survival
and differentiation of neurons [165]. The paper by Simdes
et al. reports a significant increase in IL-13, IL-6, and TNFaf3
levels in the offspring brain in response to maternal cytokines
[166]. The inflammatory response leads to an increase in
ROS generation by endothelial cells, and, consequently, to
disruption of BBB permeability [167]. In addition to the dis-
ruption of BBB and placental barrier permeability, cytokines
in the brain regulate the expression of major histocompatibil-
ity complex I (MHC I), coordinating synaptic pruning [168,
169]. Postmortem examination of the brain in schizophrenia
patients shows that synaptic proteins interact with the com-
plement system and other immunological pathways, causing
changes in glial structures and synapse elimination [170].
Activation of cytokines in the maternal organism not
only can be caused by the effect of an infectious agent but also
can be induced by the action of ethanol on the fetus. The
studies of Gonzalez-Quintela et al. have demonstrated that
the expression of IL-1a, IL-6, and TNF« can increase after
single-dose administration of 60 g ethanol [171]. It has also

been shown that chronic alcohol consumption increases the
transcription of TNFea, IL-1f3, and toll-like receptor 4
(TLR4) in the brain cortex and hypothalamus [172]. In the
experiment with rats, at the intraperitoneal injection of etha-
nol in the concentration of 4 g/kg, a considerable increase of
IL-6 expression in the hippocampus, paraventricular nucleus
of the hypothalamus, and tonsil was observed [173]. Ethanol
significantly affects neural membranes and synaptic contacts
between developing neurons. In a fetus of an alcoholic
mother at 9-12 weeks of pregnancy, the slower development
of synapses, the shorter length of the postsynaptic density, and
the smaller perimeter and area of the presynaptic terminal
were observed. Ethanol-induced oxidative modification of
proteins and lipids of cell membranes can be one of the mech-
anisms of the toxic effect of ethanol at neurogenesis [174].

At the chronic effect of ethanol, the amount of ROS and
NO in the brain increases through induction of NADPH oxi-
dase and NO synthase under the exposure to glial cyto-
chrome P450-2E1 (CYP2EIL) [175, 176]. In the study with
mouse models, it was shown that an ethanol-induced distur-
bance of the redox homeostasis leads to activation of microg-
lia by the M1 phenotype [177, 178]. Activation by the M1
phenotype leads to the secretion of proinflammatory cyto-
kines and chemokines and ROS production.

The increased synthesis of proinflammatory cytokines is
observed in obese pregnant women. It was revealed that the
body mass index correlates directly with the concentration of
proinflammatory cytokines in the mother and activation of
proinflammatory pathways in the placenta [179]. In animal
models, it was shown that obesity during pregnancy is related
to systemic and placental inflammation, oxidative stress, and
antioxidant deficit in the bodies of the mother and the fetus
[180]. Edlow et al. have demonstrated that fetal expression of
apolipoprotein D (APOD) gene was nine times higher in the
case of an obese mother [181]. The increased APOD expres-
sion, in turn, was found in schizophrenia patients [182].

In addition to obesity, gestational diabetes and pregesta-
tional diabetes are possible factors of increased ROS genera-
tion [183, 184]. Under conditions of excess glucose in the
mother’s blood, the increased production of the superoxide
anion radical (O, *) is observed [185]. Consequently, the dis-
turbance of glucose exchange in the prenatal period leads to
changes in the structure and functions of the plasmatic mem-
brane of neurons and the receptor apparatus of neurotrans-
mitters, thus increasing the risk of schizophrenia at adult
age. The decreased placental levels of arachidonic acid (AA)
and docosahexaenoic acid (DHA) were found in mothers
and children with gestational diabetes [186]. These factors
have a maximally unfavorable effect on the development of
the child’s brain: polyunsaturated fatty acids take part in syn-
aptogenesis and synthesis of neuromodulators and prevent
the synthesis of signal molecules associated with Alzheimer’s
disease and schizophrenia [187]. In postmortem studies, it
was shown that schizophrenia patients had decreased AA
and DHA levels in the frontal cortex [188]. The reduced level
of polyunsaturated fatty acids is also assigned to the
disruption of synaptic transmission of dopamine and GABA,
which plays an essential role in the pathogenesis of
schizophrenia [189, 190].
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Recent studies demonstrate the relationship between the
psychosocial stress in the postnatal period and the oxidative
stress [191, 192]. It was assumed that the disturbance of the
regulation of the hypothalamus-pituitary-adrenal axis could
mediate the relationship between childhood trauma and
psychosis. Colaianna et al. demonstrate that psychosocial
stress leads to the increased ROS generation by NADPH oxi-
dase 2 (NOX2) in the hypothalamus [193]. The oxidative
stress in the hypothalamus disturbs the functions of the
hypothalamus-pituitary-adrenal axis, contributing to psy-
chosis development [194, 195]. Disorder in the development
of the nervous system assumes that the prolonged exposure
to stressors can cause the increased release of glucocorticoids,
which stimulate the dopaminergic activity, thus increasing
the risk of psychosis [196]. As is known, the increased dopa-
mine synthesis is related to symptom severity at the prodro-
mal stage. Besides, dopamine hyperactivation appears in
schizophrenia patients in the acute stage and after psycholog-
ical stress [196]. Glucocorticoid neurotoxicity favors the loss
in hippocampus volume, which is observed in schizophrenia
patients even at early stages [197].

Many investigators indicate that disorders of the prenatal
brain development are related to the activation of oxidative
stress. The activation of maternal immune reactions leads
to the increased synthesis of cytokines and ROS, thus medi-
ating inflammatory responses in the fetal brain. In addition
to inflammatory responses, ROS affects the cell membranes
of neurons, leading to the disturbance of the neurotransmis-
sion of dopamine, glutamate, and GABA, which are the main
neuromediators involved in the pathogenesis of schizophre-
nia. Thus, maternal infectious diseases, obesity, diabetes,
alcohol ingestion, and other factors lead to the development
of oxidative stress in the fetal brain, which can be a predictor
of schizophrenia development at adult age, in which the
process of synaptic pruning in adolescence may be the
starting point.

4.5. Metabolic Abnormalities and Mitochondrial Dysfunction.
Mitochondria are not only the leading energy supplier of the
cell but are also actively involved in other critical physiolog-
ical processes, including redox signaling, calcium homeosta-
sis, cellular differentiation, and apoptotic cell death. The role
of mitochondria is especially crucial for the development and
functioning of the nervous system. Mitochondria are
involved in the regulation of neuronal differentiation, neuro-
plasticity, axogenesis, dendritogenesis, and the release of
neurotransmitters by generating adenosine triphosphate
(ATP) and regulating subcellular calcium concentration
and redox homeostasis [198]. Mitochondrial dysfunction
and decreased ATP production lead to the disruption of the
transmembrane gradient and intracellular calcium buffering
as well as enhancing ROS production [199].

Ample evidence has been accumulated, indicating a
multifaceted mitochondrial dysfunction in schizophrenia
(reviewed in [198, 200, 201]). Primarily, morphological and
functional abnormalities of mitochondria in schizophrenia
were detected. An electron microscopic study of the post-
mortem brain tissues of patients with schizophrenia showed
a significant decrease in the number and density of mito-

Oxidative Medicine and Cellular Longevity

chondria of oligodendroglial cells in the prefrontal cortex
and caudate nucleus [202]. Besides, the functional activities
of complexes IV and I+III of the mitochondrial electron
transport chain were reduced in some areas of postmortem
cortex tissues in patients with schizophrenia [203]. It is
known that antipsychotic treatment reduces the activity of
complex I in mitochondria [199]. In vivo imaging studies
also confirm the functional changes in mitochondria in
schizophrenia. The decreased metabolism in the frontal lobe,
which was manifested by a decrease in creatine kinase, intra-
cellular pH, and the concentration of macroergic compounds,
was found in patients with schizophrenia [204]. Besides,
increased ATP levels in white matter and decreased ATP levels
in gray matter were found in the frontotemporal-striatal
region in first-episode schizophrenia patients [205]. Metabo-
lomics studies also confirmed metabolic abnormalities in
schizophrenia [206].

These changes may be associated with impaired gene
expression. Indeed, the decreased expression of numerous
mitochondria-related genes (encoding, for example, NADH-
ubiquinone oxidoreductase core subunits V1, V2, and Sl
and cytochrome c oxidase) was observed in postmortem brain
tissues of patients with schizophrenia in smaller-scale studies
[201]. As stated above, transcriptomic and proteomic studies
in large samples also confirmed the impaired expression of
mitochondrial genes in brain tissues [98, 103, 207]. Remark-
ably, altered transcripts evaluated in parvalbumin- (PV-) con-
taining interneurons were enriched for pathways involved in
mitochondrial function [207]. A meta-analysis of microarray
studies assessing gene coexpression network modules in the
prefrontal cortex of schizophrenia patients showed that oxida-
tive phosphorylation, myelination, and immune function are
some of the most downregulated enriched modules [208]. A
recent meta-analysis considering the gene expression, tran-
script isoform expression, local splicing, and coexpression net-
work modules identified cell-specific dysregulation, including
protein-coding, noncoding, splicing, and isoform-level
changes in brain samples from individuals with schizophrenia,
autism spectrum disorder, and bipolar disorder [98]. Among
the confirmed differentially expressed genes, transcripts, and
splicing isoforms in patients with schizophrenia, mitochon-
drial genes were also found [98]. The downregulation of coex-
pressed gene modules associated with mitochondria in a larger
sample of schizophrenia patients was also shown [209].

