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Background. Sarcoma mortality remains high despite adjuvant chemotherapy. Biomarker predictors of treatment response and
outcome could improve treatment selection. Methods. Tissue microarrays (TMAs) were created using pre- and posttreatment
tumor from two prospective trials (MGH pilot and RTOG 9514) of neoadjuvant/adjuvant MAID chemotherapy and preoperative
radiation. Biomarkers were measured using automated computerized imaging (AQUA or ACIS). Expression was correlated with
disease-free survival (DFS), distant disease-free survival (DDFS), and overall survival (OS). Results. Specimens from 60 patients
included 23 pretreatment (PRE), 40 posttreatment (POST), and 12matched pairs (MPs). In theMP set, CAIX, GLUT1, and PARP1
expression signiDcantly decreased following neoadjuvant therapy, but p53 nuclear/cytoplasmic (N/C) ratio increased. In the PRE
set, no biomarker expression was associated with DFS, DDFS, or OS. In the POSTset, increased p53 N/C ratio was associated with
a signiDcantly decreased DFS and DDFS (HR 4.13, p � 0.017; HR 4.16, p � 0.016), while increased ERCC1 and XPF expression
were associated with an improved DFS and DDFS. No POST biomarkers were associated with OS. Conclusions. PRE biomarker
expression did not predict survival outcomes. Expression pattern changes after neoadjuvant chemoradiation supports the
concepts of tumor reoxygenation, altered HIF-1α signaling, and a p53 nuclear accumulation DNA damage response. Clinical Trial
Registration. NRG Oncology RTOG 9514 is registered with ClinicalTrials.gov. -e ClinicalTrials.gov IdentiDer is NCT00002791.

1. Introduction

Despite major improvements in local control/limb salvage,
survival for “high-risk” soft tissue sarcomas (STSs) has not
signiDcantly changed over time. Almost half of patients
with a large, deep, high-grade sarcoma (stage III) will die
within 5 years of their diagnosis. Consequently, the potential

beneDts of adjuvant chemotherapy have been explored.
Several studies have reported improvements in overall
survival of 4–19% [1–3]. However, toxicity has been sig-
niDcant, including both acute hematologic toxicity and
late myelodysplasia/leukemia [2, 4, 5]. In addition, it has
been impossible to identify which subset of “high-risk”
patients truly beneDt from adjuvant chemotherapy based
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upon standard prognostic variables (age, location, his-
tologic subtype, size, and grade) [1].
Beginning in 1989,Massachusetts General Hospital (MGH)

performed a pilot trial of neoadjuvant MAID chemotherapy
(mesna, Adriamycin, ifosfamide, and dacarbazine), 44Gy
interdigitated preoperative radiation, and adjuvant systemic
chemotherapy in 48 patients with high-risk extremity STSs
(high grade, ≥8 cm) [4]. Actuarial 5-year overall survival (OS)
was 87%, signiDcantly higher than that of a corresponding
historical control group. Long-term follow-up for these patients
was also available as part of a larger study [6]. At a median
follow-up of 46 months, 5-year OS was still 86%. Based upon
the promising results of the MGH pilot trial, the Radiation
-erapy Oncology Group (RTOG) opened trial 9514 in 1997,
a phase II study of neoadjuvant chemotherapy and radiation for
“high-risk” soft tissue sarcomas of the extremities and trunk [5].
Sixty-four patients were treated using a regimen almost
identical to that in the MGH pilot trial. With long-term follow-
up, the estimated 5-year OS was an impressive 71.2% [7].
As part of NRGOncology RTOG 9514, the original biopsy

and surgical resection specimens for many of the participating
patients were stored in the RTOG Tissue Bank. In addition,
one of the principal investigators for the MGH pilot trial was
also involved in NRGOncology RTOG 9514, providing access
tomany of the pathology specimens from theMGHpilot trial.
Both studies had long-term follow-up information on
a group of large, high-grade STS patients treated with the
same neoadjuvant chemoradiation/adjuvant chemotherapy
regimens. -is aNorded a unique opportunity to construct
tissue microarrays (TMAs) of the tumor specimens, which
could be used to potentially correlate candidate biomarker
expression with outcome in a uniform cohort of “high-risk”
STS patients.

