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Abstract

When we reach for an object during a passive whole body rotation, a tangential Coriolis

force is generated on the arm. Yet, within a few trials, the brain adapts to this force so it does

not disrupt the reach. Is this adaptation governed by a single-rate or dual-rate learning pro-

cess? Here, guided by state-space modeling, we studied human reach adaptation in a fully-

enclosed rotating room. After 90 pre-rotation reaches (baseline), participants were trained

to make 240 to-and-fro reaches while the room rotated at 10 rpm (block A), then performed

6 reaches under opposite room rotation (block B), and subsequently made 100 post-rotation

reaches (washout). A control group performed the same paradigm, but without the reaches

during rotation block B. Single-rate and dual-rate models can be best dissociated if there

would be full un-learning of compensation A during block B, but minimal learning of B. From

the perspective of a dual-rate model, the un-learning observed in block B would mainly be

caused by the faster state, such that the washout reaches would show retention effects of

the slower state, called spontaneous recovery. Alternatively, following a single-rate model,

the same state would govern the learning in block A and un-learning in block B, such that

the washout reaches mimic the baseline reaches. Our results do not provide clear signs of

spontaneous recovery in the washout reaches. Model fits further show that a single-rate pro-

cess outperformed a dual-rate process. We suggest that a single-rate process underlies

Coriolis force reach adaptation, perhaps because these forces relate to familiar body

dynamics and are assigned to an internal cause.

Introduction

We have the ability to learn from our mistakes. In motor learning, one of the types of mistakes

is the difference between the actually sensed and the internally predicted sensory consequences

of a movement. These so-called sensory prediction errors, which could arise from internal

sources (e.g. execution noise, sensory bias, muscle fatigue) or external sources (e.g., unforeseen

forces on the body), are used to adapt future movement plans [1].

It has been suggested that sensory prediction errors drive multiple adaptive processes, with

some adapting and forgetting quickly while others adapt more slowly but retaining for longer
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[2–6]. Together these processes support the system to quickly adapt to abrupt perturbations

but also to slowly change behavior more permanently to persistent perturbations [5].

Evidence for multiple adaptive processes comes primarily from paradigms of spontaneous

recovery, which demonstrate a rebound effect of the adaptation to an initial long exposed per-

turbation (say A), after it was followed by a brief reverse-adaptation to the opposite perturba-

tion (say B). To explain this rebound, Smith and colleagues (2006) proposed a dual-rate

adaptation model, with a fast and slow state, in which the brief adaptation towards B is driven

by the fast adaptive state, whereas the subsequent re-expression of the adaptation to A is

caused by the lagging slow state that has not yet transitioned to compensate for B [5]. Support

for dual-rate learning has now been reported for adaptation of reaches in force fields [5–7] and

under visuomotor perturbations [2,3,8] as well as for saccadic gain adaptation [9,10]. Neural

signatures of dual- and multi-rate adaptive processes have recently been shown [4,11].

However, not all adaptive motor behaviors are consistent with a multi-rate model of adap-

tation. For example, Ingram and colleagues (2011) have shown that adaptation to the dynamics

of a familiar object, such as a hammer, is better explained by a single-rate than dual-rate adap-

tation model [12]. The authors suggested that the familiarity with the hammer-like object

dynamics make the adaptation process fundamentally different from adaptation to unfamiliar

mappings and forces, like visuomotor rotations and curl-force fields.

Another type of familiar dynamics are Coriolis forces, which are contact-free forces on the

arm that arise when we reach for an object while our torso is rotating [13]. If the torso is

actively turned, the brain is able to predict and compensate for the ensuing Coriolis forces in

the ongoing reach. However, also during passive turns, the brain is known to adapt to these

familiar forces within a few repeated trials [13]. Here we ask the question whether this rapid

adaptation is mediated by a single-rate process, analogously to the rapid adaptation to hammer

dynamics, or governed by a multi-rate learning process.

Human participants were placed in the center of a fully-enclosed rotating room, spinning

at constant speed, and instructed to make alternating forward and backward reaching move-

ments between two body-fixed targets. There was first a long phase with ample trials for the

reaches to adapt to the evoked Coriolis forces based on visual endpoint feedback. Next, the

rotation direction of the room was reversed, and participants re-adapted their reaches for a

few trials to the reversed Coriolis forces. Subsequently, while the room was stationary, reaches

were made without visual feedback. We hypothesized that if the adaptation was governed by a

multi-rate learning process, reach compensation for the first rotation (spontaneous recovery)

would be observed during this phase.

Because participants made contact-free movements in all phases, we cannot measure the

ideal force compensation, as is typically done in robotic force adaptation experiments. Here,

we therefore assessed the movement trajectory–the hand path error–as an index of adaptation,

and fit a single-rate and dual-rate adaptation model to the individual participant data. Our

behavioral results were more parsimoniously explained by the single-rate model. We suggest

that a single-rate learning process mediates Coriolis force adaptation, perhaps because these

forces mimic exposure to familiar body dynamics.

Materials and methods

Participants

Our study involved 34 right-handed participants (15 female), without any known balance

problems, inner ear abnormalities or history of motion sickness. Their mean age was 24.8

years (SD = 4.0). Data of seven participants were excluded from analyses due to technical prob-

lems (five participants) or failure to follow task instructions (moving their arm while the room
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accelerated or during block B). Of the 27 remaining participants, 17 formed the experimental

group and 10 participants formed the control group. The study was approved by the ethics

committee (approval code: ECSW-2018-083) of the Social Sciences Faculty at Radboud Uni-

versity Nijmegen, The Netherlands. Participants gave written informed consent prior to their

participation.