Evidence also includes the genetic association of mito-
chondrial genes with schizophrenia. Among the 350 genes
within 108 schizophrenia loci identified by GWAS [91], 22
are related to mitochondrial function [201]. For instance,
the association of schizophrenia with the USMGS5 gene
encoding a small subunit of the mitochondrial ATP synthase
(complex V), as well as with the SEXN2 gene encoding side-
roflexin-2, which is involved in iron metabolism in mito-
chondria, has been shown [91].

Various animal models have shown that mitochondrial
dysfunction leads to neurobehavioral abnormalities (reviewed
in [201]). Ablation of the transcriptional coactivator PGC-1«
reduced the expression of the Ca-binding protein parvalbu-
min (PV) in the GABAergic interneurons and also disrupted
evoked synaptic responses in mice [210]. As stated above,
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PGC-1a is the crucial regulator of mitochondrial biogenesis,
including through the regulation of the activity of redox regu-
lating transcription factors FoxOs. Thus, the impaired activity
of PGC-1a is associated with altered redox regulation and
mitochondrial dysfunction, which leads to the pathology of
PV interneurons. Besides, the ablation of the cox10 gene in
PV interneurons of mice resulted in progressive loss of cyto-
chrome oxidase, which is a terminal enzyme of the electron
transfer chain, and was accompanied by an excitation/inhibi-
tion imbalance, as well as behavioral alterations similar to
schizophrenia [211]. Knockdown of Disrupted-In-Schizo-
phrenia-1 (DISC1) or expression of a dominant-negative C-
terminal truncated DISC1 led to a decrease in glucose trans-
porter 4, oxidative phosphorylation, and glycolysis as well as
diminished lactate production in mouse astrocytes [212].
These changes were accompanied by altered affective behavior
and impaired spatial memory, while lactate treatment rescued
these anomalies [212]. Hemizygous deletions of 22q11DS
genes were accompanied by haploinsufficiency of mitochon-
drial large ribosomal subunit protein 40 and led to dys-
regulation of short-term potentiation via impaired calcium
homeostasis in mitochondria [213]. The knockdown of
Txnrd2, a 22q11 gene essential for ROS detoxification in brain
mitochondria, led to the disruption of the axon and dendrite
growth and violated mitochondrial and synaptic integrity in
projection neurons; however, antioxidant treatment elimi-
nated these alterations [214]. Therefore, Txnrd2-mediated
oxidative stress led to cortical underconnectivity impairment
and cognitive deficits [214]. Furthermore, the transfer of iso-
lated mitochondria in induced pluripotent stem cells leads to
increased mitochondrial function and improved differentia-
tion into glutamatergic neurons [215]. Injection of isolated
mitochondria into the cerebral cortex of adolescent rats in
the maternal immune activation model prevents mitochon-
drial deficiency and behavioral abnormalities at adulthood
[215]. These observations link mitochondrial dysfunction,
immune disturbances, and impaired neuronal development.

Thus, mitochondrial dysfunction is accompanied by oxi-
dative stress, functional anomalies in neuronal cells, and
behavioral alterations and is a prerequisite for the develop-
ment of schizophrenia.

4.6. Oxidative Stress and Abnormal Myelination. Myelination
of the human brain proceeds actively in the postnatal period,
but the myelin content in the brain peaks at middle age,
which coincides in time with the massive remodeling of syn-
aptic contacts in the cerebral cortex [216]. The excess prena-
tal formation of axons and considerable reduction of axon
amount in the postnatal period [217] are compensated by
the vast increase of subcortical myelination of residual axons,
which are practically absent at birth but grow to up to 25% of
the adult human brain volume [218]. These processes reflect
the brain formation with gain in experience and optimization
of information processes through myelination [219].

Myelin is produced by mature oligodendrocytes (OLs)
formed from oligodendrocyte precursor cells (OPCs) in the
infantile and adult brains. Neuronal activity can instruct
OPCs to divide and mature and stimulate myelin sheath
production by OLs [220], leading to increased myelination
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and improved behavioral performance [221]. Cortical-
subcortical white matter (WM) pathways achieve maturation
peaks at the age of 23 to 39. This data indicate that WM mat-
uration in frontal regions continues at the time most charac-
teristic of schizophrenia manifestation [222].

Several pathways regulate OL differentiation and myeli-
nation in the CNS [223]. The phosphatidylinositol-3-
phosphate kinase (PI3K)/Akt/mTOR pathway controls the
initiation of myelination in the CNS through mTORCI sig-
naling [224]. In conjunction, glycogen synthase kinase 33
(GSK3p) signaling regulates OL differentiation [225]. More-
over, extracellular signal-regulated kinases-1 and -2 (ERK1/2),
the downstream mediators of the mitogen-activated protein
kinase (MAPK) pathway, regulate myelin growth and maintain
the integrity of myelinated axons [226]. These MEK/ERK1/2-
MAPK-mediated functions are mostly independent of
mTORCI [227].

Oligodendrocytes can be damaged at the stage of their
differentiation from precursors and at the stage of a mature
cell. For example, 15-20% of changes in the redox balance
in the OPCs, which are extremely sensitive to oxidative stress,
may already affect signaling pathways [228]. Factors that
cause high vulnerability to oxidative stress include exception-
ally high amounts of ROS (six times higher) in OPCs and
OLs, three times lower glutathione concentration, and 20-
fold higher free-iron levels as compared with astrocytes
[229]. These processes promote hypomyelination in the pre-
frontal cortex and hippocampus.

The decreased volume of cortical grey matter at schizo-
phrenia cannot be fully explained by the loss of synaptic con-
tacts or changes in the microcirculatory bloodstream.
Uranova et al. have performed the electron-microscope mor-
phometric study of myelinated fibers in the prefrontal cortex,
caudatum, and hippocampus of schizophrenia patients [230].
Local destruction of myelin sheaths and atrophy of axons
have been revealed in all the examined brain structures.
Besides, the decreased density of WM oligodendrocytes in
the frontal cortex was also shown [231]. It is known that
uncompensated loss of myelin at schizophrenia forms imme-
diately after the first episode and increases in the course of
disease [232, 233]. The OPC dysfunction coincides with the
relatively late start of myelination of the prefrontal cortex,
causing hypomyelination and distorting connectivity in this
part of the brain. It is also assumed that the disturbance of
OPCs can affect hypomyelination in the hippocampus; this
is confirmed by the results obtained with Gclm-KO mice
[234] and the results of postmortem studies of patients with
schizophrenia [235, 236].

Unlike astrocytes, which have powerful antioxidant
defense mechanisms [237], oligodendrocytes are sensitive to
hypoxia and oxidative stress, especially during the terminal
phase of differentiation and formation of myelin sheaths. Dur-
ing CNS maturation, the resistance of OLs to oxidative dam-
age increases due to the elevated glutathione levels [238], the
transition from the oxidative to the glycolytic mechanism
[239], the rise of the longevity of myelin proteins [240], and
metabolic support of axons by myelin sheathes [241].

In the context of glutathione deficiency, an increase in the
ROS level resulting from a high metabolic rate in the
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mitochondria of OLs leads to hyperstimulation of the AMP-
activated protein kinase (AMPK), which activates the
tuberous sclerosis 1/2 complex. This complex prevents the
activation of the rapamycin (mTOR)-P70S6K pathway,
which leads to OPC proliferation arrest, apoptosis, and hypo-
myelination [242].

The death of mature oligodendrocytes also promotes
neuroinflammation and oxidative stress stimulation. As
mentioned above, OLs are rich in iron ions. Iron released
by oligodendrocytes is accumulated in macrophages and
microglia, which can release iron into the intercellular space,
disturbing the integrity of axons [243]. These processes can
also stimulate neuronal cell death through ferroptosis [244].
Thus, the wavelike release of iron stimulates the processes
of neurodegeneration together with inflammation [245].

Thus, abnormal myelination and dysfunction of the
white and gray matter of the brain have been identified in
schizophrenia. The molecular mechanisms underlying these
changes remain unclear, but undoubtedly oxidative stress
also contributes to these processes.