2. Methods

2.1. Specimen Acquisition. After obtaining institutional re-
view board approval from MGH, available diagnostic biopsy
and surgical resection specimens from the pilot trial were
pathologically reviewed to assure the presence of viable tumor.
-e representative paraOn blocks were then sent to the RTOG
Tissue Bank at the University of San Francisco. Representative
0.6mm punch biopsies were obtained in order to create
a TMA, and the blocks were returned to the parent institution.
Many of the specimens fromNRGOncology RTOG 9514were
already housed in the RTOG Tissue Bank as part of the
original protocol. An attempt was made to obtain any missing
specimens by contacting the treating institutions.
-e original pretreatment diagnostic biopsy for patients

in both trials was typically a core needle or limited incisional
biopsy specimen.-erefore, it was only a representative portion
of a larger tumor. In contrast, the Dnal surgical specimen
following neoadjuvant therapy often contained tissue blocks
from several diNerent areas. To minimize the sampling error
from biomarker expression heterogeneity and to maximize
the acquisition of adequate quality tumor for immunohis-
tochemistry (IHC) analysis (e.g., nonnecrotic tissue), the
parent institution was asked to provide two blocks repre-
senting diNerent areas of assessable tumor (ideally, one central

and one peripheral). H&E sections from these blocks were
reviewed, and areas of highest tumor concentration circled to
act as guides for punching the TMA cores. As the potential for
tumor heterogeneity was considered, TMAs were constructed
in triplicate.

2.2. Candidate Biomarkers. All of the patients in this study
came from either the MGH pilot trial or RTOG 9514, which
were large, deep, “high-risk” STSs. -erefore, some of the
biomarkers chosen were previously associated with STS out-
come in smaller, more heterogeneous studies. In addition, all of
the patients had received neoadjuvant chemoradiation. Con-
sequently, other biomarkers had potential relationships to the
cellular responses to chemoradiation damage. Although many
biomarkers were available for assessment, nine candidate
biomarkers were chosen for this initial TMA analysis for the
reasons outlined above.

Ki67 is a nuclear nonhistone protein that is expressed in
proliferating cells [8]. Increased Ki67 expression in STSs has
been associated with a decreased metastasis-free survival
[9, 10].

p53 is a multifunctional “tumor suppressor” protein, which
can be induced by DNA damage to cause cell cycle arrest to
allow for DNA damage repair, activate DNA repair proteins,
and initiate apoptosis [11]. p53 mutations and overexpression
on IHC, especially as assessed by N-terminal binding anti-
bodies, are associated with decreased STS survival [12, 13].

Ataxia-telangiectasia mutated (ATM) kinase is a serine-
threonine kinase that mediates cell cycle checkpoint control
following exposure to agents that produce double-stranded
DNA breaks, such as ionizing radiation [14]. ATM-dependent
arrest of the cell cycle in G1 following radiation is through
activation of p53 [15].

Poly (ADP-ribose) polymerase-1 (PARP1) is activated by
DNA damage, playing a role in DNA base excision repair,
but can also regulate transcription [16]. Loss of PARP1
activity leads to enhanced cancer cell death. Doxorubicin has
been anecdotally shown to decrease PARP1
expression/activity [17].

Excision repair cross-complementation group 1 (ERCC1) is
a rate-limiting protein in the nucleotide excision repair and
interstrand crosslink repair pathways, including removing
platinum chemotherapy adducts [18]. In STS patients un-
dergoing trabectedin therapy, high expression correlated with
improved progression-free survival and OS [19].

Xeroderma pigmentosum group F-complementing protein
(XPF) is the catalytic component of the ERCC1 structure-
speciDc DNA repair endonuclease complex [18].

Carbonic anhydrase IX (CAIX) is a transmembrane protein
that catalyzes the hydration of carbon dioxide to carbonic acid,
modulating pH [20]. SigniDcant upregulation can occur with
tumor hypoxia [21]. Expression has been associated with a
decreased disease-speciDc survival and OS in large, deep, high-
grade STSs [22].

Glucose transporter 1 (GLUT1) facilitates the transport of
glucose across the plasma membranes of mammalian cells. It
can be upregulated by hypoxic conditions, facilitating tumor
cell generation of ATP via anaerobic glycolysis [23]. Bone and
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STS patients with glut-1 overexpression had a signiDcantly
worse OS as compared to those without overexpression [24].

Hypoxia-inducible factor 1-alpha (HIF-1α) is a subunit of
the transcription factor that regulates the cellular responses
to hypoxia and may increase expression of proteins necessary
for the development of metastases [25–27]. Increased HIF-1α
expression in STSs has been associated with a shorter OS [28].
HIF-1α can also mediate resistance to radiation therapy [29].

2.3. TMA Construction, Staining, and Scoring. TMAs were
constructed, stained, and scored using commercially available
reagents and previously described, well-validated techniques
[30–33].

