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Abstract: Clostridioides difficile (CD) cause a severe diarrhea which can lead to pseudomembranous
colitis and even patient death. CD infection (CDI) is connected mainly with changes in intestinal
microbiota as a consequence of antibiotic treatment. The growing resistance to antibiotics, justifies the
search for new methods of combating CD. Despite of ongoing research on the immunity against the
pathogen, there is still lack of any reliable vaccine. Most recently, Cwp22, that is a cross-linking enzyme
involved in the production of CD peptidoglycan, seems to be a promising target to prevent CDI in
high-risk patients. In this paper, the Cwp22 protein polypeptide-specific epitopes were mapped in
silico and using PEPSCAN procedure. They were recognized not only by antibodies from CDI patients’
but also by umbilical cord blood sera. We identified three epitopes 54EFRVAT59, 201KVNGKM206

and 268WQEKNGKKYY277 of Cwp22 protein. Since Cwp22 protein has key functionality and the
described above epitopes are also recognized by umbilical cord blood serum, we postulate that they
could have important protective properties. In this paper, we propose Cwp22 protein as a good
antigen candidate for CDI preventive vaccine. Our results open the possibility to use 54EFRVAT59,
201KVNGKM206 and 268WQEKNGKKYY277, epitopes as suitable anti-CD vaccine antigens.

Keywords: vaccine; epitope; surface protein; peptide

1. Introduction

Clostridioides difficile (CD), previously known as Clostridium difficile [1], is a Gram-positive
opportunistic bacterium that is a constituent of normal gut microbiota in 3% of the adult population.
The asymptomatic carriage is higher for hospitalized patients and medical personnel (10–30%) [2].
The bacteria becomes dangerous when the both qualitative and quantitative composition of gut
microbiota is distressed [3]; usually as a result of the antibiotic such as clindamycin, cephalosporins
or fluoroquinolones treatment [4]. The dysbiosis leads to the C. difficile infection (CDI). CD easily
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overgrows in the disrupted patient gut, starts to secrete main virulence factors, such as: toxins TcdA and
TcdB. The CDI symptoms are caused by toxin-depended cytoskeleton damage of epithelial cells which
leads to severe diarrhea [5], pseudomembranous colitis, or even death. The infection relapses frequently.
Moreover, CD produces inexhaustible amounts of spores which are resistant to many disinfectants.

The group of the highest CDI risk patients includes the elderly, hospitalized patients and people
after multiple and sustained antibiotic treatments [6]. However, recent observations of the incidence
of CDI show that the risk group is expanding since the disease is affecting much younger people
without antibiotic treatment and hospitalization history [7]. The only widely used CDI therapy is
antibiotic treatment, in particular with fidaxomicin, vancomycin, or metronidazole [8]. Prevention
is based on the isolation of confirmed cases of CDI, applying recommended hand hygiene practices
and performing environmental cleaning with sporicidal agents. There are no anti-CD vaccines on the
market. Nevertheless, the design of vaccines against CDI is extensively studied.

So far, the most advanced anti-CD vaccine formulations are based on CD toxins.
The formalin-inactivated toxin-based, alum-adjuvanted vaccine of Sanofi Pasteur is after the third
stage of clinical study (NCT02052726) [9,10]. Another vaccine under development is based on genetically
modified CD toxins (Pfizer, NCT 02561195). The third one is based on a recombinant protein consisting
of shortened toxins A and B amino acid sequences VLA84 (Valneva, NCT02316470). However, it was
suggested that the vaccine should target also surface components of the bacteria to prevent its adhesion
and colonization [11]. A vaccine composed of toxin-derived and surface antigens might be required for
full protection. The non-toxoid vaccine approaches under development include using CD surface proteins
like Cwp84, FliC, FliD, GroEL, and surface structures like polysaccharides and lipoteichoic acid [12].

In this study we identified a new immunoreactive protein that turned to be one of the cell wall
proteins (Cwp22). Most recently, the paper about Cwp22 protein has been published characterizing
its functionality [13]. Cwp22 protein is a l,d-transpeptidase, peptidoglycan cross-linking enzyme,
which mutation leads to decreased toxin production at early stage of bacteria growth along with its
delayed sporulation and lower motility. We mapped the amino acid sequence of Cwp22 protein and
described immunoreactive epitopes that can serve as new anti-CD vaccine targets.