4.7. Immune Dysfunction and Oxidative Stress. A growing
body of evidence suggests that an “immunooxidative” path-
way, including oxidative stress, mitochondrial dysfunction,
neuroinflammation, and cell-mediated immune response
may contribute to disruptions in brain activity in schizophre-
nia [53]. Inflammation and increased oxidative stress could
constitute a common pathway between early genetic and
environmental factors (such as prenatal infections, obstetric
complications, hypoxia, or stress during pregnancy) and psy-
chosis [246, 247]. In the immune system, ROS and H,0, are
not the only products of peripheral and tissue macrophages.
Still, they have a physiological role in signaling cascades that
controls activation, migration, and differentiation of immune
cells [248].

4.7.1. Microglia and Oxidative Stress. An enormous array of
sensitive receptors in microglia control the activation status
of these immunological cells [249]. Signaling pathways of
these receptors are associated with NADPH oxidase (NOX)
expression and ROS generation. Thus, activated microglia
and astrocytes can become sources of oxidants by activating
NOX enzyme cascades; producing interleukins; and releasing
glutamate, quinolinic, and arachidonic acid, which may all
contribute to neuron damage [131]. Excessive activation of
microglia can lead to the neuroinflammation that accom-
panies many forms of acute or chronic neuropathology,
including schizophrenia.

Microglia, as the resident immune macrophages of the
CNS, express high levels of superoxide-producing NADPH
oxidases (NOX). The primary function of the members of
the NOX family is to generate reactive oxygen species
(ROS) or H,O, that are important in maintaining cell
homeostasis through the regulation of crucial redox-
dependent pathways [131]. Overproduction of oxidants leads
to an excess signal in strength or in time, both of which have
pathological effects and cause oxidative stress. In pathologi-
cal conditions, ROS production by microglia is considered a
major cause of neuronal dysfunction [250] through direct
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oxidative damage to neuronal macromolecules [251] or
derangement of neuronal redox signaling circuits.

Initial molecular signaling pathways underlying micro-
glial activation includes activation of toll-like receptors
(TLRs), cytokine receptors, complement receptor 3, CD36
receptors, ionotropic and metabotropic purinergic receptors,
and neurotransmitter receptors [248]. Microglia express
most TLRs, and their expression levels are altered by micro-
glial activation [252]. Signaling through TLRs is essential for
priming (hyperresponsiveness) of NOX2 in several ways.

TLR signaling activates IL-1 receptor-associated kinase 4
(IRAK4) in the MyD88-dependent TLR signaling axis.
IRAK4 primes NOX and phosphorylates p47phox on several
residues to activate the oxidase directly [251]. Microglia cells
can have two phenotypes: the proinflammatory classic M1
phenotype, which is associated with anti-inflammatory cyto-
kine production, antigen-presenting properties, and ROS
production, and the M2 anti-inflammatory alternative phe-
notype possessing anti-inflammatory and immunoregulatory
activity [253]. Treatment with LPS combined with the proin-
flammatory cytokine interferon-y (IFN-y) is frequently used
to induce and study the M1 type of microglial activation
in vitro. These factors activate toll-like receptor 4 (TLR4, also
called CD14) and the IFN-y receptor and induce the recruit-
ment of cytosolic phox proteins to the membrane by the
phosphorylation of p47phox (neutrophil cytosolic factor 1,
NCF1) [254].

TLR engagement also leads to the activation of the
GTP/GDP exchange factor VAV, which mediates nucleotide
exchange on Racl, a catalytic subunit of the NOX complex.
In addition, Racl activated downstream of TLRs also acti-
vates p38MAPK (p38 mitogen-activated protein kinases),
which may participate in the mobilization of p47phox [255].

Also, it has been found that TLRs depend on NOX activ-
ity. NOX-derived ROS directly regulate the partitioning of
TLRs to lipid rafts in the membrane [256] or promote the
assembly of signaling complexes, which are required for effi-
cient signaling [257].

LPS stimulation of NOX2 activity in microglia may occur
through binding with complement receptor 3 (CR3, MAC1,
also called CD11b/CD18) [258]. CR3 acts as a phagocytic
receptor for C3b/iC3b-opsonized targets including endoge-
nous targets such as synapses [259] and neurites [260]. CR3
ligation leads to direct NOX2 activation as well as through
tyrosine-based activation of receptors DAP12 (TYRO pro-
tein tyrosine kinase-binding protein) or FcyRs (Fc-gamma
receptors) [261].

Tonotropic P2X and metabotropic P2Y purinergic recep-
tors are important for the regulation of the microglial actin
cytoskeleton [262]. Stimulation of the ionotropic P2X7 recep-
tor by ATP, together with an increase in intracellular calcium,
induces ROS production and release in microglia. Increased
NOX activity is implemented through ERK1/2-dependent
(mitogen-activated protein kinase 3) [263], p38MAPK-depen-
dent, and PI3K-dependent (phosphoinositide 3-kinase) path-
ways [264].

Microglia express a large number of neurotransmitter
receptors. In turn, disruptions of the neurotransmitter envi-
ronment significantly affect the activation state of microglia
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and neuronal integrity. NOX activation could be induced by
agonists of glutamate metabotropic (mGlu3 and group III),
GABAA, and purinergic P2X7 or mGlu5 receptors on the
rodent BV2 microglial cell line [263]. A complementary
study revealed that activation of microglia in vitro, following
NMDA receptor stimulation, was accompanied by secretion
of ROS that was toxic to neurons [265].

Furthermore, as in the case of TLR signaling or CR3 liga-
tion in macrophages, NOX2-derived oxidants are implicated
in the redox regulation of signaling pathways, in which ROS
and H,0, act as second messengers in cytokine responses
[266]. H,O, activates mitogen-activated protein kinase
(MAPK) cascades, partly through oxidation of catalytic
cysteines on MAPK-inactivating phosphatases [267], and
induces nuclear factor kappa B (NF-«B) translocation from
the cytosol to the nucleus [268]. The initiation of NF-xB-
dependent gene transcription promotes the production of pro-
inflammatory mediators. These include cell adhesion mole-
cules ICAM and VCAM, ROS-producing enzymes like iNOS
and NOX2, and cytokines IL-6, IL-8, and, importantly, TNF
[269, 270]. Taking into account that TNF and ROS may induce
NEF-xB-dependent gene transcription, this potentially results in
an amplification loop of TNF and ROS signaling [269].

Additionally, the release of cytokines or gliotransmitters by
activated astroglia and microglia controls BBB permeability in
brain pathologies associated with excessive angiogenesis, cere-
brovascular remodeling, and blood-brain barrier-mediated
neuroinflammation also observed in schizophrenia [253].

4.7.2. Cytokines and Oxidative Stress. The role of cytokines in
the pathogenesis of schizophrenia has been demonstrated in
many works [249, 271]. The study of the relationship
between the level of cytokines and oxidative markers in
schizophrenia using the Bradford Hill criteria to establish a
causal relationship confirmed their pathogenic role [272]. A
high level of proinflammatory cytokines is associated with a
high probability of developing schizophrenia among people
at risk compared with people at risk but with a low content
of proinflammatory cytokines. According to many studies,
the severity of clinical symptoms correlates with the level of
cytokines [43].

The study of proinflammatory and oxidative markers in
patients with schizophrenia revealed increased levels of pro-
inflammatory cytokines (ie., IL-1-f, IL-6, IL-12, IFN-y,
TNF-alpha, tumor growth factor-f) and reduced levels of
antioxidants (total antioxidant status, catalase, plasma
nitrites, and superoxide dismutase) in patients with the first
episode of schizophrenia [273].

There are several suggested ways by which proinflam-
matory cytokines can contribute to schizophrenia develop-
ment [272]:

(1) Inflammation-associated activation of IDO (indola-
mine 2,3-dioxygenase) enhancing the production of
kynurenine metabolites 3-hydroxykynurenine and
3-hydroxyanthranilic acid, both of which are potent
generators of radical oxygen species [274]. Thus, it
can be proposed that inflammation contributes to
neurodegeneration by converting oxidative stress to
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excitotoxic stress in the context of IDO activation
[275]. Kynurenic acid also contributes to the hyperacti-
vation of glutamatergic neurotransmission, which is
considered one of the mechanisms for the development
of positive symptoms in schizophrenia by itself [273]

(2) Proinflammatory cytokines activate microglia, pro-
moting the development of neuroinflammation
and oxidative stress [276]. There was a significant
increase in the levels of TNFa, IL-1f, and IL-6
and a decrease in the levels of IFN-y in patients with
schizophrenia [249]. Lipid peroxides were elevated in
serum, while total sulfhydryl levels were decreased.
Superoxide dismutase and glutathione peroxidase
were reduced, while the activities of catalase, glutathi-
one reductase, and myeloperoxidase were found to be
elevated [275]. Activated microglia are a source of
oxidants, which lead to the development of oxidative
stress and damage to the membranes of neurons, as
described above

(3) Proinflammatory cytokines may disturb neurodeve-
lopment (particularly when there is a prenatal inflam-
mation), increasing the risk of psychosis [277].
Activation of the IL-6/Nox2 pathway in schizophrenia
leads to the loss of the GABAergic phenotype of PV
interneurons and decreased inhibitory activity in the
prefrontal cortex [53]

(4) Inflammatory cytokines can affect the synthesis of
monoamine neurotransmitters; increase reuptake of
dopamine, serotonin, and norepinephrine; and influ-
ence neurotransmitters’ release [251]

Thus, the generation of prooxidants, on the one hand, is
an element of the signaling pathways in the immune system.
On the other hand, stimulation of the generation of ROS and
H,O, helps to maintain the immune response; however, in
overexpression, it can lead to neuroinflammation. In combi-
nation with an insufficient antioxidant system, this leads to
damage to the membranes of neurons and glia and a viola-
tion of their functions.