2.4. TMA Construction. Two consecutive representative sec-
tions were recut from each specimen block. One was banked
for future reference, if necessary. -e other recut slide was
stained with hematoxylin and eosin and used to determine the
optimal locations for the 0.6mm core biopsies of the specimen
block. For the smaller-sized pretreatment biopsy specimens,
one block was processed in this manner. For the larger
posttreatment surgical resection specimens, if available, two
blocks from noncontiguous areas of the tumor were processed.
-is algorithm produced 2-3 cores/patient (1 pretreatment and
1-2 posttreatment) on the TMA block.-e blocks were arrayed
using consecutive patients in order. Representative tissues with
known IHC positivity to each of the study biomarkers were
chosen by the Tissue Bank and also placed on the master TMA
block to serve as positive controls.
As previously noted, three copies of the TMA were made

by taking punches from diNerent parts of the available tumor
and stained with each marker to allow for consideration of
expression heterogeneity across diNerent areas of the tumor.
Construction of the TMA block was performed using the

automated instruments at the RTOG Tissue Bank (Beecher
Instruments, Sun Prairie, WI). Recipient paraOn blocks were
made using standard jumbo metal molds commonly used for
tissue embedding with standard plastic histology cassettes on
top (Sakura Finetek, Torrance, CA). Type 9 embedding
paraOn (Richard-Allan ScientiDc, Kalamazoo, MI) was used
to make the paraOn recipient TMA block. A supplied H&E
slide marked to represent the area of interest and its corre-
sponding paraOn tissue block was used to accurately punch
out the donor cores for each case and placed into the TMA.
Heat strips were glued to the recipient block holder on the
TMA instrument. -e recipient block was then heated to
approx. 100°F.
After each array block was constructed, a glass slide

heated up to 80°C was set on the warmed block and allowed
to melt the surface. -e heated glass slide set the punches,
eliminating the oven step used in the original method for
array construction. -e glass slide and array block were then
turned over and allowed to cool on a room temperature
tabletop for 5 minutes before chilling on an ice tray (slide
down) before separating. -e microtome used was the
Microm HM 355-S (-ermo Fischer ScientiDc, Waltham,
MA). -e microtome chuck was adjusted manually to the
Rat surface of the array block. Since the block warmer was

used when punching the array blocks, the punch surface was
already Rat, eliminating the need to trim into the block.
Sections were taken almost directly oN the surface. TMA
blocks were sectioned at 4 microns and gently placed on
a water bath at 38°C. Individual sections were maneuvered
onto plus-charged slides with a probe. For quality control,
a section from each TMA was stained with H&E. Each TMA
core was checked to verify the presence or absence of tumor
by the biobank pathologist (JPS), followed by a subsequent
recheck by the pathologist performing the immunohisto-
chemical studies (TM).

2.5. Fluorescence Immunohistochemistry. TMA sections
(4 microns) were deparaOnized in xylene, rinsed in ethanol,
and rehydrated as previously described [32]. Heat-induced
epitope retrieval (HIER) was performed using a Decloaking
Chamber (Biocare Medical, Concord, CA) for all target
biomarkers by heating slides to 121°C for either 3 or 6minutes,
in either a citrate-based (pH 6.0) target retrieval solution
(S1699, DAKO, Mississauga, Canada), or a Tris/EDTA-based
(pH 9.0) target retrieval solution (S2367, DAKO). Supple-
mentary 2 summarizes all target antibody speciDcs and their
HIER conditions.
Slides were then processed using a DAKO Autostainer.

Endogenous peroxidase activity was quenched with a 10-
minute incubation of peroxidase block (K4007, DAKO),
followed by a 15-minute protein block (SignalStain®; 8112L,
Cell Signaling, Danvers, MA) to prevent nonspeciDc anti-
body binding.
All primary antibodies were diluted in SignalStain and

applied for 60 minutes at room temperature along with
either rat anti-vimentin (MAB2105, clone 280618, 1:100,
R&D Systems,Minneapolis, MN,USA) or rabbit anti-vimentin
(2707-1, clone EPR3776, 1:250, Epitomics, Burlingame, CA) to
identify tumor cells. Slides were washed in Tris-buNered saline
and Tween® 20 (TBST) wash buNer (S3006, DAKO) and then
treated for 60 minutes with either goat anti-rabbit EnVision+
(K4011, DAKO) or goat anti-mouse EnVision+ (K4007, DAKO)
secondary antibody. Either Alexa-488-conjugated goat anti-rat
antibody (A-11006, polyclonal, 1:200, Invitrogen, Burlington,
ON, Canada) or Alexa-555-conjugated goat anti-rabbit anti-
body (A-21429, polyclonal, 1:200, Invitrogen) was applied
along with the anti-rabbit and anti-mouse secondary anti-
bodies, respectively, to detect vimentin. Slides were then treated
for 5 minutes with a TSA-Plus Cy5 tyramide signal ampliD-
cation reagent (NEL745B001KT, PerkinElmer,Waltham,MA),
coverslipped using ProLong Gold antifade mounting medium
with 4′,6-diamidino-2-phenylindole (DAPI) (P36935, Invitrogen),
and stored at 4°C.