Experimental setup

Participants were seated in fully enclosed rotating room (Fig 1A). The room had an octagon-

shaped layout with a radius of 1.45 m and a height of 2 m and could rotate in the horizontal

plane. The total mass of the room (including participant and experimenter, who was also in

the room) was about 1250 kg. Supported by 12 running wheels at the outer edges, and a swivel

in its center, it was powered by a brushless servomotor motor (MotorPowerCo, type:

T142.16.5.15.6.E1.0.G2, tetra & tetra compact). With an acceleration of 1 rpm2, it took 6 s to

achieve an angular speed of 10 revolutions per minute (rpm). Participants were seated in the

center of the room with their head fixated such that the rotation axis of the room was between

Fig 1. Experimental setup, paradigm and task. (A) Participants were seated in the center of a fully-enclosed rotating room and performed right-hand

reaching movements to visual targets presented on a touch screen. (B) Experimental paradigm. Dark orange and green solid lines respectively indicate

during which phases the experimental and control group made reaches. The dashed orange line indicates the rotation speed of the room. Grey areas

indicate acceleration and deceleration of the rotating room and the time to let canal effects dissipate. (C) Temporal sequence of one trial pair (forward and

backward movement). Reach is instructed by three auditory cues; vision is blocked during the reach.

https://doi.org/10.1371/journal.pone.0240666.g001
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their right shoulder and the center of their head. The experimenter sat next to the participant

and communicated via an audio and via a visual channel to an assistant outside the room con-

trolling the room’s motion.

An Iiyama touch screen monitor (59.8x33.6 cm, 1920x1080 pixels i.e. 27-inch, ProLite;

Iiyama, Tokyo, Japan) was positioned horizontally in front of the participant at chest level (in

portrait, with the screen facing up). Participants were instructed to make forward (FW) and

backward (BW) reaching movements, between two visually presented targets (yellow and red

circles, diameter 2 cm) at a mutual distance of 35 cm, in a sagittal plane midway the sternum

and right shoulder. The yellow target was closest to the body and was approximately 15 cm

from the chest. Participants wore shutter-glasses (PLATO Visual Occlusion Spectacles, Trans-

lucent Technologies Inc. Toronto, Canada), which closed at the onset and opened again at the

offset of a reach (Fig 1C), determined ideally based on contact of the hand with the touch

screen but in a number of subjects was based on experimental timings to create a smoother

pace of the experiment (see below for further details).

The target closest to the body was encircled by tape (3M Transpore white surgical tape), so

participants could also use touch to locate it prior to each forward movement (Fig 1C). Three

sequential beeps were used as ready-set-go signal for a movement, each 400 ms apart. To dif-

ferentiate between forward and backward trials the pitch of the first beep was 390 Hz for for-

ward, and 490 Hz for backwards movements. The pitch of the second, 390 Hz, and third beep,

440 Hz, were identical for forward and backward trials. After each trial, participants received

auditory feedback about their movement speed, i.e. the time between touchscreen release and

retouch. If their movement took longer than 665ms, a pre-recorded voice instructed them to

‘move faster’, if their reach took less than 545ms, the instruction was to ‘move slower’, and in

the remaining cases participants were told that they had done well (‘well done’). Because every

movement contributes to the learning, irrespective of their durations, we did not reject trials

based on these criteria. The intertrial interval was 1 s (including feedback), so the total dura-

tion of one trial was approximately 2.4 s (i.e. sum of beep time: 0.8 s, Movement Time: 0.6 s,

and ITI: 1 s).

In the initial series of experimental sessions, the shutters did not close based on hand release

of the touch screen in about 3.50–6.20% of the trials. Note that we have included all trials, even

those in which the shutters did not close. Although this is only a small percentage, several par-

ticipants indicated frustration because it affected the pace of the experiment. We resolved this

in the remaining sessions (all control participants and three participants of the experimental

group) by controlling the shutters based on timers (close at the ‘go’-signal, i.e. third beep, and

open 605 ms later, i.e. at the instructed movement time) rather than touchscreen events.

The 3D location of spherical motion tracking markers (diameter of 7 mm) were recorded at

100 Hz using a room-fixed motion tracking system (Qualisys, Miqus M5 camera system) con-

taining 7 motion tracking cameras. In addition, a synchronized and position calibrated video

camera (Miqus color) recorded the participant at 25 Hz. The motion tracking markers were

attached to the tip of the index finger, the elbow joint, and shoulder joint of the participant’s

right arm. Furthermore, two rigid bodies, each equipped with 4 markers, were attached to

upper and lower arm to track their orientation. Of those, only the data of the index finger

marker was used in the present analysis (see below). Furthermore, three additional markers

were attached to the corners of the touch screen and were used to re-define the Cartesian axis

system within the rotating room and align the workspace across participants (screen moved

between sessions to seat participant, this way start and end points were always aligned). Pre-

sentation software (Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA) was used to

present stimuli, detect touch events, send triggers to the Qualisys system, and control the shut-

ter-glasses.
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Paradigm

Prior to the main experiment, participants were familiarized with the task in at least 90 trials,

training them on the movement timings and on reaching under the use of shutter glasses, up

until they were comfortable with the task. The main experimental paradigm consisted of 4 blocks

(Fig 1B): a baseline reach block (90 trials) where the room was stationary, a long reach adaptation

block while the room rotated (block A, 240 trials), a short reach adaptation block while the room

rotated in the opposite direction (block B, 6 trials), and a reach washout block (100 trials). A trial

pair is defined as a forward and backward movement. Hence, there were 45 trial pairs in the base-

line block, 120 trial pairs in block A, 3 trial pairs in block B and 50 trial pairs in the washout

block. Participants were randomly assigned to either of two groups: one group started with clock-

wise (CW) rotation of the room, the other started with counterclockwise (CCW) rotation. Seven

participants from the experimental group and six participants from the control group were tested

with CW rotation in block A and CCW rotation in block B. Ten participants of the experimental

group and four participants from the control group were tested in the opposite order.