This is confirmed by the results of the study using a 31P-
MRS-based method to directly quantify NAD+ and NADH
concentrations in the brain at ultra-high-field MR scanners.
This study confirmed a significant reduction in the
NAD+/NADH ratio in chronically ill schizophrenia patients
compared to a healthy control group and in first-episode
schizophrenia patients compared to both a first-episode
bipolar disorder patient group and a healthy control group.
These findings provide evidence for redox imbalance in the
brain in all phases of schizophrenia, potentially reflecting
oxidative stress [278].

The development of oxidative stress induces the antioxi-
dant system response. Activated microglia and macrophages
release glutamate [274] in exchange for cysteine with an
extracellular transporter (xc-transporter) [279]. During
inflammation, activation of the xc-system functions as an
endogenous antioxidant response since the influx of cysteine
helps preserve the redox status of the cell [280], consequently
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increasing extracellular glutamate [35]. Several studies high-
light the association between glutamate stimulation of
microglia and decreased NOX activity by mGlu receptor acti-
vation [248].

Nevertheless, there is a decrease of canonical antioxidant
systems, including peroxidases, oxidoreductases, oxidases,
and dismutases, confirmed by multiple studies in schizophre-
nia [281, 282]. Recently, immunoglobulins with noncanoni-
cal properties have been discovered [283] that catalyze
various reactions, including those similar to antioxidant
enzymes. IgG antibodies with catalase-like activity in schizo-
phrenia [284], IgG with peroxidase and oxidoreductase activ-
ities in healthy humans [285, 286], and IgG with SOD-like
activity in patients with multiple sclerosis [287] were
revealed. It can be assumed that such catalytic antibodies
are involved in limiting oxidative damage at the inflamma-
tion areas, since antibodies can accumulate there. At the
whole-organism level, catalytic antibodies with “antioxidant”
properties can compensate for the deficiency of the canonical
antioxidant systems in schizophrenia. Thus, human IgGs
could probably also play a significant role in protecting
humans from OS and toxic compounds.

4.8. ROS-Dependent Regulation of Neurotransmission and
Changes Characteristic of Schizophrenia. Synaptic plasticity
is characterized by the ability of the synapses to respond to
stimulation and is determined by the change in the number
of neurotransmitters or in the cell’s ability to respond to neu-
rotransmitters [288]. Controlled ROS production provides
the optimal redox state for the activation of transductional
pathways involved in synaptic changes. High ROS concen-
trations reportedly diminish synaptic signaling and brain
plasticity mechanisms [289]. Intracellular calcium (Ca?") is
also one of the critical factors of synaptic plasticity in excit-
atory glutamatergic neurons [290].

Glutamate accounts for 50-60% of all neurotransmission
in the brain, and the remaining 40-50% is GABAergic. There-
fore, 90-99% of neurons are modulated by glutamatergic or
GABAergic neurotransmission and less than 10% by other
monoamine, neuropeptide, and neuroendocrine neurotrans-
missions. Most neural energy is expended on sustaining
excitatory signaling within the CNS with action potential fir-
ing, and glutamatergic transmission is proposed to contrib-
ute as much as 80% of the total expenditure. There is
evidence indicating an equally high need for cellular metabo-
lism of inhibiting GABAergic interneurons [291]. Accardi
et al. show that mitochondrial-derived reactive oxygen
species (mROS) regulate postsynaptic GABAA receptors’
strength at inhibitory synapses of cerebellar stellate cells.
The generation of mROS has been traditionally linked to
the cellular damage that accompanies the chronic disease.
This data identifies mROS as a putative homeostatic signal-
ing molecule, coupling cellular metabolism to the strength
of inhibitory transmission [292]. As stated above, mitochon-
drial dysfunction plays a significant role in the pathogenesis
of schizophrenia [293].

An increase in functional changes associated with the
level of oxidative stress is shown in several neurotransmitter
systems. The site of redox modification on vulnerable mole-
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cules may undergo oxidative damage, resulting in an irrevers-
ible inhibitory action on proteins involved in synaptic
transmission, as well as promoting mitochondrial dysfunc-
tion and excitotoxicity [294].

As mentioned above, glutamate is the major excitatory
neurotransmitter of the central nervous system. Three
groups represent ionotropic glutamate receptors, namely,
AMPA, KA, and NMDA receptors, that mediate rapid trans-
membrane ion currents [295]. ROS and NO are essential
mediators of NMDA receptor signaling [20]. Under normal
physiological conditions, nitric oxide is generated by NMDA
receptor-mediated activation of nNOS. In turn, nitric oxide
regulates glutamate metabolism, the release of glutamate at
the synapse, and transport out of the synapse [296]. Both
NMDA receptor activation and blockade are reported to
induce oxidative stress through an increase in NADPH oxi-
dase (NOX) activity [297, 298]. Besides, the addition of glu-
tamate to the culture of neurons at a concentration of 100
microns also causes the formation of ROS [299]. It has also
been shown that prolonged exposure to glutamate damages
motor neurons primarily through the activation of calcium/-
calmodulin, neuronal synthase, and nitric oxide in the cyto-
plasm and leads to the apoptosis of neurons [300]. In turn,
increased ROS results in NMDA receptor hypofunction,
and the production of nitric oxide can reduce NMDA recep-
tor activity through S-nitrosylation of cysteines on NMDA
receptor subunits. Similarly, S-nitrosylation of serine race-
mase inhibits the formation of the NMDA receptor coago-
nist, D-serine, which would decrease NMDA receptor
activity [301].

In addition to NMDA receptors, a-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA) receptors repre-
sent the other dominant class of ionic glutamate receptors.
It has been shown that the AMPA receptor’s function is not
directly related to the redox state, and lipid peroxidation does
not affect its synaptic transmission [302]. In schizophrenia,
changes in subunit expression of AMPA receptors and pro-
tein expression regulating the forward trafficking of AMPA
receptors through the cell have been reported. These facts
are the basis of the mechanism of impaired regulation of
glutamate in schizophrenia. It has been revealed that in
schizophrenia, abnormal trafficking of AMPA receptors
from the endoplasmic reticulum to the synaptic membrane
occurs [303, 304].

Glutamate signaling dysfunction and dysregulation of
oxidative stress have been considered to play essential roles
in schizophrenic prodrome [22]. The question of the primacy
of oxidative stress in schizophrenia has not yet been defini-
tively resolved. Still, most studies suggest that its influence
is interdependent with the violation of glutamatergic neuro-
transmission [24, 305].

The effect of redox processes on GABAergic synaptic
transmission and GABA release is very ambiguous. Redox
state may have opposing effects on GABAB and GABAA
receptors. For example, synaptic GABAA receptors can be
weakened under oxidizing conditions; however, in the hippo-
campus, tonic currents are increased by hydrogen peroxide
[306, 307]. Finally, oxidative damage can decrease the syn-
thesis of GABA.
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The hypofunction of subpopulations of GABAergic
interneurons in the prefrontal cortex and hippocampus has
long been established in schizophrenia. Also, there is a lot
of data showing that redox changes of NMDA receptor syn-
aptic input to inhibitory interneurons can decrease the
release of GABA and induce the loss of inhibitory interneu-
rons in the PFC (prefrontal cortex). And the modern view
of the pathogenesis of schizophrenia is based on the hypo-
function of the NMDA receptor and the loss of GABAergic
neurons [308]. Recent experimental work carried out by the
Department of Psychiatry at Harvard Medical School showed
that interneurons in schizophrenia had a significantly smaller
nucleus, which indicates an innate state of oxidative stress.
The antioxidant N-acetylcysteine increased the area of the
cell nucleus in interneurons in schizophrenia and eliminated
synapse deficits [309].