2.6. Automated Image Acquisition andAnalysis. Compartment-
speciDc expression of all biomarkers was quantiDed using the
HistoRx AQUA® platform (Branford, CT). Automated image
acquisition was performed using the HistoRx PM-2000™ slide
scanner, and digital images were analyzed using AQUA-
nalysis® software version 2.3.4.1 as previously described [33].
BrieRy, seamless high-resolution images were acquired using
an 8-bit monochrome TDI line-image capture camera with
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Dlters speciDc for DAPI to deDne the nuclear compartment,
either Ruoroscein isothiocyanate (FITC) or Cyanine 3 (Cy3)
to deDne the vimentin-positive tumor cytosolic compartment,
and Cy5 to deDne all target markers. A tumor-speciDc mask
was generated to distinguish cancer cells from surrounding
stromal tissue by thresholding the vimentin images to create
a binary mask that identiDed the presence or absence of
tumor cells by the presence of a pixel that was “on” or “oN,”
respectively.
Images were cropped to exclude unusable areas from

Dnal analysis and then processed using optimized threshold
values. Images were validated according to the following:
(1) >10% of the tissue area is vimentin positive and (2) >50%
of the image was usable (i.e., not compromised due to over-
lapping or out of focus tissue).
Compartment-speciDc AQUA scores, representing pro-

tein expression for all markers, were calculated as the average
concentration of Cy5 pixel intensity within the compartment
area for each TMA core. For each patient sample, the average
compartment-speciDc AQUA score over triplicate cores was
used to deDne the tumor score (tAQUA). Representative
staining for CAIX and GLUT1 is shown in Supplementary 1.

2.7. 3′-Diaminobenzidine Tetrahydrochloride (DAB) Immu-
nohistochemistry (Ki67 Only). DeparaOnized and rehy-
drated TMA sections underwent HIER using the PT-Link
(DAKO) by heating slides at 97°C for 20 minutes in DAKO
EnVision™ FLEX, Low pH (Link) target retrieval solution.
After cooling to 65°C, slides were then placed in 1x EnVision
FLEX wash buNer for 5 minutes prior to running the slides on
the DAKOAutostainer Link 48.-e FLEXmonoclonal mouse
anti-human Ki67 antigen (clone MIB-1) ready-to-use anti-
body (DAKO, IR626) for the Link platformwas used following
the manufacturer’s speciDcations using EnVision FLEX re-
agents (DAKO, K8002) with counterstaining performed on
the autostainer using hematoxylin (Link) (DAKO, K8008).
All images were reviewed by one of the study pathol-

ogists (TM) as a quality control step in data acquisition.
Immunohistochemical staining was quantitatively assessed
using ACIS® III Automated Cellular Imaging System (DAKO).
BrieRy, the ACIS III digitizes and reports a region score using
proprietary software to generate a speciDc algorithm for Ki67
that identiDes color thresholds (blue (hematoxylin overlay)
and light brown and dark brown (Ki67DAB)) in manually
selected regions containing tumor. -e percent positive ACIS
III score was then calculated by taking the total brown
staining area and dividing it by the combined total blue and
brown staining areas.

2.8.OutcomeDataandStatisticalAnalysis. -edemographic
and updated outcome data for all of the patients that par-
ticipated in NRG Oncology RTOG 9514 were already
contained within the RTOG clinical trial database. Corre-
sponding data for the patients in the MGH pilot trial were
obtained from the MGH database, reformatted, and merged
with the NRG Oncology RTOG 9514 data. Patient de-
mographic information included age, gender, STS histology,
tumor size, anatomic location, the pathologic response to

neoadjuvant therapy as per the resection specimen, local
recurrence, distant recurrence, and vital status at the time of
the last follow-up.
For the purpose of statistical analysis, there were 3 cohorts

of TMA specimens. -e “pretreatment” (PRE) group con-
sisted of specimens obtained at the time of STS diagnosis/prior
to starting preoperative chemoradiation. -e “posttreatment”
(POST) group was specimens from the deDnitive surgical
resection (following neoadjuvant chemoradiation). Based
upon the presence of both pretreatment biopsy and surgical
resection specimens for an individual patient, there was also
a cohort of “matched pairs” (MPs). -e patients with a path-
ologic complete response (PCR) were excluded from the POST
andMPgroup analyses as therewas no viable tumor for the POST
TMA construction. Markers were analyzed as log-transformed
continuous variables.
Assessed outcome measures included disease-free sur-