During the baseline block, participants had a short break of 10 s after every 30 trials, during

which the hand rested at the right side of the touch screen. After the baseline block, the room

was brought to a constant speed of 10 rpm to either CW or CCW rotation. After the room had

reached the required constant rotation speed, and an additional 30s break with the lights on

had passed (used to let canal effects dissipate, [14]) the lights were dimmed and the participant

made the 240 reaches, with intervening breaks of 10 s after every 30 trials. Subsequently, the

room was decelerated and accelerated (12 s of 1 rpm2) to reach a constant rotation speed (10

rpm) in the opposite direction (Fig 1B). Next, again after a 30 s break with the lights turned on,

participants in the experimental group made six reaches, while the control participants made

no reaches during the same time period. Finally, the room decelerated for 6s to come to a

standstill. After another 30 s break with the lights turned on, the washout block started during

which participants completed 100 reaches without breaks.

In order to emulate the error clamps that are used in spontaneous recovery paradigms [5],

visual feedback was only provided at the start of the forward movement during the wash-out

block to allow participants to see where to move, but to exclude visual feedback about the end

location of their reach. This meant that the shutters were only opened when the participants

index finger was at the start position, which could be located by a tactile cue (see above). Visual

feedback about the start position of the backward movement was inadvertently available for

three control participants during their washout blocks. The respective trials were included in

the analyses, since they did not systematically deviate from the data of the other participants.

Data-analysis

Qualisys Track Manager (Version 2018.1) was used to identify the 3D positions of the finger

and touchscreen markers. Timing information of the start and end of the different blocks of

the paradigm (baseline, Block A, Block B and wash-out) were added manually to each partici-

pant’s data-set (based on video data). Marker position data were further analyzed in MATLAB

(2017b). All data were expressed in a Cartesian coordinate system, first based on the calibra-

tion of the Qualisys system and later aligned to the markers on the touchscreen. The y-axis was

pointing forward, parallel to the mid-sagittal plane of the participant, the x-axis pointing right-

ward, and the z-axis pointing up from the screen. The origin of the coordinate system (after

alignment) was defined as the start position of the forward movement. Data were segmented

into trials based on the y-position of the index finger data (alternating between positions clos-

est to the two target marker positions). Cubic spline interpolation was used to replace missing

values. Marker position data were filtered using a fifth-order, 12 Hz low-pass bidirectional
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Butterworth filter, before 3D marker velocity was calculated by taking the central difference for

each time step. Marker speed was taken as the norm of 3D marker velocity. For each trial, the

onset and offset of the reach were defined as the times at which finger marker speed first

exceeded 10 cm/s and when, after peak speed, crossed this boundary again. Trials without a

clear velocity peak (i.e. speed� 35cm/s) as well as trials with a 2D (x, y coordinates) movement

amplitude outside the 22–52.5 cm range (targets were 35 cm apart) were excluded (on average

2.7 trials). For further analyses of the remaining trials (95.1%), we only considered data (posi-

tion and velocity) in the horizontal plane (x, y coordinates). Trial data were resampled using lin-

ear interpolation, such that every movement was time-normalized and contained 100 samples.

Trajectories. The time-normalized position data were used to calculate the mean and

standard deviation of the reach trajectory across participants for each trial of the paradigm.

The grand mean across trials was computed for the baseline block. For visualization purposes,

data of experimental and control participants were combined in the baseline and in block A

(since the paradigm does not differ in these blocks for the two groups).

Lateral deviation at maximum speed. As a measure of the kinematic error on a single

trial, we used the lateral deviation (LD) at maximum speed of the trajectory relative to a line

through the start position of the movement, parallel to the y-axis. The LDs of a forward and back-

ward movement pair were subsequently averaged. In addition, we investigated the endpoint

error, the maximum absolute error (again relative to the line through the start position, parallel

to the y-axis) and the maximum perpendicular error (to a straight line, from start to end of the

trajectory). Except for the endpoint error, all error measures showed similar patterns as com-

pared to the LD although some measures were more noisy. The end-point error mainly differed

in pattern from the LD in the error magnitude in block B, which did not exceed the magnitude of

the error in block A. This is also visible in the trajectories (Fig 2), in which the error correction at

the end of the movement is larger in the second rotation direction as compared to the first rota-

tion direction. We assume this is caused by increased visual and proprioceptive feedback gains

over the course of the experiment [15,16], that especially affect the final part of the movement.

State-space modeling

To interpret the adaptation patterns, we fit a single- and dual-rate adaptation model to the

individual participant’s LD data. We will first explain the details of the two models, followed

by the fitting procedure and statistical methods to compare the two models.