2. Materials and Methods

2.1. Blood Sera

2.1.1. Human Peripheral Blood Sera

In this study, peripheral blood sera from patients diagnosed with CDI (n = 15) were collected,
pooled, aliquoted, and frozen for further experiments. The diagnosis of CDI was based on more than
3 loose stools in 24 h and positive C. Diff Quik Chek Complete test results (Techlab, Blackburg, VA,
USA). The sera were obtained from 4th Military Hospital in Wroclaw upon written approval received
from the Medical Ethics Commission of the Medical University of Wroclaw (approval No KB-631/2015,
approved on 26 November 2015) and were conducted in accordance with the Helsinki Declaration,
1975. A written informed consent was obtained from each patient.

Peripheral blood sera samples from healthy volunteers (without the history of CDI) (n = 21) were
used as healthy control. Performed experiments were approved by the Medical Ethics Committee
of the Medical University of Wroclaw (approval No KB-631/2015, approved on 26 November 2015).
Patients’ and healthy volunteers’ written informed consent was collected. Experiments were conducted
in accordance with the Helsinki Declaration, 1975.

2.1.2. Human Umbilical Cord Blood Sera

Human umbilical cord blood sera (pooled n = 10) used for epitope mapping were obtained from
the Obstetric Clinic of the Medical University of Wroclaw (approval No KB-631/2015, approved on
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26 November 2015), collected from healthy women. Samples were obtained with patients who signed
the written consent.

2.2. Bacterial Strains

A clinical strain of C. difficile (CD20) was used for the immunoreactive protein identification
(deposited in Polish Collection of Microorganisms as PCM2826). This strain was characterized
by us previously [14]. Shortly, it produces toxins TcdA, TcdB, and binary toxin, is resistant to
moxifloxacin, ciprofloxacin, erythromycin and imipenem. Also, we used a CD strain R20291 obtained
from DSMZ-German Collection of Microorganisms and Cell Cultures as a pathogenic reference strain.
CD was cultured anaerobically in Brain Heart Infusion Broth (BHI, Oxoid, Hempshire, UK) medium
supplemented with 0.05% l-cysteine hydrochloride, at 37 ◦C for 48 h. Bacterial culture was spun down
at 6000× g for 15 min and washed twice in phosphate-buffered saline (PBS) pH 7.4 before further use.

2.3. Protein Isolation

Surface proteins of CD were isolated using a “washing off” method employing 1 M LiCl [15].
Shortly, 1 g of bacterial mass was suspended in 7 mL of freshly prepared 1 M LiCl and incubated at room
temperature (RT) for 1 h, with shaking. Then, the mixture was centrifuged at 6000× g for 5 min (Heraeus
Contifuge Stratus, Thermo Fisher Scientific, Waltham, MA, USA). The supernatant was collected and
dialyzed against water for at least 48 h with frequent water change. The protein solution was then
concentrated with Amicon Ultra (Thermo Fisher Scientific, Waltham, MA, USA), MWCO = 10,000 Da.
Protein concentration was estimated with Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA) according to instruction provided by supplier. The protein solution was aliquoted
and stored at −20 ◦C until used.

2.4. SDS-PAGE Electrophoresis

The electrophoretic profile of CD surface proteins was evaluated according to Laemmli, et al. [16]
with some modifications. Briefly, two 12.5% polyacrylamide gels were used with dimensions of
18 × 16 cm, 1.5 mm thickness. The gel was resolved in SE600 Standard Dual Cooled Vertical Unit
(Hoefer, Holliston, MA, USA). The electrophoresis buffer used consisted of 0.025 M Tris, 0.192 M
glycine and 0.1% sodium dodecyl sulphate (SDS). Before the electrophoresis, protein samples were
suspended in Laemmli buffer and denatured at 95◦C for 5 min. Each 30 µg sample was applied to the
gel well and 10 µg protein as mass marker (Precision Plus Dual Color, Bio-Rad, Hercules, CA, USA).
Electrophoresis was run for 5 h in 150 V with cooling.

2.5. Silver Staining

Silver staining was performed according to the Shevchenko method [17], which is suitable for
protein identification with mass spectrometry. All reagents were freshly prepared. Polyacrylamide
gel after SDS-PAGE electrophoresis was fixed in the solution of 5% acetic acid and 50% methanol
for 1 h. Next, it was washed in 50% methanol and MQ water, incubated for 3 min in 0.02% sodium
thiosulphate, washed in MQ water, incubated in 0.15% silver nitrate and again washed with MQ
water. The color reaction was developed by adding 2% sodium carbonate in 0.04% formaldehyde.
The reaction was stopped with 5% acetic acid. Protein bands were cut directly after gel staining to
avoid any contamination. Gel was documented with Gel Doc™ (Bio-Rad, Hercules, CA, USA).