vival (DFS), distant disease-free survival (DDFS), and overall
survival (OS). Failure for DFS was deDned as local, regional,
or distant relapse, or death due to any cause. Failure for
DDFS was deDned as distant relapse or death due to any
cause. Failure for OS was deDned as death due to any cause.
DFS, DDFS, and OS were measured from the date of surgery
to the date of failure or last follow-up for censored patients.
-e patients that progressed or died prior to surgery were
excluded from analysis. Rates for DFS, DDFS, and OS
were estimated by the Kaplan-Meier method. Hazard ratios
were estimated by Cox models. Change of marker levels
from pre- to posttreatment was compared using the non-
parametric Wilcoxon signed-rank test.

3. Results

3.1. Patient Demographics and Outcome. Specimens for
TMA construction were obtained for 61 patients from the
combined MGH pilot trial/NRG Oncology RTOG 9514
participants. Following pathologic review, specimens from
60 patients were deemed adequate for TMA construction (37
from NRG Oncology RTOG 9514 and 23 from the MGH).
Fifty-three patients had at least one marker value available.
Two patients were excluded from analysis (1 not meeting
inclusion/exclusion criteria; 1 disease progression prior to
surgery), leaving 51 analyzable patients. In terms of the
cohorts for analysis, there were 23 PRE patients, 40 POST
patients, and 12 MPs.
-e clinical and pathologic data for all patients are sum-

marized in Supplementary 3. -e median age for the patients
represented on the TMAwas 48 years (range 21–77), and 56.9%
were male. Median tumor size was 14 cm (range 8.2–35), and
76.5% were located on the lower extremity/buttock. -e most
common STS subtypes were 45.1% undiNerentiated pleo-
morphic sarcoma (malignant Dbrous histiocytoma), 13.7%
non-well-diNerentiated liposarcoma, 11.7% leiomyosarcoma,
5.9% malignant peripheral nerve sheath tumor, and 3.9% sy-
novial sarcoma. Negative margin wide resection was achieved
in 90.2%. Eighty-two percent of patients received all 3 cycles of
preoperative MAID chemotherapy and 65% received 3 post-
operative cycles. -e complete follow-up and outcome data
are shown in Supplementary 4. -e median follow-up for
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surviving patients was 7.8 years (range 1.8–17.6).-e 5-year
estimates for DFS, DDFS, and OS were 70.4% (95% CI
57.9–83.0), 70.4% (57.9–83.0), and 79.9% (68.8–91.1), re-
spectively (Figure 1).

3.2. Changes in Biomarker Expression following Neoadjuvant
Chemoradiation. -e changes in tumor biomarker expres-
sion following neoadjuvant chemoradiation in the 12 MP
patients are listed in Table 1.-ere were statistically signiDcant
decreases in the expression of nuclear, cytoplasmic, and tu-
mor mask CAIX (p � 0.023, 0.039, and 0.016, resp.), tumor
mask GLUT1 (p � 0.047), and nuclear PARP1 (p � 0.031).
p53 nuclear/cytoplasmic ratio also signiDcantly increased
(p � 0.047) following preoperative therapy. -ere were no
signiDcant changes in Ki67, ATM, ERCC1, XPF, or HIF-1α.

3.3. Biomarker Expression and Survival. -e PRE group
biomarker expression data are listed in Supplementary 5.
-ere was no predictive association between PRE group
biomarker expression and DFS, DDFS, or OS (data not
shown). -e POST group biomarker expression data are
listed in Supplementary 6. For POST group biomarker ex-
pression, increased p53 nuclear/cytoplasmic (N/C) ratio
was associated with a signiDcantly decreased DFS (HR 4.13
(95% CI: 1.29–13.17), p � 0.017). Increased ERCC1 tumor
mask and XPF nuclear expression were associated with an

improved DFS (HR 0.30 (95% CI: 0.09–0.97), p � 0.044; HR
0.01 (95% CI: 0.00–0.92), p � 0.046, resp.). -e entire POST
group DFS analysis is shown in Table 2. No other POST
group biomarkers were associated with DFS. Similar to DFS,
increased p53 nuclear/cytoplasmic (N/C) ratio (HR 4.16
(95% CI: 1.31–13.23), p � 0.016) and a low expression of
ERCC1 (HR 0.30 (95% CI: 0.09–0.98), p � 0.046) and XPF
(HR 0.01 (95% CI: 0.00–0.93), p � 0.046) were associated
with a decreased DDFS (Table 3). -ere was no relationship
between POST biomarker expression and OS (data not
shown).