Dual-rate model. The dual-rate model, as proposed by Smith and colleagues (2006) [5],

specifies fast and slow states, each of which depends on the estimated perturbation state at the

previous trial, multiplied by a retention factor, and the prediction error of the current trial

multiplied by the learning rate. The single-rate model is the simpler version, containing only a

single state. As described in more detail below, we adjusted both models for inter-block mem-

ory decay, as well as the reduced error feedback in the washout block.

For both models, the prediction error is computed as,

eðtÞ ¼ pðtÞ � xðtÞ ð1Þ

where e(t) is the prediction error on trial t, i.e., the difference between the predicted perturba-

tion x(t) and the actual perturbation p(t) on that trial. As a proxy for the actual perturbation

caused by the CW room rotation in block A, we took the observed trajectory deviation (LD)

on the first trial:

pðtAÞ ¼ LDðA1Þ ð2Þ
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Furthermore, the perturbation magnitude for the opposite room rotation in B was defined

as a scaled version of the perturbation magnitude in A:

pðtBÞ ¼ cpðtAÞ ð3Þ

in which c was a free parameter to allow that the Coriolis force had a different perturbation

magnitude for the two rotation directions as a result of differences in arm dynamics.

The estimate of the perturbation magnitude on a trial depends on the update of two state

estimates:

x
!
ðt þ 1Þ ¼ R x

!
ðtÞ þ l

!

eðtÞ ð4Þ

Fig 2. Reach trajectories at different phases of the paradigm. CW-CCW groups, cooler colors (i.e. purple, magenta and blue); CCW-CW group; warmer

colors (i.e. ochre, orange and green). Top row, forward reaches; bottom row, backward reaches. Baseline: grand-average of all trials of control and

experimental group. Block A: Across-participant average of forward and backward reaches in trial pair 1, 2, 3, and 10 of the block (i.e. trial pairs 46, 47, 48,

and 55 of the paradigm), ordered from darker to lighter hues. Block B: Across-participant average of each of the three forward and backward reaches,

ordered from darker to lighter hues. Washout: Across-participant average of forward and backward reaches in trial pair 1, 2, 3, and 10 of the block, in

separate panels for the control and experimental group.

https://doi.org/10.1371/journal.pone.0240666.g002
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where the vector x!ðt þ 1Þ entails the fast and the slow states after updating:
xf
xs

" #

. R is a

matrix containing the retention factors,
rf 0

0 rs

" #

with rf the retention factor of the fast state

and rs the retention factor of the slow state, and l
!

is a vector containing the learning rates,

lf
ls

" #

where lf is the learning rate of the fast process and ls is the learning rate of the slow pro-

cess. The learning and retention factors were constrained as follows: rf<rs<1 and lf>ls>0 [5].

The estimate for the perturbation on a trial x(t) is the sum of the two state estimates:

xðtÞ ¼ ½1 1�xðtÞ ð5Þ

Single-rate model. According to the single-rate model, adaptation takes place by updating

a single state. As in the dual-rate model, the prediction error is defined as the difference

between the expected perturbation on that trial and the actual, perceived perturbation on that

trial, as described in Eq 1. The perturbation magnitude was quantified by the naïve error as

observed when reaching for the first time in the rotating room (see Eqs 2 and 3).

The estimated perturbation for the next trial depends on the estimate for the current trial,

and the error observed in the current trial. How much the error contributes to the perturba-

tion estimate for the next trial depends on the learning rate l. The amount of retention of the

previous trial is defined by the retention factor r:

xðt þ 1Þ ¼ rxðtÞ þ leðtÞ ð6Þ

For a single-rate model, r and l are both scalars.

Washout phase. Our paradigm involved no error clamps during the washout, and hence

did not exclude error feedback during this block as typically done in robotic force field studies.

Although we excluded all visual feedback, participants could still use proprioceptive feedback

from their compensatory movements to drive the adaptation during the washout. To account

for this reduced error feedback, we extended both models with an additional parameter (lwo)
to scale down the (un-)learning during the washout block. This results in the following dynam-

ics for the washout block in the dual-rate model:

x
!
ðt þ 1Þ ¼ R x

!
ðtÞ þ lwo l

!

eðtÞ ð7Þ

and for the single-rate model:

xðt þ 1Þ ¼ rxðtÞ þ lwoleðtÞ ð8Þ

Breaks. Finally, we extended our state-space models with time-dependent decay (break

parameter b) to account for the long transition phases between the rotation directions of the

room [8]. The break parameter b specifies how many repeats of trial-to-trial decay (1-retention

factor) would have occurred if there were no breaks. The between block break was 1.5 times

longer between block A and B, then between block B and washout, which was accounted for

by an additional scaling factor d [8].

Thus, in both models, the state of the first trial after a break depended on the last trial before

the break and the elapsed time. For the dual-rate model this results in:

x
!
ðt þ 1Þ ¼ Rbreak x

!
ðtÞ þ l

!

eðtÞ ð9Þ
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with

Rbreak ¼
rdbf 0

0 rdbs

" #

ð10Þ

And for the single-rate model:

xðt þ 1Þ ¼ rdbxðtÞ þ leðtÞ ð11Þ

The scaling factor d was set to 1.5 for the inter-block break between A and B and to 1.0

otherwise.