2.6. Western Blotting

The immunoreactivity of isolated proteins was evaluated by Western blotting [18]. After the
electrophoresis the gel was incubated in the transfer buffer (10 mM Tris-HCl, 150 mM glycine,
20% methanol, pH 8.3) for 30 min. Then, proteins from the gel were transferred to the polyvinylidene
difluoride Immobilon P membrane (Merck, Darmstadt, Germany), using Trans Blot® SD Semi-Dry
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Transfer Cell (Bio-Rad, Hercules, CA, USA), 1 h, 25 V. The membrane was then blocked with 1% BSA
in TBS-T buffer (Tris Buffered Saline, 20 mM Tris, pH 7.5, 150 mM NaCl, 0.1% Tween20®), for 1 h at RT,
with shaking. The primary antibodies (patients’ sera or umbilical cord blood sera) were added to the
membrane in the dilution of 1:100 in TBS-T buffer with the addition of 0.1% BSA, incubated overnight
at 4 ◦C. Then, the membrane was washed three times for 10 min in TBS-T. Subsequently, the secondary
anti-human IgG antibodies conjugated with alkaline phosphatase (cat. A1543-1ml, Sigma-Aldrich,
Saint Louis, MO, USA), were added in the dilution of 1:10,000 in TBS-T buffer, and incubated for 1 h
at RT with shaking. The membrane was washed as previously described, and the color reaction was
developed by adding NBT/BCIP solution (Sigma-Aldrich, Saint Louis, MO, USA). The reaction was
stopped by multiple washing in water. The membrane was documented with Gel Doc™ (Bio-Rad,
Hercules, CA, USA).

2.7. Protein Identification

The protein profiles visualized on the gel and blot were compared and immunoreactive proteins
were cut from the gel. Then they were digested with trypsin, resulting peptides were separated by
liquid chromatography and identified by LC-MS-MS/MS Orbitrap (Thermo Fisher Scientific, Waltham,
MA, USA). The obtained peptide masses were compared with those collected in National Center for
Biotechnology Information (NCBI) and UniProt databases by using MASCOT (Matrix Science Inc,
Boston, MA, USA http://www.matrixscience.com/). All searches were done looking for proteins from
the Peptoclostridium difficile.

2.8. Analysis of Sequence Homology

Protein amino acid sequence was evaluated in the terms of its preservation between CD strains
as well as its homology to other bacterial strains. The analysis was performed using the basic local
alignment search tool (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi) on the NCBI server [19].

2.9. Protein Modeling

It was not possible to build a 3D model for the identified protein since it has no crystalized
homologs which could serve as a base. Thus the analysis of the amino acid sequence was performed
basing on the identification of conserved domains (BLAST) and the secondary structure modelling
using PredictProtein server (Technical University of Munich, https://www.predictprotein.org/) [20].
The input sequence of Cwp22 protein was WP_009890957.

2.10. Predicting Epitopes

The linear epitopes for B lymphocytes were predicted using two bioinformatic tools, BEPIPred
server (Technical University of Denmark, http://www.cbs.dtu.dk/services/BepiPred/) [21], and BCPred
server (Pennsylvania State University, http://ailab.ist.psu.edu/bcpred/) [22]. These tools use different
algorithms for the search. The input sequence of Cwp22 protein was WP_009890957. Linear epitopes
for T lymphocytes were predicted using TepiTool (Immune Epitope Database and Analysis Resource,
IEDB, http://tools.iedb.org/tepitool/). The base was searched considering 27 most frequent MHC alleles
(projected by the program). The input sequence of Cwp22 protein was WP_009890957 Results of both
predictions and the protein structural model (exposed and functional regions) were used for designing
amino acid sequences of potential epitopes. The design was mostly focused on targeting the functional
parts of the proteins.

2.11. Chemical Synthesis of Peptides

The peptides were synthesized using PEPSCAN procedure [23] with some modifications. Peptides
were synthesized on plastic pins, NCP type (MIA 10750001, Mimotopes, Mulgrave, Australia). F-moc
amino acids with blocked side groups were used (Mimotopes, Mulgrave, Australia). In the first step,
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plastic pins were deprotected in 20% piperidine in dimethylformamide (DMF) for 1 h in a sealed vessel.
Then, pins were washed and coupled with amino acid using the DMF solution of 60 mM amino acid,
65 mM 1-hydroxybenzotriazole and 60 mM diisopropylcarbodiimide. The reaction was monitored by
0.5 mM bromophenol blue—the decoloring of the solution implicates the reaction finishing (usually
after 4 h). Coupling reaction was performed at RT in sealed vessel. Pins were washed, dried and
incubated in DMF and conjugated with next amino acid. The reaction was repeated until the whole
amino acid sequence was obtained. Finally, peptides side groups were deprotected with 2.5% anisole,
2.5% 1,2-dithioethane in trifluoroacetic acid. After the final wash in 0.5% acetic acid in 50% methanol
the pins were dried and stored at −20 ◦C until further use.