It has long been known that the catabolism of dopamine
shifts the cellular redox state toward oxidative stress through
the production of superoxide, hydrogen peroxide, quinones,
and quinoprotein adducts [310, 311]. In the presence of
Mn, the autooxidation of dopamine produces semiquinones
(SQ) and superoxide radicals (O,™*), as well as H,0,, which
is readily converted to OH" in the presence of Fe**. On the
other hand, the enzymatic oxidation of dopamine by mono-
amine oxidase (MAO) can also produce H,O, and, subse-
quently, generate the toxic OH" [35]. Dopamine metabolites,
when interacting with Fe** and Cu*", also produce ROS and
thus exacerbate OS [311, 312].

It is now generally accepted that schizophrenia is based
on a disruption of the interactions between the glutamater-
gic, GABAergic, and dopaminergic systems. At the present
stage, an assumption is made that elevated baseline levels of
dopamine observed in schizophrenia may be secondary to
hypoglutamatergia. This is supported by evidence suggesting
that NMDAR antagonists can enhance the release of dopa-
mine and glutamate, leading to cortical disinhibition [313].
Besides, it was found that inhibition of NMDAR reduces
the activity of putative GABA interneurons [314]. Thus, it
is established that the main contribution to the pathogenesis
of schizophrenia is made by mutually influencing disorders
of neurotransmission of glutamate, dopamine, and GABA.

The contribution of other neurotransmitters to the path-
ogenesis of schizophrenia is less significant, but in any case,
ROS signaling regulates neurotransmission to some extent.
Noradrenaline in low concentrations, in contrast, increases
neuroprotection for many types of neurons [315, 316]. There
are isolated studies that indicate that OS disrupts the func-
tioning of muscarinic cholinergic receptors, which is restored
by GSH [317]. Acetylcholine, which is their mediator, is also
involved in the development of schizophrenia [318]. Schizo-
phrenia is also characterized by serotonin deficiency [319]. It
has been shown that serotonin receptors can modulate dopa-
minergic functions, but their effect may have different ten-
dencies. For example, serotonin can inhibit or stimulate the
release of dopamine in the striatum [320, 321].

Thus, the entire neurotransmission of the CNS is regu-
lated to some extent by ROS or RNS. All neurotransmitters
are a close, mutually regulating system, and even with minor
deviations from the norm, the homeostasis of this system is
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disrupted. Several morphological changes in cells in schizo-
phrenia indicate that OS was present at an early stage of the
morphosis. This area has already been studied in detail and
is represented by a vast number of works. Here, we show only
the most basic mechanisms. But the literature does not cover
the following question: Are the described changes specific
only for schizophrenia, or are they characteristic of other
mental disorders?

4.9. Dysfunction of Parvalbumin-Positive Interneurons.
Numerous studies, including postmortem, genetic, and
in vivo electrophysiological experiments in murine models
of schizophrenia, consider the disruption of parvalbumin-
(PV-) positive GABAergic interneurons as a critical patho-
physiological mechanism of schizophrenia [322]. PV inter-
neurons are the most abundant type of GABAergic cells
known for their high-frequency generation of action poten-
tials [323]. PV interneurons form a common network that
facilitates the processing of a massive flow of information
from sensory systems and provides mechanisms for tempo-
rary memory, attention, learning, and social behavior. Par-
valbumin is a Ca®*-binding protein that has little effect on
excitatory potentials but significantly increases the decay rate
of the signal [324]. This function allows maintaining a bal-
ance of excitatory/inhibitory postsynaptic potentials, syn-
chronizing the activity of neurons. Electroencephalography-
(EEG-) measured synchronized oscillatory activity, particu-
larly in the gamma range, is abnormal in patients with
schizophrenia [325].

Disorders of PV interneurons can lead to schizophrenia
not only in adulthood but also at the stages of early neuro-
genesis. Recent studies have shown that suppressed PV inter-
neuron activity decreases the survival and maturation of
hippocampal neurons in newborns [326]. Caballero et al.
showed that a slight suppression of PV interneuron activity
in adolescence significantly reduces GABAergic transmis-
sion, disrupting the balance of excitation/inhibition pro-
cesses in the prefrontal cortex [327]. An increase in the
expression of PV interneurons in adolescence is necessary
for better GABAergic regulation of excitation/inhibition,
contributing to the activation of cognitive functions. Conse-
quently, the loss of PV interneurons leads to an increase in
the excitation/inhibition ratio due to the GABAergic inter-
neurons’ inability to maintain a high generation of action
potentials, which leads to impaired processing of afferent
information from the ventral hippocampus [328].

Correct high-frequency synchronization of PV interneu-
rons requires a high level of metabolism and oxidative phos-
phorylation [329], which leads to an increase in ROS
synthesis. PV interneurons are known to be extremely sensi-
tive to increased ROS levels. In transgenic mouse models, it
has been found that reduced glutathione (GSH) correlates
with a deficiency of PV interneurons in the prefrontal cortex
and hippocampus and disrupts neuronal synchronization
[330]. Prefrontal cortical PV interneurons are more vulnera-
ble to ROS during postnatal development. GSH deficiency
results in a rapid and long-term decrease in the density of
PV interneurons in the anterior cingulate gyrus [19]. Using
an assessment of the level of oxidized and reduced
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glutathione in tissues, gamma fluctuations, and PV expression
at different time points in transgenic Wistar rats, it was found
that NMDA receptor (NMDAR) inhibition and GSH deple-
tion during early postnatal development markedly alter
gamma fluctuations [331]. It has been shown in vitro that dur-
ing the early development of neurons, NMDAR inhibition pri-
marily results in a sustained decrease in the peak gamma
frequency. At the same time, a reduction of PV expression
occurs only after a few days. These functional changes are
expected to precede the suppression of PV expression. One
of the possible mechanisms is assumed to be oxidative stress,
which contributes to the loss of PV interneurons due to the
suppression of internal antioxidant systems [332].

Damage to the perineuronal nets (PNNs) can be another
critical factor in the disruption of PV interneurons. PNNs
are reticular lattice structures composed of proteoglycans,
chondroitin sulfate, hyaluronic acid, tenascin, and binding
proteins, and braiding PV interneurons prevent the flow of
cations spontaneously into the neuron [333]. The effect of oxi-
dative stress on PNNss is to alter PV interneuron maturation
and synapse formation [330]. Therefore, oxidative stress dis-
rupts the plasticity of the PV interneuron network and may
affect the ratio of excitatory and inhibitory synapses [334].

Mouse models were used to investigate the effects of oxida-
tive stress on PV interneurons and PNNs. Indeed, mice with an
alpha-7 nicotinic receptor (a-7-nAChR) deletion show reduced
expression of PV, glutamate decarboxylase (GAD67), and
NMDAR in PV interneurons [335]. a-7-nAChR activation
inhibits NF-«B-dependent pathways and mediates Nrf2-
induced antioxidant responses, providing anti-inflammatory
and neuroprotective effects [336]. Patients with schizophrenia
have disturbances in neuregulin-1 (NRG1) and its receptor
tyrosine kinase ErbB4 [337]. Signaling through the
NRG1/ErbB4 complex controls the development of inhibitory
chains in the cerebral cortex. Fazzari et al. have demonstrated
that signaling through the ErbB4 receptor promotes the for-
mation of perisomatic and axo-axonal synapses, and NRG1
mediates these effects [301]. ErbB4 is also required for the
formation and maintenance of excitatory synapses on
GABAergic interneurons. NRG1 suppresses NMDAR activa-
tion in the prefrontal cortex in subjects with schizophrenia,
consistent with the increased NRG1-ErbB4 signaling observed
in this disease [338]. NRG1 modulates NMDAR activity
through tyrosine phosphorylation on the NR2 subunit.
Enhanced NRG1 signaling may contribute to NMDAR hypo-
function in schizophrenia [338].

Thus, the functioning of the PV interneuron, which plays
an essential role in human cognitive functions impaired in
schizophrenia, is directly dependent on the level of oxidative
stress. As stated above, a decrease in the activity of the antiox-
idant system leads to inhibition of NMDAR and disrupts the
PV interneurons, which makes a significant contribution to
the pathogenesis of schizophrenia.

5. Antipsychotic Medication and Redox
Correction in Schizophrenia

5.1. Antipsychotic Therapy Promotes Oxidative Imbalance.
Antipsychotics are the drugs of choice for the long-term
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management of schizophrenia. As mentioned above, patients
with schizophrenia have endogenous oxidative stress, which
can cause the development of pathology. However, antipsy-
chotic treatment can also cause oxidative imbalance.