Model fitting. Values for the parameters of the single-rate and dual-rate model were esti-

mated at the individual participant level by minimizing the mean squared difference between

the model prediction and the observed LD. This fitting procedure was applied 200 times, using

Matlab’s fmincon function, with randomly selected starting values for the parameters. We

selected the set of best-fit parameters that yielded the smallest mean squared error. Bounds on

the parameters were as follows: for all learning (l, ls, lf) and retention (r, rs, rf) rates the lower

bounds were set to 10−4 and the upper bounds were set to 0.999. For the dual-rate model, addi-

tional constraints were ls−lf�−104 and −rs�−104. The lower bound of the washout learning

parameter, awo, was set to zero and the upper bound to one. The perturbation scaling parame-

ter c for block B was bound between 0.5 and 1.5. The b for the memory decay in the breaks was

constrained between 0 and 15.

Model comparison. Model fits of the single- and dual-rate model were compared by cal-

culating the Bayesian information criterion (BIC), following Berniker and colleagues [17]: BIC
= n ln(MSE)+k ln(n). The BIC corrects for the greater number of parameters (k) in the dual-

compared to the single-rate model (dual-rate: 7 free parameters; single-rate: 5 free parameters).

The number of observations (n, the number of trial pairs) was between 196 and 218 (depend-

ing on the missing trials). A BIC difference larger than 6 is considered to provide strong evi-

dence and a BIC above 10 is considered to provide very strong evidence for one of the models

[18].

Results

Participants made reaches away and toward the body in a rotating room, following a spontane-

ous recovery paradigm consisting of four phases. After an initial baseline period in which the

room was stationary, there was a long reach adaptation phase (Block A) in which the room

rotated at constant velocity. Subsequently, the rotation direction was reversed and participants

were exposed to this new dynamics for a few reaches (Block B). Finally, the room rotation

ceased and participants made reaches while the room was stationary (washout block).We

tested the emergence of spontaneous recovery effects during this washout period, to examine

whether reach adaptation to Coriolis forces is best described by a single-rate or dual-rate learn-

ing process using a model-based analysis. For comparison to each experimental group, we

tested a control group using the same protocol but without making reaches in block B, for

which we expect no rebound effects to emerge during the washout phase.

Fig 2 illustrates the mean time-normalized trajectories (± SE, shaded regions) of the four

groups (two experimental, two control) during the various phases of the experiment. Because

participants in the experimental and associated control group performed the same trial series

during the baseline block and block A, grand-averages per combined group are presented.

While slight differences in curvature can be seen between the forward and backward reach tra-

jectories, there are no differences between the groups during the baseline block, as expected.
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During block A, the participants’ initial reaches show large deviations from the baseline

reaches. These deviations are in opposite directions for the CW (purple traces) and CCW

(orange traces) rotation groups. Because participants experience opposite Coriolis forces for

the forward and backward reaches, trajectories also deviate in opposite directions. In both

cases, trajectories show the highest curvature towards the end of the movement, where pre-

sumably feedback mechanisms kick in to achieve the target. Over repeated trials, trajectories

become straighter–a marker of adaptation–and after *10 trial pairs, the reach trajectories

(lightest shades) cannot be distinguished anymore from the baseline trajectories. Participants

performed 110 more trial pairs while being exposed to the same Coriolis forces, but virtually

no further changes are visible (see Fig 3).

In block B, during which room rotation was reversed, only the two experimental groups

made reaching movements, whereas the control groups kept their arm still while also being

exposed to the rotation. Initial reaches in block B show much larger deviations and stronger

curvature (darkest colors) than the initial reaches in block A (note that the abscissae have dif-

ferent scales). This observation can be explained by an active compensation for the expected

force learnt in block A, while the experienced and uncompensated Coriolis force is now in the

same direction as the force compensation. Over the 3 forward and 3 backward reaches in

block B, all of which are shown, the trajectories show clear but incomplete adaptation. More

specifically, the trajectory of the sixth trial is still quite different from baseline, as if the previous

Fig 3. Lateral deviation as a function of trial pair number. CW-CCW (purple, pink and blue lines) and CCW-CW (orange, dark orange and green lines) group.

Baseline and block A: grand-average of all trials of control and experimental group (orange and purple). Block B and washout: control (green and blue) and experimental

group (pink and dark orange) plotted separately. Baseline fluctuations are indicated to the right of the washout phase by the mean, maximum and minimum of the mean

baseline levels.

https://doi.org/10.1371/journal.pone.0240666.g003
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compensation for the Coriolis force in block A has been partially un-learned, but the induced

force in block B still has to be learned.

In the washout block clear differences between the experimental and control group appear.

Both control groups show clear aftereffects of compensating for the forces experienced in

block A, suggesting that the exposure to the opposite rotation in block B has not hampered

retention or induced adaptation. On the other hand, both experimental groups show much

smaller trajectory deviations and look more similar to the baseline trajectories. The question

is, do these trajectories demonstrate effects of spontaneous recovery, i.e., a rebound toward the

compensation for the Coriolis forces experienced in block A? If so, this would be evidence for

a dual-rate learning process. According to the dual-rate adaptation model, the fast state already

learned to compensate for a large part of the perturbation in block B, but the slow state still lin-

gers in compensating for the perturbation in block A. The observed behavior is the summed

effect of both states, explaining the partial compensation in block B. In the washout phase,

where error-based adaptation is diminished, the fast state quickly forgets the compensation

learned in block B while the slow state still retains the compensation for block A. This should

then cause a gradual re-emergence of compensation for block A that subsequently slowly

reduces to no compensation at all.

Alternatively, if there are no signs of spontaneous recovery of the adaptation to the pertur-

bation experienced in block A in the washout block, this hints at a single-rate learning process.