2.12. Pin Enzyme-Linked Immunosorbent Assay

The immunoreactivity of pin-bound peptides was evaluated by enzyme-linked immunosorbent
assay (ELISA) [24]. In this experiment three types of sera were used: acute CDI patients, umbilical cord
blood sera and normal sera. First, pins were balanced in TBS-T for 10 min and blocked in 1% BSA in
TBS-T for 1 h at RT with shaking. Pooled sera of above groups were used as primary antibodies in the
dilution of 1:1000 in TBS-T. Pins were incubated in diluted sera for 2 h at RT with shaking. Secondary
antibodies used were anti-human IgG conjugated with alkaline phosphatase, in dilution of 1:10,000 in
TBS-T. Pins were incubated with secondary antibodies for 1 h at RT. The color reaction was developed
using Alkaline Phosphatase Yellow Liquid Substrate System (cat. P7998, Sigma-Aldrich, Saint Louis,
MO, USA) and the absorbance was measured in 405 nm (PowerWave HT, BioTek Instruments, Vermont,
VT, USA). Each assay was repeated at least three times. Peptide-bound antibodies were removed from
the peptides by 10 min disruption performed in the solution of 1% SDS, 0.1% β-mercaptoethanol, 0.1 M
Na3PO4, pH 7.2 preheated to 60 ◦C. Pins were placed in the disruption buffer and sonicated in water bath
sonicator (7 kW/25 kHz). Next, pins were washed in MQ water and methanol, dried, stored at −20 ◦C.

2.13. Epitope Identification

Immunoreactive 16-amino acid peptides were further analyzed—shortened peptides were
synthesized from the C- or N-end. The immunoreactivity of the shortened sequences was tested.
Amino acids essential for the immunoreactivity were then identified by the substitution of each amino
acid with alanine, glycine or valine.

2.14. Epitope Analysis

Following, obtained sequences were checked for their cross-reactivity and autoimmunoreactivity.
The IEDB database (https://www.iedb.org/) was searched for checking if identified epitopes are already
identified [25]. The search was unrestricted to organism, nor MHC type, sequences of at least
70% similarity were checked. Also, the database of human autoepitopes (AAgAtlas database 1.0,
http://biokb.ncpsb.org/aagatlas) was searched [26].

3. Results

3.1. The Identification of Cwp22 as a New Immunoreactive CD Surface Protein

Surface proteins were isolated using gentle washing off method without disruption of the bacterial
cell [15]. Surface proteins were washed off using 1 M LiCl and the resulting protein solution was
separated using two 1D SDS-PAGE electrophoresis gels. Next, one of the gels was subjected to Western
blotting and tested with CDI patient blood serum. Second gel was stained with silver method [17].
Immunoreactive protein bands were excised from the SDS-PAGE gel immediately after staining and
identified using mass spectrometry. The electrophoretic profile of surface proteins isolated from
CD clinical strain (CD20, deposited as PCM2826) was similar to those previously published [27],
although far more abundant in bands than a reference strain R20291 (Figure 1). The result of mass
spectrometry of tryptic peptide fragments and MASCOT analysis showed that the immunoreactive
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protein of the molecular mass about 70 kDa is Cwp22 (Figure 1), one of the surface proteins of CD.
The identification score was 3014. Fifteen unique peptides were identified during the analysis which
allowed for reliable identification.
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Figure 1. Identification of Cwp22 protein as a new immunoreactive protein from Clostridioides difficile.
Surface proteins were isolated using 1 M LiCl, analyzed by SDS-PAGE electrophoresis (lanes 1 and 2)
and western blotting (lanes 3 and 4). Lane 1—surface protein profile of R20291; lane 2—surface protein
profile of CD20; lane 3—blotting result of R20291; lane 4—blotting result of CD20. White box indicates
bands selected for identification by mass spectrometry. Results of the identification are shown in the
table on the right.