4. Discussion

In light of the associated toxicity of cytotoxic chemotherapy,
better predictors of poor survival in high-risk STS patients
could potentially justify systemic treatment-related morbidity
in a subset of this group.-e tumor specimens from theMGH
pilot trial and NRG Oncology RTOG 9514 provided a unique
opportunity to create TMAs from a uniform cohort of high-
risk STS patients with complete prospective follow-up data.
-e patients were also treated with almost identical neo-
adjuvant chemoradiation regimens. Unfortunately, there
were no pretreatment expression patterns in our chosen
biomarkers that correlated with DFS, DDFS, or OS. However,
there were a few posttreatment biomarkers associated with
the risk for distant recurrence: p53 N/C ratio, ERCC1, and
XPF. If these biomarkers were associated with the risk for
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distant recurrence after neoadjuvant radiation therapy alone,
then they could be tested to stratify patients for postoperative
chemotherapy. -ere were also some intrapatient changes in
tumor biomarker expression following neoadjuvant therapy
that may better elucidate the biologic mechanisms underlying
STS responses to chemoradiation.
In resected high-grade STSs without neoadjuvant ther-

apy, Maseide et al. observed that the expression of CAIX
correlated with decreased disease-speciDc survival and OS
[22]. In our study, neither PRE nor POST CAIX expression
was associated with outcome. Interestingly, we did observe
that preoperative chemoradiation led to a signiDcant de-
crease in both CAIX and GLUT1 tumor expression in the
MP analysis. -ese Dndings would Dt with a chemo-
radiation-related tumor reoxygenation phenomenon [34].
Portions of tumors (especially STS) can be hypoxic, making
them less responsive to radiation. As tumor cells die in
response to therapy, other hypoxic cells within the tumor
will obtain more oxygen. Expression of CAIX and GLUT1
can be induced by HIF-1α [35, 36]. A decrease in HIF-1α
secondary to tumor reoxygenation resulting from neo-
adjuvant therapy could produce the observed decreases in

CAIX and GLUT1. However, we did not observe a decrease
in HIF-1α in our MP group. -erefore, it is possible that the
decreased expression of CAIX and GLUT1 after neoadjuvant
therapy reRects altered HIF-1α signaling in response to
chemoradiation, such as doxorubicin, rather than expression
changes only attributable to hypoxia [37, 38].
Given the roles of PARP1, ERCC1, and XPF in the repair

of DNA damage, one might expect that increased expres-
sion would enhance tumor survival. In our study, increased
primary tumor POST expression of both ERCC1 and XPF
was associated with an increased DFS and DDFS.-is Dnding
is somewhat similar to ERCC1 results by Rodrigo et al. in
78 high-grade “locally advanced” soft tissue sarcoma patients
who received 4 cycles of neoadjuvant doxorubicin-cisplatin-
ifosfamide chemotherapy [39]. Although there was no sig-
niDcant correlation of ERCC1 negative versus positive tumors
with DFS in that study (median DFS 3.2 versus 7 years,
p≤ 0.19), median OS for ERCC1-positive tumor was not
reached as compared to 6.6 years for negative tumors (p≤ 0.058).
We observed a decrease in PARP1 expression after neoadjuvant
therapy in the MP group, but there was no correlation between
PRE or POST PARP1 expression and outcome. Increased

Table 1: Changes in tumor biomarker expression following neoadjuvant chemoradiation in 12 “matched pair” large, deep, high-risk soft
tissue sarcoma patients.

Marker
Pretreatment value Posttreatment value

p value
Mean SD Mean SD

ACIS Ki67
Percentage 15.91 19.78 7.65 7.30 0.0674

p53
Nuclear/cytoplasmic ratio 1.44 0.22 1.90 0.74 0.0469

ATM
Nuclear 8349.36 1920.35 7870.75 2114.36 0.4961
Cytoplasm 3811.69 2121.29 3116.21 1035.73 0.4258
Tumor mask 5289.39 2400.71 4412.80 1205.37 0.3594

PARP1
Nuclear 7042.80 1361.76 5533.59 1198.18 0.0313
Cytoplasm 3281.97 798.55 2293.63 471.64 0.0938
Tumor mask 4354.82 1092.11 3263.65 674.80 0.0625

ERCC1
Nuclear 9433.46 2247.20 8586.98 1658.74 0.3594
Cytoplasm 3046.29 1563.80 2197.19 917.54 0.0977
Tumor mask 5150.35 1600.28 4206.67 1335.08 0.0977