Indeed, from a single-rate model, lateral deviations of trajectories in the washout block should

converge to baseline from the compensation levels present in the final trial of block B, without

any rebound. So if final compensation was still for the rotation in block A, compensation

should washout to baseline without crossing it. Similarly, if final compensation was in the

direction of block B, it should washout to baseline without ever showing compensation for

block A.

From the raw trajectories it is impossible to discern whether they are a reflection of a sin-

gle-rate or dual-rate adaptation process. Therefore we summarized the reach trajectories of

each forward-backward trial pair into a single number, the lateral deviation at maximum

speed (LD, see Materials and Methods). Fig 3 shows how the LD evolves as a function of block

and trial pair, averaged across participants. The LD straddles around zero during the baseline

trials, consistent with the relatively straight trajectories in Fig 2. At the start of block A, the LD

initially clearly deviates from zero, but then quickly returns to zero or even slightly crosses

zero (CCW-CW group) towards a level opposite to the initial deviation (indicating overcom-

pensation) in *10 trial pairs.

The LD during block B (trial pair 166–168) characterizes the trajectories after the room has

switched rotation direction. The dashed lines indicate the predicted initial deviation had par-

ticipants been exposed to this rotation after the baseline block (as taken from the other rotation

group’s initial performance during block A). As shown, the initial LD in block B exceeds that

value (due to the learned compensation from block A and the uncompensated Coriolis force

experienced in block B). However, the LD quickly approaches the naïve value in the subse-

quent trial pairs, particularly during the reaches of the CW group (purple). The CCW group

(orange) did not fully unlearn the adaptation to the forces of block A.

During the washout block, starting at trial pair 169 and containing 50 pairs of forward and

backward reaches, the control groups show clear aftereffects of block A, despite having experi-

enced the opposite rotation in block B without making reaches. The aftereffects of block A

quickly fade away in about 10 trial pairs (blue: CW control group, green: CCW control group).

As stated earlier, the CW experimental group seems to have fully unlearned the compensa-

tion for the rotation in block A at the end of block B. This means that any aftereffect consistent

with the rotation in block A during the washout block would be indicative of a dual-rate
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learning process. However, even though the observed aftereffect (magenta, top-right panel)

has the same sign as the aftereffect of the corresponding control group (blue, top-right panel),

it does not show the pattern typically observed in spontaneous recovery. That is, we do not

observe that the compensation to the initial perturbation quickly rises (due to the forgetting of

the fast process) up to maximal recovery and then slowly decays due to forgetting of the slower

process. The response of the CCW experimental group during the washout trials (orange)

shows the typical rise-and-fall pattern, but because this group did not unlearn the compensa-

tion of block A during block B, its interpretation is ambiguous. Also, in both groups the after-

effects do not exceed the observed fluctuations in the baseline.

To infer whether a single- and dual-rate process governed the patterns in our behavioral

data, we fitted these two models to the individual participant LD data. Fig 4 illustrates the

behaviorally observed LD and the respective model fits of three representative participants.

The left panel of the top row shows the data of a participant for which there are no spontane-

ous recovery effects discernible in the behavioral data and the best-fit lines are overlapping for

the two models (single-rate: orange-dashed line; dual-rate: green line). The two-middle panels,

expanding on the trials for which the models are supposed to differ most in their predictions

(the initial adaptation in block A and B, and the initial washout phase), also show no differ-

ence. This suggests that the single-rate model provides a more parsimonious explanation of

the data, which is confirmed by a BIC analysis (BIC single-rate = 896.48; BIC dual-

rate = 907.25). This is further illustrated in the right-hand panel showing that the prediction of

the dual-rate model is driven by only one of its states. This pattern was observed in five other

participants as well (see S2 Fig). The middle row shows the data and model-fits of another par-

ticipant. The participant’s LD data resembles the pattern of the participant in the top row,

including the absence of a clear spontaneous recovery effect. Fitting the two models revealed

again overlapping curves (see also the middle panels), explaining why a BIC analysis favored

the single-rate model (BIC single-rate = 738.17; BIC dual-rate = 748.98). Analysis of the dual-

rate model revealed that both states converged to the inequality constraint (i.e. converged to

the same learning rate and retention factor values for the fast and the slow state), which is just

another way to approximate a single-rate model. A similar pattern was found in six other par-

ticipants (see S3 Fig). The bottom row of Fig 4 illustrates a participant whose LD data may

show some signs of spontaneous recovery, i.e. data points in the washout period transition

from below to above the zero LD line. While the best fits for the dual- and single-rate model

seem to overlap, closer scrutiny (middle panels) shows that the dual-rate model predicts

steeper initial learning during block A than the single-rate model, as well as a small hint of

spontaneous recovery during the washout block. If we look at the slow and fast state of the

dual-rate model (right panel), they indeed show different dynamics. Yet, a BIC analysis sug-

gests that the single-rate model is still a more parsimonious explanation of the data, despite the

data containing hints of a dual-rate model (BIC single-rate = 828.39; BIC dual-rate = 833.22).

A similar pattern was found in three other participants (see S1 Fig) but in none was the BIC in

favor of the dual-rate model.

So, both models can account reasonably well for the systematic variation of the data. As an

indication of the quality of the model fits, we compute the R2 to the fit and data of the second

learning (B) and spontaneous recovery block. This value ranged between 0.32 and 0.80 among

participants, and had a mean of 0.64 (SD = -.12) across both models and all participants.