Typical and atypical antipsychotics vary significantly in
their effects on redox balance [339-342]. Animal studies
indicate that typical antipsychotics most often cause oxida-
tive stress. It was shown that treatment with haloperidol
(45 and 90 days), a typical antipsychotic, significantly
reduced the activity of Mn-SOD, Cu,Zn-SOD, and catalase
and increased lipid peroxidation in the rat’s brain [340].
But treatment with atypical antipsychotics (risperidone, clo-
zapine, and olanzapine) did not cause any changes in antiox-
idant enzyme levels [340]. A 28-day study in male Wistar rats
that received haloperidol daily showed an increase in thio-
barbituric acid (TBA) reactive substances (TBAR) inducing
the production of superoxide in the hippocampus [343]. In
other experiments in rats after the administration of haloper-
idol, an increase in the level of TBAR in the striatum, but a
decrease in the cortex, was also observed [341, 342]. The
long-term treatment (90 and 180 days) with haloperidol also
significantly decreased the levels of Mn-SOD, Cu,Zn-SOD,
and to a lesser extent, catalase [339]. In the same work, it
was shown that atypical antipsychotics such as ziprasidone,
risperidone, and olanzapine did not show significant changes
in the lipid peroxidation products (hydroxyalkanals) after 90
days of treatment [339]. However, further treatment (up to
180 days) resulted in significantly increased levels of hydro-
xyalkanals in ziprasidone and risperidone, but not in
olanzapine-treated rats [339]. These data indicate that long-
term treatment, even with atypical antipsychotics, can con-
tribute to prooxidant processes. At the same time, posttreat-
ment with some atypical antipsychotics for 90 days after 90
days of typical antipsychotic treatment restores developed
redox abnormalities [339]. These observations can be
explained by the direct antioxidant activity of some atypical
antipsychotics, such as olanzapine and clozapine [344].

Summarizing the available data from animal studies, we
can conclude that oxidative damage of the brain during treat-
ment with typical antipsychotics is due to the following
mechanisms:

(i) A significant decrease in the activity of Mn-SOD,
Cu,Zn-SOD, and catalase

(ii) Increased lipid peroxidation of membranes
(iii) Reduction of NO concentration [345]

(iv) Increased production of superoxide and H,O, [345]

Human studies also indicate that antipsychotics contrib-
ute to oxidative stress [346]. It has been shown that MDA
levels in patients treated with risperidone, amisulpride, que-
tiapine, and clozapine were significantly lower than in the
first-generation antipsychotic group [347]. Treatment with
typical antipsychotic haloperidol was associated with higher
serum TBAR and lower antioxidant parameters in patients
with schizophrenia [348]. Besides, an overdose of typical
antipsychotics can cause oxidative stress [349]. Another
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study reported that both typical and atypical antipsychotics
contributed to patients’ prooxidant state with various types
of schizophrenia [350]. The specific activity of SOD and glu-
tathione peroxidase was reduced, but MDA levels were
increased in chronic patients, regardless of the type of anti-
psychotic [350]. Padurariu et al. [351] obtained similar
results. An increase in the specific activity of SOD, mainly
in patients receiving haloperidol and quetiapine, was shown
[351]. Antipsychotic treatment also affects peripheral nonen-
zymatic antioxidants. Indeed, uric acid levels did not change
after treatment, while albumin and total bilirubin levels
decreased significantly after treatment [352]. Thioredoxin
levels also decreased in patients receiving antipsychotic med-
ication [353]. However, no correlation was found between
thioredoxin levels and treatment with atypical antipsychotics
[353]. Antipsychotic treatment also affects the serum lipid
profile [354]. Indeed, serum lipid profiles of patients with
first-episode psychosis before and after seven months of
treatment were significantly different [354]. Our data also
confirm the effect of therapy on the activity of antioxidant
systems in schizophrenia [355]. We showed that atypical anti-
psychotics do not have a pronounced impact on the glutathi-
one system, while treatment with typical antipsychotics leads
to a further decrease in reduced glutathione, thereby exacer-
bating the imbalance in metabolic processes in schizophrenia
[355]. Besides, metabolic syndrome and antipsychotic-
induced weight gain may be associated with high levels of
oxidative stress in patients [356].

However, there is clinical evidence of a decrease in oxida-
tive stress markers after the antipsychotic treatment of
schizophrenia patients [357-359]. Therapy with atypical
antipsychotics improved the redox balance, together with
the results of the Brief Psychiatric Rating Scale for schizo-
phrenia [359]. The antipsychotic medication (7 months) of
first-episode psychosis patients not only had a significant
anti-inflammatory effect but also reduced lipid peroxidation
and protein oxidation-related indices of oxidative stress
[357]. A decrease in the neopterin levels and an increase in
antioxidant levels were found after three months of treat-
ment with antipsychotics [358]. Zhang et al. published evi-
dence that clozapine treatment significantly increased SOD
and decreased lipid peroxidation in patients with schizophre-
nia [350]. In our work, it was shown that therapy with typical
antipsychotics leads to normalization of catalase activity.
However, the activity of glucose-6-phosphate dehydrogenase
continues to decrease [360]. Besides, we showed that antipsy-
chotic therapy leads to a decrease in MDA in red blood cells
and blood plasma but does not affect the level of oxidized and
reduced glutathione [361].

Thus, despite contradictory data, nevertheless, there is an
association between antipsychotic therapy and oxidative
stress. Both typical and atypical antipsychotics have the most
significant effect on redox balance in schizophrenia. There-
fore, additional antioxidant treatment can have beneficial
effects on the redox balance and, accordingly, on the condi-
tion of schizophrenia patients.

5.2. Antioxidant Therapeutics in Schizophrenia. Antioxidant
treatment can be used at various stages of schizophrenia,
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from prenatal and postnatal development to acute and
chronic phases of the illness [362]. However, the most realis-
tic option is to use antioxidant therapy to treat the disease’s
active stage.

To assess the promise of prescribing antioxidants to
patients with schizophrenia in the last decades, many differ-
ent studies have been conducted (Table 2). Some effects of
antioxidants were analyzed in detail in large-scale meta-
analyses [36, 363, 364]. It was shown that additional antiox-
idant therapy could improve the mental state of patients with
schizophrenia.

N-Acetylcysteine (NAC) is an L-cysteine precursor, an
antioxidant, and a free radical-scavenging agent. NAC can
regulate glutathione (GSH): this is a precursor for glutathi-
one synthesis and a stimulator of the cytosolic enzymes
involved in glutathione regeneration [365]. NAC is also able
to regulate excessive brain glutamate through the cysteine-
glutamate antiporter [366]. Symptoms of schizophrenia are
associated with elevations in glutamatergic metabolites
across several brain regions [367] and oxidative stress [40].
This determines the potential possibility of the use of NAC
as adjunctive therapy for patients with schizophrenia [368-
377]. The NAC study’s frequent outcome as an adjunct to
antipsychotic treatment was a significant reduction in PANSS
total and the negative PANSS subscale, but not positive
symptoms or cognition (Table 2). Also, some authors noted
an improvement in the generation of negative mismatch
(MMN) and working memory performance in patients with
schizophrenia (Table 2). A recent meta-analysis of random-
ized controlled trials with N-acetylcysteine in the treatment
of schizophrenia confirmed the effectiveness of NAC, but it
is worth noting that therapeutic effects were observed at a later
point in time (>24 weeks) [364]. This suggests that long-term
administration of N-acetylcysteine is required for successful
treatment.

Ginkgo biloba is the most widely studied plant antioxi-
dant in the treatment of schizophrenia [378-381]. Published
studies and meta-analyses demonstrated that Ginkgo as an
adjunctive therapy could alleviate the symptoms of chronic
schizophrenia and improve tardive dyskinesia (Table 2).

Selegiline and allopurinol have also been studied as an
additional antioxidant treatment for schizophrenia patients
[382-388]. In selegiline, the ability to reduce negative symp-
toms was noted; on the contrary, in allopurinol, the ability to
interfere with positive symptoms was noted. However, the
use of these drugs often did not make a performance com-
pared with the control group (Table 2).

Vitamin E is a lipid-soluble antioxidant. Evaluation of the
effectiveness of treatment with vitamin E in patients with
schizophrenia showed a significant difference in Abnormal
Involuntary Movement Scale (AIMS) score (Table 2) [389-
395]. There is also evidence that vitamin E is more effective
for patients using classic antipsychotics compared to patients
using atypical antipsychotics [36].

There is very little data on the individual use of vitamin C
as an antioxidant therapy for schizophrenia [396]. But since
ascorbic acid has a synergistic effect with vitamin E, there is
evidence of the effect of their combined action in patients
with schizophrenia [397]. The effects are similar to those of



18

Oxidative Medicine and Cellular Longevity

TaBLE 2: The results of the use of redox regulatory drugs in schizophrenia and animal models.

Drugs

Class

Mechanism of action

Studies QOutcome

Antioxidant drugs

N-Acetylcysteine
(NAC)

Cysteine precursor

NAC

(i) Activates the synthesis of
glutathione, the main endogenous
antioxidant mediator in the brain
(the most important mechanism)
(ii) Has its own nonspecific activity
in neutralizing various free radical
groups

Total PANSS and in the negative
PANSS subscale and total scores as
well as the cognitive domain of
working memory were significantly
improved with N-acetylcysteine
supplementation after 24 weeks of
treatment

Yolland et al.,
2020 (meta-
analysis) [364]

Significant reduction of the Positive
and Negative Syndrome Scale
(PANSS) negative, PANSS total, and

Berk et al., Clinical Global Impression (CGI)

2008 [362,3]; scales in comparison to placebo

:ta:i)k;lg g No significant change on the PANSS
[3;’69] positive subscale was seen

There was no significant difference
with the control group in the
frequency of side effects.