XPF
Nuclear 8772.27 1076.08 8880.11 2407.45 0.8457
Cytoplasm 4694.75 1556.58 4240.83 1254.75 0.3750
Tumor mask 6004.00 1598.71 5511.37 1619.80 0.4316

CAIX
Nuclear 3939.81 1273.12 2406.95 977.10 0.0234
Cytoplasm 3931.01 1699.38 2037.18 944.15 0.0391
Tumor mask 3972.93 1569.58 2124.05 926.91 0.0156

GLUT1
Nuclear 5389.90 2886.98 2937.34 1198.24 0.0781
Cytoplasm 4932.26 3106.79 2496.81 1116.73 0.1094
Tumor mask 5054.19 2998.35 2658.88 1128.22 0.0469

HIF-1α
Nuclear 6267.08 1603.95 5787.91 2241.58 0.4609
Cytoplasm 3857.75 1221.78 2978.52 1433.30 0.1484
Tumor mask 4582.47 1435.49 4009.57 2108.14 0.3828

SD: standard deviation; p values are from the Wilcoxon signed-rank test on log-transformed values.

6 Sarcoma



PARP1 expression has been associated with decreased DFS
and DDFS in other cancers, such as serous ovarian carcinoma
and breast cancer [40, 41]. As previously noted, doxorubicin
therapy has been associated with decreases in PARP1, which
may explain our PARP1 Dndings [17].
Another interesting Dnding was the increase in p53 N/C

ratio following neoadjuvant therapy in the MP group
combined with an increased POSTp53 N/C ratio correlating
with a decreased DFS and DDFS. -ese results raise the
possibility that chemoradiation may have increased the
expression of preexisting mutant p53. Mutant p53, with loss
of function, can have a positive feedback loop with respect to
p53 expression, resulting in increased nuclear accumulation
[42]. It also has a higher N/C ratio as there is less cytoplasmic
background due to saturation of the camera from the strong
nuclear expression. Use of the N/C ratio helps to normalize
diNerences on a case-by-case basis, and it also relates to
changes in localization of the protein. -e fact that the p53
N/C ratio Dndings for DFS and DDFS were statistically
signiDcant supports a hypothesis that sarcomas with mutant
p53 may be at increased risk of metastasis. Alternatively,
it is conceivable that the increased accumulation of p53

following neoadjuvant therapy reRects activation of wild-
type p53 that accumulates in the nucleus following DNA
damage. In this scenario, the presence of wild-type p53
would correlate with worse outcome after treatment, which
has been reported for preclinical mouse models of breast
cancer treated with doxorubicin [43]. Future studies that
include p53 gene sequencing and evaluation of the p53 N/C
ratio after neoadjuvant therapy will be needed to diNeren-
tiate between these two possibilities.
-ere are several limitations to our study. -e Drst is

that, although this is a very homogeneous, uniformly treated
subset of “high-risk” STSs, the total number of patients is
very small. -is would potentially diminish the ability to
identify any statistically signiDcant associations between
biomarker expression and outcome. As with many patho-
logic specimen-based analyses, we were only able to acquire
adequate specimens to construct the TMA from 59 out of 112
potential patients from the combined MGH/NRG Oncology
RTOG 9514 trials. Many institutions were unwilling to re-
lease the archival diagnostic pathologic material. -e orig-
inal pretreatment biopsy specimens were frequently very
limited in size, often just a core needle biopsy, and some

Table 2: Correlation of posttreatment biopsy specimen tissue
microarray biomarker expression with disease-free survival in 40
large, deep, high-risk soft tissue sarcoma patients treated with
neoadjuvant chemoradiation.

Marker HR (95% CI) p value
ACIS Ki67
Percentage 1.01 (0.60–1.68) 0.9813

p53
Nuclear/cytoplasmic ratio 4.13 (1.29–13.17) 0.0167

ATM
Nuclear 2.28 (0.34–15.32) 0.3971
Cytoplasm 1.86 (0.32–10.79) 0.4889
Tumor mask 1.33 (0.22–8.11) 0.7594

PARP1
Nuclear 1.38 (0.18–10.62) 0.7596
Cytoplasm 0.53 (0.12–2.33) 0.3982
Tumor mask 0.55 (0.13–2.42) 0.4317

ERCC1
Nuclear 0.77 (0.06–9.53) 0.8380
Cytoplasm 0.37 (0.11–1.21) 0.0991
Tumor mask 0.30 (0.09–0.97) 0.0443

XPF
Nuclear 0.01 (0.00–0.92) 0.0457
Cytoplasm 0.25 (0.03–2.35) 0.2271
Tumor mask 0.16 (0.02–1.62) 0.1207

CAIX
Nuclear 1.23 (0.48–3.13) 0.6713
Cytoplasm 1.33 (0.60–2.95) 0.4881
Tumor mask 1.32 (0.58–3.03) 0.5084

GLUT1
Nuclear 1.44 (0.50–4.18) 0.4989
Cytoplasm 1.24 (0.52–2.96) 0.6322
Tumor mask 1.26 (0.50–3.20) 0.6212

HIF-1α
Nuclear 0.59 (0.18–1.89) 0.3712
Cytoplasm 0.37 (0.12–1.16) 0.0885
Tumor mask 0.40 (0.14–1.17) 0.0945

HR: hazard ratio; CI: conDdence interval.