Examining the variance of the residuals, the two models show only minute differences across

participants (single-rate: MSE = 55.1 mm, SD = 26.0 mm; dual-rate: MSE = 54.9 mm,

SD = 25.8 mm). But, as shown in Fig 5, BIC values show strong (ΔBIC> 6) to very strong

(ΔBIC> 10) evidence in favor of the single-rate model over the dual-rate model in all but one

of our participants (participant 9 see Fig 4). In this one participant the evidence in favor of the
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single-rate model over the dual-rate model was only weak (ΔBIC = 4.83). Table 1 lists the val-

ues of the best-fit parameters of the two models. As described above, the parameters of the

dual-rate model follow three different patterns of which two mimicked features of a single rate

model. For the single-rate model, the learning rates vary between 0.12 and 0.48 with a mean

learning rate of 0.24 (SD = 0.09) across participants. The retention factors ranged from 0.976

and 0.999 (i.e. the upper bound) with a mean retention factor of 0.993 (SD = 0.01).

Discussion

We investigated whether reach adaptation to Coriolis forces due to passive whole-body rota-

tion is governed by a single- or dual-rate learning process. We utilized a paradigm that is

Fig 4. Data and model fits of three representative participants. Left panels: Model prediction of a single- (orange) and dual-rate (green) model per

participant (individual rows), including the perturbation scheme (gray) and the data (black dots). Middle panels provide a detailed view of early learning

in A, B and the washout. Right-panels: contributions of the fast and slow state to the dual-rate model fit.

https://doi.org/10.1371/journal.pone.0240666.g004
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known to evoke spontaneous recovery under the operation of a dual-rate, but not a single-rate

process. Participants made a substantial number of reaches under one Coriolis force perturba-

tion followed by a few reaches under the opposite perturbation (opposite room rotation). We

examined whether the reach kinematics over trials during the washout phase (without pertur-

bation) showed spontaneous recovery by transitioning from compensating for the preceding

Coriolis force to compensating for the force experienced during the first rotation block. Com-

pared to the control group, participants in the experimental group show only small aftereffects

of the first rotation in the washout phase and no clear signs of spontaneous recovery. Model

fitting and comparison revealed a more parsimonious account of the data by the single-rate

than dual-rate model in each of the individual participants.

The suggestion that a single-rate learning process underlies adaptation to Coriolis forces

contradicts findings in most other motor adaptation paradigms, that point toward a dual- or

multi-rate learning process [2,3,5,10]. The advantage of a dual/multi-rate process is clear: it

enables flexible adaptation to sudden perturbations but also enables more long lasting changes

to persistent perturbations [5]. Although the present results suggest a single-rate model for

Fig 5. Difference in BIC per participant. BIC of the single-rate model subtracted from the BIC of the dual-rate model.

https://doi.org/10.1371/journal.pone.0240666.g005
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Coriolis force adaptation, it needs to be interpreted with caution given a number of limitations

of the present study. First, the present Coriolis force adaptation paradigm could not measure

active compensation without error feedback during the washout phase. Most of the studies

that uncovered dual-rate processes used error clamps to exclude error feedback, but this would

be a serious technical challenge for a rotating room environment. In fact, to our knowledge,

none of the previous Coriolis force adaptation studies have worked with error clamps. As a

surrogate solution, we deterred participants’ learning from visual error feedback in the wash-

out phase by blocking vision (using shutters). Yet, the experimental setup had no provision to

cancel out the proprioceptive feedback of the movement, which may have driven part of the

adaptation process, thereby reducing the power to observe spontaneous recovery based on

Table 1. Parameters of the single-rate and dual-rate model fit for individual participants of the experimental group.

model learning rate(s) retention factors(s)