Administration of NAC to
schizophrenia patients resulted in

Lavoie et al., . . .
improved auditory cortical

2008 [370] functioning, improved mismatch
negativity (MMN) generation
Adjunctive NAC significantly

Zheng et al., improved total (positive and

2018 [371] negative) symptoms in

schizophrenia

Rapado-Castro Significantly higher working

etal, 2017 memory performance compared
[372] with placebo
Significant improvement in total
PANSS and in the positive and
Sepehrmanesh negative PANSS subscales
etal, 2018 Improvements in attention, short-
[373] term and working memory,
executive functioning and speed of
processing
NAC therapy improved
neurocognition and reduced positive
symptoms among patients with high
Conus et al, peripheral oxidative status
2018 [374]

No changes in negative or positive
symptoms or functional outcome
were observed with NAC

Significant improvements in
neurocognition and a reduction of

Klauser et al,, positive symptoms

2018 [375
[375] Increase in GSH levels in the medial

prefrontal cortex

Significant improvement in PANSS

total, negative, and disorganized
Breier et al., thought symptom scores
2018 [377] No changes in PANSS positive
symptoms and BACS cognitive

scores
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Drugs Class Mechanism of action Studies Outcome
A single dose of NAC was associated
McQueen  with decreases in rs-FC in prefrontal
etal, 2020  cortical regions of the DMN and SN
[376] network in patients with established
schizophrenia
Singh et al, Statistically significant moderate
2010 (meta-  improvement in total and negative
analysis) [381] symptoms of chronic schizophrenia
Significant reduction of the PANSS
Doruk et al negative
i i oruk et al.,
Glnko biloba extract . ) 2008 [378] No significant change on the PANSS
. . (@) Scavengeriof superoxide anion, total and in the positive PANSS
Contains flavonoids,  hydroxyl radicals, peroxyl subscale
Ginkeo biloba tricyclic diterpenes (ii) Reduces the concentration of A sionifi d L th
extraft (ginkgolides A, B, C, and primary and secondary products of 51gn11 cantl ecrease in the
]), sesquiterpenes lipid peroxidation (diene conjugates, Abnormla Invo untarylMovement
(bilobalide A) TBA-active products) Zhang et al., Scale (AIMS) total score
(iii) Induces the enzymatic activity 2011 [379]  No between-group differences in the
of superoxide dismutase and catalase PANSS total score or cognitive
measures from baseline
Treatment with Ginkgo biloba
Rathbone etal.,, resulted in moderate improvement
2005 [380] in total and negative symptoms of
schizophrenia
o N Amiri etal,  Decline of negative symptoms and
The ant10x1da'1nt foegthof hseleglhne 2008 [382] PANSS total scores
s Selective inhibitor of Y be. associated with the Bordbar et al., No significant change on the PANSS
Selegiline protection of neurons from oxygen .
MAO-B ) 2008 [383] negative subscale was seen
free radicals that are released as a
result of MAO-B activity Bodkin et al,, Significant improvements in
2005 [384] negative symptoms
A significant superiority in the
treatment of positive symptoms,
Akh:lndzzadeh general psychopathology symptoms
et [3.’85?05 as well as PANSS total scores
Decreased Extrapyramidal
Allopurinol prevents the formation Symptoms Rating Scale (ESRS)
. . of free radicals: . Significant improvement in PANSS
. Xanthine oxidase . o . . Brunstein s .

Allopurinol inhibitor (i) Inhibits the xanthine oxidase et al. 2005 total, positive, negative, and general
reaction, during which superoxide [ 3,8 6] scores, particularly for positive
anion radical is actively formed symptoms

Dickerson At least a 20% reduction in total
etal, 2009 PANSS score
[387]
Weiser et al,  No differences with control group on
2012 [388] the PANSS
Adler et al, - .
1993 [389] Significant reduction of AIMS score
Vitamin E i§ a natural aptioxidant Adler et al No significant reduction of AIMS
that neutralizes free radicals: 7 and Brief Psychiatric Rating Scale
(i) There is a transfer of hydrogen of ~ 1999 [390] (BPRS)
Vitamin E Vitamin ;:Zirc’ zenyl group to the peroxide Dorevitch No significant differences between
. . et al., 1997 vitamin E and placebo-treated
(ii) Performs structural function by - .
) . . .. [391] patients in AIMS score
interacting with phospholipids of
biological membranes Lohr et al Significant reduction of AIMS score
ohr et al,,
1996 [392] Significant change on the PANSS

positive subscale
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Drugs Class Mechanism of action Studies Outcome
Zhangetal, . . ]
2004 [393] Significant reduction of AIMS score
saUFsdg’ 41]998 Significant reduction of AIMS score

No clear difference between vitamin
E and placebo for the outcome of TD
(not improved to a clinically
important extent)

Soares-Weiser
et al., 2018
[395]

Vitamin C antioxidant activity:

(i) The formation of a redox pair of

ascorbic acid/dehydroascorbic acid,

restores the active form of vitamin E Dakhale et al.,
(ii) Prevents or reverses the 2005 [396]
oxidation process of reduced

glutathione (GSH) to its functionally

inactive form (GSSG)

Ascorbic acid has a synergistic effect
for vitamin E:

Vitamins C and E Vitamins (i) Restores the oxidation product of
tocopherol (a-tocopheroxide) to
a-tocopherol

Vitamin C Vitamin Significant change on the BPRS

Significant reduction in dyskinetic
Nicolaus et al., movement total score
2002 [397] High dietary intake will lead to
prooxidant action

Arvindakshan Significant reduction of PANSS and

et al., 2003 BPRS and increase of QOL
[398] (Henrich’s Quality of Life scale)
Vitamins Eand C ~ Vitamins and dietary Q.V. mechanisms of action of Significant reduction of BPRS, Scale

and fatty acids supplements vitamins E and C and fatty acids o for Assessment of Negative
Sivrioglu et al., ) .
2007 [399] Symptoms, Simpson-Angus Rating
Scale, and Barnes Akathisia Rating
Scale
Emsley et al,,  Significant reduction in PANSS total
2002 [400] scale
No significant difference in the
Emsley et al, Extrapyramidal Symptom Ratin
2006 [404] Py ymptom Rating
Scale
No significant change in PANSS,
. . . Fenton et al.,  Abnormal Involuntary Movement
Polyunsaturated The detailed mechanisms of action 2001 [405] Syndrome scale, Clinical Global

are mostly unknown, but PUFAs

fatty acids Dietary supplements have anti-inflammatory and Impression scale
(PUFAs) antiatherogenic effects Peet et al,, 2001
Etl(;ﬁ]’ ZI:)eoezt Significant reduction in PANSS total
[402]
Ammineer Significantly reduced positive,
etal 2 Ogl 0 negative, and general symptoms and
[ 4 03] improved functioning compared

with placebo

Transcription factor-targeting drugs

Isothiocyanate sulforaphane
Inhibit Keap1 protein through Sedlak et al. increased blood and brain GSH

electrophilic modification, which 2017 [406] levels in healthy human subjects
o leads to Nrf2 activation. The following 7 days of administration
Nrf2 transcription factor o .
Sulforaphane activator transcription factor Nrf2 plays a Sulforaphane may have the potential
central role in the inducible to improve cognitive impairments in

Shiina et al.

expressions of many cytoprotective
P Y cytop 2015 [407]

genes in response to oxidative stress

patients with schizophrenia, but the
differences before and after
treatment are not significant
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Drugs Class Mechanism of action Studies Outcome
Sulforaphane exhibited an atypical
antipsychotic activity in PCP-
Shirai et al.,  induced cognitive deficits in animal
2015 (animal  models. Genetic analysis showed an
model) [408]  epistatic interaction between Nrf2
and Keap1 gene variants on working
memory in schizophrenia
Xu et al.. 2019 The neuroprotective effects of DDO-
Nrf2 transcription factor Nrf2 activation and NLRP3 7 7263 have been proven in mice,
DDO-7263 . . e (animal L
activator inflammasome inhibition through Nrf2 activation and NLRP3
model) [409] ‘ e
inflammasome inhibition
Significant reduction in total PANSS
and in the negative symptoms
Inhibit Keap1 protein through Miodownik  subscale. There were no differences
Curcumin Polyphenolic compound  electrophilic modification, which et al. 2019 in the positive and general PANSS
leads to Nrf2 activation [410] subscales, and the Calgary
Depression Scale for Schizophrenia
scores
) Zortea et al., Oral resveratrol in sufficiently low
Resveratrol is 2016 [411]  doses has not brought improvement
(i) An activator of NAD-dependent - . .
S . Zortea et al., No significant improvement in
deacetylase sirtuin-1 (SIRT1), which 2016 [412] svchopatholoey severit
Resveratrol Anthocyanins activates the transcription factor pSychop &y Y