Table 3: Correlation of posttreatment biopsy specimen tissue
microarray biomarker expression with distant disease-free survival
in 40 large, deep, high-risk soft tissue sarcoma patients treated with
neoadjuvant chemoradiation.

Marker HR (95% CI) p value
ACIS Ki67
Percentage 1.01 (0.60–1.69) 0.9691

p53
Nuclear/cytoplasmic ratio 4.16 (1.31–13.23) 0.0159

ATM
Nuclear 2.32 (0.35–15.59) 0.3859
Cytoplasm 1.93 (0.34–11.05) 0.4583
Tumor mask 1.37 (0.23–8.33) 0.7294

PARP1
Nuclear 1.37 (0.18–10.68) 0.7611
Cytoplasm 0.52 (0.12–2.34) 0.3971
Tumor mask 0.55 (0.13–2.43) 0.4313

ERCC1
Nuclear 0.78 (0.06–9.75) 0.8479
Cytoplasm 10.37 (0.11–1.22) 0.1038
Tumor mask 0.30 (0.09–0.98) 0.0455

XPF
Nuclear 0.01 (0.00–0.93) 0.0462
Cytoplasm 0.27 (0.03–2.43) 0.2415
Tumor mask 0.17 (0.02–1.69) 0.1304

CAIX
Nuclear 1.21 (0.47–3.12) 0.6885
Cytoplasm 1.32 (0.59–2.94) 0.5005
Tumor mask 1.31 (0.57–3.02) 0.5214

GLUT1
Nuclear 1.44 (0.50–4.18) 0.4984
Cytoplasm 1.24 (0.52–2.97) 0.6250
Tumor mask 1.27 (0.50–3.20) 0.6168

HIF-1α
Nuclear 0.59 (0.18–1.90) 0.3717
Cytoplasm 0.37 (0.12–1.17) 0.0913
Tumor mask 0.40 (0.14–1.17) 0.0951

HR: hazard ratio; CI: conDdence interval.
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were performed at institutions not participating in either
trial (prior to the referral of the patient for trial enrollment).
When limited samples from a large tumor are used to construct
a TMA, it is also possible that tumor heterogeneity will not be
adequately represented. -is is especially true for the rather
diminutive pretreatment core needle biopsy specimens. Al-
ternatively, one could contend that using a single small core
needle biopsy specimen from a newly diagnosed sarcoma
would bemore representative of what would happen in a “real-
world” clinical practice where only a very small, somewhat
random biopsy sample from the tumor would be available to
perform biomarker testing for pretreatment prognostication. If
there was a complete pathologic response to neoadjuvant
therapy (whichwas 27% inNRGOncology RTOG 9514), it also
meant that there was no POST tumor specimen to analyze [5].
Although we “lumped together” the diNerent STS subtypes due
to the small number of available cases, there are likely inherent
diNerences in biomarker expression amongst the various
histologies. -e small number of matched pair specimens also
limited the ability to identify intrapatient changes in tumor
biomarker expression following neoadjuvant therapy. Finally,
although there was a fairly long median follow-up, the overall
small sample size combined with very good patient survival
means that there were relatively few adverse outcome events,
which limited the statistical power of our study.
In conclusion, the PRE expression of none of our candidate

pretreatment biomarkers was not associated with survival in
this cohort of STS patients treated with neoadjuvant chemo-
radiation. -erefore, we remain unable to identify a subset of
truly high-risk STS patients at the time of diagnosis who would
be optimal candidates for neoadjuvant chemoradiation prior to
surgical resection. Some tumor biomarker expression pattern
changes after neoadjuvant chemoradiation do support the
concepts of tumor reoxygenation or altered HIF-1α signaling.
In addition, we observed nuclear accumulation of p53 after
neoadjuvant therapy, which may reRect a response of p53 to
DNA damage. Hopefully, our clinically well-annotated, high-
risk STS TMAs will be an extremely useful collaborative re-
source for future candidate biomarker analyses, either for
prognostication or to assess the suitability for novel targeted
therapies.
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