participant single l r lwo c b Δ BIC
dual lf ls rf rs

1 (CW) single 0.2678 0.9984 0 0.85 15 10.77

dual 0.2501 0.0175 0.9983 0.9985 0 0.85 14.97

2(CW) single 0.3738 0.999 0 1.01 15 10.81

dual 0.1869 0.1868 0.9989 0.999 0 1.02 15

3 (CCW) single 0.264 0.999 0 0.76 15 10.59

dual 0.132 0.1318 0.9989 0.999 0 0.76 15

4 (CW) single 0.2157 0.9786 0 1.28 15 10.56

dual 0.2156 0.0001 0.9786 0.9787 0 1.28 15

5 (CCW) single 0.1669 0.999 0 0.5 0 7.780

dual 0.2001 0.192 0.66 0.999 0 0.5 3.94

6 (CW) single 0.4785 0.999 0 0.52 0 10.78

dual 0.2394 0.2393 0.9989 0.999 0 0.52 0

7 (CW) single 0.2585 0.9754 0 0.77 7.59 10.77

dual 0.2583 0.0002 0.9754 0.9755 0 0.77 7.59

8 (CW) single 0.1471 0.9663 0 1.5 0 10.76

dual 0.1459 0.0012 0.9663 0.9665 0 1.5 0

9 (CW) single 0.1186 0.999 0 1.39 0 4.830

dual 0.1105 0.1064 0.9001 0.999 0 1.5 2.63

10 (CW) single 0.1868 0.999 0 0.9 0 10.93

dual 0.0935 0.0934 0.9989 0.999 0 0.9 0

13 (CCW) single 0.1767 0.999 0.07 1.02 0 8.710

dual 0.1703 0.1702 0.4565 0.999 0.09 1.33 2.71

14 (CW) single 0.2434 0.9903 0 0.97 0 10.77

dual 0.2432 0.0002 0.9903 0.9904 0 0.97 0

15 (CCW) single 0.2588 0.999 0.09 0.92 15 10.81

dual 0.1295 0.1294 0.9989 0.999 0.09 0.92 15

17 (CCW) single 0.265 0.999 0.39 0.56 0 9.540

dual 0.1413 0.1412 0.9989 0.999 0 0.67 0

29 (CCW) single 0.2031 0.999 0.11 0.5 0 9.380

dual 0.1695 0.1694 0.7184 0.999 0.21 0.68 0

30 (CCW) single 0.1599 0.999 0.09 0.5 0 10.87

dual 0.0801 0.08 0.9989 0.999 0.09 0.5 0

31 (CW) single 0.28 0.985 0 0.79 0 10.76

dual 0.2798 0.0002 0.985 0.9851 0 0.79 0

https://doi.org/10.1371/journal.pone.0240666.t001
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dual-rate learning and retention. Second, we quantified compensation based on reach kine-

matics, which are the result of an interaction between active compensation and the forces gen-

erated by the room rotation. By design, we did not have a subject specific measure of the naïve

reach error during the rotation in block B. Other studies, for instance prism adaptation studies,

have used movement kinematics to demonstrate spontaneous recovery, but without perturb-

ing environmental forces [2]. As a result, the observed errors are a direct representation of the

perturbation estimate. Third, due to the relatively long breaks between the different blocks of

the paradigm, needed to regulate room rotation, forgetting of learned compensation may have

happened [8,19]. Indeed, parameter b in our model, accounting for this effect, was not always

zero. In particular, the break between phase B and the washout block could have diminished

the contribution of the fast process, probing only the remnants of the slow process during the

washout, masking the subtle differences between the single- and dual-rate process. With these

reservations in mind, let us further discuss the implications of our results.

The results of the modeling were most in line with a single-rate learning process that medi-

ates adaptation to Coriolis forces. Although the dual(multi)-rate model is well established as

an account of motor adaptation, exceptions have been reported. For instance, Ingram and col-

leagues (2011) showed that adaptation to familiar dynamics, for instance the dynamics of a

hammer-like object, is better explained by a single- than a dual-rate model. The authors sug-

gested that adaptation to familiar dynamics entails a change in the parameterization of a

known structure [20,21], rather than the learning of the structure of the novel dynamics them-

selves [12]. This re-parameterization can occur much quicker than the learning of an entirely

new structure. Since we encounter Coriolis forces in everyday life, for example when we reach

while rotating our torso, the dynamics of these forces could likewise be very familiar to us.

Additional evidence that Coriolis force adaptation might involve re-parameterization is pro-

vided by the very fast initial learning (only few trials) [13].

Furthermore, most of the Coriolis forces that we encounter are self-generated, i.e., we

actively rotate our body while reaching out [22]. Therefore, we may assign perturbations due

to Coriolis forces to changes of our own body rather than to changes in the world. Adapting to

changes of the world might only be relevant in specific situations, e.g., when specific cues are

present [23–25], while adapting to changes of our own body is always relevant and indepen-

dent of context [26]. Note that in Coriolis force adaptation, the perturbations also occur inde-

pendent of context, in contrast to the handle providing context in a robotic manipulandum

[27,28]. This makes the assumption that the perturbation originates from the body a plausible

conjecture [13]. The inferred source of a perturbation has been suggested to affect the parame-

terization of adaptation [29]. Perturbations with an internal cause, for example due to fatigue,

could be more gradually changing and more long lasting than externally generated perturba-

tions, for example a gust of wind. Adapting to these small internal changes allows for fast

learning and minimal forgetting, which is what we see in the parameters of our single-rate

model predictions.

Classically, the fast state of the dual-rate model is associated with a high learning rate and a

low retention factor. However, our single-rate fits show relatively high learning rates combined

with high retention factors in all participants (see Table 1). Especially the high retention rates

may be responsible for the fast and full reduction of error in our subjects [30]. In line with

these high retention factors, participants in the control group still retained the learned behav-

ior after a break of more than 90 seconds. To further investigate whether Coriolis force adapta-

tion is associated with a single adaptation process with a high retention factor, and thus results

in more long lasting changes of motor control, one could increase the inter-trial-intervals and

see whether trial to trial forgetting is lower for Coriolis force adaptation as compared to con-

text dependent, and world referenced types of motor adaptation [31]. Investigating the de-
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adaptation and savings in Coriolis force adaptation could further strengthen or challenge the

evidence for a single-rate model in Coriolis force adaptation.

In summary, we investigated whether reach adaptation to Coriolis forces is governed by a

single- or dual-rate model. Given the limitations of our study, our results suggest that a single-

rate model provided a more parsimonious account of this adaptation process, perhaps because

the Coriolis forces relate to familiar body dynamics and are assigned to an internal cause.

Supporting information

S1 Fig. Data and model fits of participants (Pattern 1). Same legend as in Fig 4. Dual-rate

model fits predicting the same pattern as the single rate model fits by setting one of the two

states to zero.

(TIF)

S2 Fig. Data and model fits of participants (Pattern 2). Same legend as in Fig 4. Dual-rate

model fits predicting the same patterns as the single rate models fit by setting both states equal.

(TIF)

S3 Fig. Data and model fits of participants (Pattern 3). Same legend as in Fig 4. Model fits of

the dual-rate model showing typical dual-rate pattern.

(TIF)
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