FoxO

(ii) An inhibitor of NF-xB
(anti-inflammatory effect)

Salvianolic acid B like resveratrol is
an activator of SIRT1 and an
inhibitor of NF-xB

Salvianolic acid B Polyphenolic compound

Activate FoxO3 via AMP-activated
protein kinase activation

Metformin Antidiabetic agent

Anxiolytic and antipsychotic
potentials of resveratrol in murine
models of anxiety and schizophrenia
in mice was found

Study has confirmed the
antidepressant activity in an induced
depression rat model

Magaji et al.,
2017 (animal
model) [413]

Huang et al.,
2019 (animal
model) [414]

Treatment of stress-challenged rats
with fluoxetine and fluoxetine
combined with salvianolic acid could
alleviate depression-like symptoms
and cognitive deficit

SalB relieved CMS-induced
depressive-like state in mice through
the mitigation of inflammatory
status, oxidative stress, and the
activation of the AMPK/SIRT1
signaling pathway

Yu et al, 2016
(animal
model) [415]

Liao et al., 2020
(animal
model) [154]

Significantly reduce antipsychotic-
induced weight gain, dyslipidemia,
and metabolic abnormalities in
schizophrenia

Jiang et al.,
2020 [416]

vitamin E. Supplements with polyunsaturated fatty acids
(PUFAS) in schizophrenia help to reduce the PANSS scores
[398-403], but in some cases [404, 405] the changes are not
significant (Table 2). Despite all efforts, PUFA mechanisms
of action are still poorly understood.

5.3. Promising Transcription Factor-Targeting Drugs. Insuffi-
cient efficiency of antioxidant therapy stimulates the search
for new approaches to correct redox balance. The potential
new therapeutic avenues are associated with activators of
redox-regulated transcription factors (Nrf2, FoxO). The acti-
vation of Nrf2 or FoxO by low-molecular-weight drugs may

have therapeutic potential to control redox balance by
enhancing endogenous antioxidant responses. Numerous
drugs such as dimethyl fumarate (DMF), sulforaphane, cya-
noenone triterpenoids (in particular, bardoxolone methyl
and omaveloxolone), nitro fatty acids, and hydroxylamine
are considered promising Nrf2 activators [417]. Of these, only
DMF was approved by the US Food and Drug Administration
and the European Medicines Agency to treat remitting-
relapsing MS. [417] Sulforaphane, curcumin, resveratrol, and
metformin have been tested to treat schizophrenia (Table 2).
The Keapl inhibitor sulforaphane increased blood and brain
GSH levels in healthy humans [406] and improved cognitive
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impairments in schizophrenia individuals [407]. Sulforaphane
exhibited an atypical antipsychotic activity in an animal model
[408]. Another Keapl inhibitor, curcumin, reduced total
PANSS and the negative symptom subscale scores in schizo-
phrenia [410]. Another Nrf2 activator (DDO-7263) showed a
neuroprotective and anti-inflammatory effect through Nrf2
activation and NLRP3 inflammasome inhibition in an animal
model [409]. It is noteworthy that there are some reversible
Keapl-binding compounds with low off-target activity that
protect cells from oxidative effects by preserving the ATP con-
tent and mitochondrial potential in the cell culture of primary
astrocytes [418].

Some drugs can modulate the FoxO transcription factor
activity (Table 2). Resveratrol activates NAD-dependent dea-
cetylase sirtuin-1 (SIRT1), and thereby activates the tran-
scription factor FoxO, and also inhibits NF-xB. Resveratrol
demonstrated anxiolytic and antipsychotic potentials in
murine models of anxiety and schizophrenia [413]. However,
oral resveratrol is not effective in human trials [411, 412].
Another promising compound with a similar mechanism of
action is salvianolic acid B, which has been shown to alleviate
depression-like symptoms and cognitive deficits in animal
models [154, 414, 415]. Metformin, an antidiabetic agent,
was identified as a therapeutic activator of FoxO3. Metformin
showed efficacy in the treatment of antipsychotic-induced
weight gain, dyslipidemia, and metabolic abnormalities in
schizophrenia [416]. Besides, there are specific FoxO activa-
tors. Cautain et al., using image-based high-content screen-
ing technology, identified the isothiazolonaphthoquinone-
based compound (LOM612) as a specific FoxO3a protein
activator [419]. This compound induced nuclear transloca-
tion of FoxO3a and FoxO1 proteins and also did not affect
the translocation of NF-xB in U20S cancer cells [419]. Some
inhibitors of PI3K, Akt, and other protein kinases may also
be considered as possible regulators of FoxO activity [420].

5.4. Stratification of Patients Based on Oxidative Stress-
Related Markers for the Administration of Antioxidant
Treatment. Heterogeneity and complexity are the main
obstacles to developing etiopathogenetic treatments for
schizophrenia. The lack of effectiveness of traditional anti-
psychotic therapy, especially in the treatment of negative
and cognitive symptoms, leads to the search for new thera-
peutic avenues. Considering the above data about the
involvement of oxidative stress in the molecular mechanisms
of the schizophrenia pathogenesis, redox correction in con-
junction with antipsychotic therapy is a promising therapeu-
tic strategy. However, existing treatment approaches do not
consider the multistage process of schizophrenia. Indeed,
the redox markers in first-episode psychosis patients, people
with acute relapse of psychosis, chronic inpatients, and stable
medicated outpatients, as well as in people with different
types of schizophrenia and depending on antipsychotic treat-
ment, are different [40, 350]; therefore, it is necessary to take
into consideration the characteristics of each person’s redox
status, including during clinical trials.

As stated above, clinical trial results indicate that addi-
tional antioxidant therapy has beneficial effects, including
for treatment-resistant schizophrenia patients [421]. How-
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ever, a shift in the redox balance towards an increase in the
reduction potential leads to reductive stress and a paradoxical
increase in ROS production [422]. Therefore, the appointment
of antioxidant therapy should be strictly controlled. It is also
necessary to consider that prolonged use of antioxidant drugs
can have prooxidant effects [422]. Consequently, stratification
criteria based on oxidative stress-related markers need to be
developed. The stratification criteria may be blood-based bio-
markers, since they may reflect the degree of redox imbalance
in the brain, or noninvasive visualization-based markers.
Genetic-based stratification may also be promising. Identifica-
tion of subgroups of high-risk patients with common redox
imbalance parameters will allow choosing the optimal targeted
treatment strategy for each patient. This approach is an
important step towards personalized and precision medicine.

6. Conclusions

The heterogeneity of schizophrenia is reflected in the diver-
sity of oxidative stress-related mechanisms that contribute
to the disease. In our opinion, genetic causes lead to a predis-
position to redox imbalance. There is ample evidence that a
variety of environmental factors contribute to the dysregula-
tion of gene expression caused by abnormal regulation of
redox-sensitive transcriptional factors, noncoding RNAs,
and epigenetic mechanisms. These changes contribute to
altered redox signaling. Thus, these processes form the basis
of the redox imbalance and lead to mitochondrial dysfunc-
tion and metabolic abnormalities that contribute to aberrant
neuronal development, abnormal myelination, NMDA
receptor hypofunction, and dysfunction of parvalbumin-
positive interneurons. Immune dysregulation through vari-
ous mechanisms also enhances redox imbalance. All these
mechanisms ultimately contribute to the phenotypic realiza-
tion of predisposition to redox imbalance and the manifesta-
tion of schizophrenia. However, it should be noted that all
these mechanisms are interconnected and, at the same time,
can act both independently and jointly in different periods.
But these mechanisms eventually increase the likelihood of
developing schizophrenia. Knowledge of oxidative stress-
related mechanisms could pave the way for novel treatment
options in schizophrenia. We suggest that not only classical
antioxidants but also transcription factor-targeting drugs
have great promise in schizophrenia. Since dysregulation of
redox-sensitive transcriptional factors (e.g., Nrf2, NF-«B,
and FoxO) may play an important role in the development
of schizophrenia, modulators of the activity of these factors
may contribute to the normalization of redox balance.
However, it is necessary to use redox regulatory drugs with
caution, since any change in the redox balance towards
oxidative stress and reductive stress has detrimental conse-
quences. Therefore, we propose to develop the stratification
criteria of schizophrenic patients based on oxidative stress-
related markers for the administration of antioxidant treat-
ment for high-risk patients. Nevertheless, there are still many
unresolved questions about the role of oxidative stress in
schizophrenia pathogenesis. We expect that further research
will reveal new oxidative stress-related mechanisms in
schizophrenia.
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