3.2. In Silico Analysis Shows that Cwp22 Protein is a Good Vaccine Antigen Candidate

The cwp22 gene is conserved and present in various CD strains [28]. The bioinformatic analysis
of Cwp22 amino acid sequence performed by BLAST showed that the protein is preserved in many
CD strains. The analysis was performed using all 92 available Cwp22 protein sequences. Table 1
summarizes results for 22 strains for which it was possible to assign precise strain name. Bacteria
present in the NCBI database were isolated from different sources: adults, children, acute CDI patients
and asymptomatic carriers. Analyzed strains had different toxin profiles, however we were unable to
fully characterize all strains used in this comparison (there were no data in the database). Gathered
sequences were compared with Cwp22 protein sequence WP_009890957. The analysis showed that
Cwp22 is a highly conserved protein. The percentage of identical amino acids in Cwp22 protein from
different CD strains is at the range 91.93–99.84.

Table 1. Conservation of the Cwp22 protein amino acid sequence between Clostridioides difficile strains.
Data collected from NCBI and BLAST servers.

NCBI
Identification CD Strain Characteristics Sequence

Coverage
% of Identical
Amino Acids

CBA64897.1 CD196
Isolated from an adult,
ribotype 027, producing
toxins

100% 99.84

PBF93815.1 7468-NonSp/ST97 Isolated from a child,
producing toxins 100% 99.69

EQG56151.1 DA00145 100% 99.69
EQH98359.1 F314 Acute CDI, producing toxins 100% 99.69
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Table 1. Cont.

NCBI
Identification CD Strain Characteristics Sequence

Coverage
% of Identical
Amino Acids

OFU21376.1 HMSC19C09 100% 99.69
OFU05949.1 HMSC19D07 100% 99.53
EHJ35368.1 70-100-2010 100% 99.38
PBG98735.1 7481-NonSp/ST59 100% 99.22

EQF50178.1 CD174 Asymptomatic carriage, no
toxins 100% 99.07

EQE30253.1 CD34 Asymptomatic carriage, no
toxins 100% 99.22

AFV69537.1 C192 Ribotype 012, hipervirulent 100% 99.22

EQJ05755.1 P7 Reference strain, producing
toxins 100% 99.07

PBE99335.1 5573-CF/ST37 Producing TcdB 100% 98.76
EQE84199.1 CD69 Acute CDI, producing toxins 100% 98.91
OJT75205.1 NT422 Ribotype 231 98% 99.37
EFH06251.1 NAP08 Hipervirulent 100% 96.89

PBI20744 6615-NonSp/ST11 Isolated from a child,
hipervirulent 100% 96.74

KPI50551 RA09-70 Producing TcdA 100% 93.17

PBE36357.1 5537-D/ST9 Isolated from a child,
producing toxins 100% 91.93

ERM37167 P64 Asymptomatic carriage,
producing toxins 79% 99.41

EQE47488 CD42 Acute CDI, producing toxins 73% 99.30
EQK74493 CD113 Relapse, producing toxins 72% 99.51

Since high homology of the vaccine antigen to proteins from other organisms may cause
cross-reactivity we analyzed Cwp22 protein homology using BLAST algorithm. The sequence
of Cwp22 protein is moderately homological to other l,d-transpeptidases, some hypothetical proteins
and a surface protein from strains with questionable clinical significance (Table 2), mostly closely
related to the Clostridioides genus. The percentage of identical amino acids is between 41.90 to 56.07.
The highest similarity is in the N-end region of the protein (data now shown).

Table 2. The search results for proteins homological to CD Cwp22 protein. Data collected from NCBI
database and analyzed by basic local alignment search tool (BLAST) algorithm.

NCBI
Identification Protein Name Bacteria Strain Sequence

Coverage
% of Identical
Aminoacids

WP_092726434.1 l,d-transpeptidase Romboutsia lituseburensis 53% 56.07
WP_007287442.1 l,d-transpeptidase Clostridium bartletti 53% 51.59
WP_084157842.1 Hipothetical protein Bacillus manliponensis 58% 47.59
WP_082007829.1 Hipothetical protein Terrisporobacter othiniensis 54% 52.10
WP_052404759.1 l,d-transpeptidase Bacillus rubiinfantis 55% 48.66
WP_066389794.1 l,d-transpeptidase Bacillus mesonae 52% 41.90

KLR55379.1 Surface protein Clostridium sordelli 53% 45.98

Based on the amino acid sequence we studied the presence of conserved domains in the protein
using BLAST algorithm. Aiming functional regions of the protein may have an influence on vaccine
efficacy. The analysis identified a YkuD domain possessing the activity of l,d-transpeptidase and
playing the role in producing bacterial peptidoglycan [29] (Figure 2A). On the other end of the Cwp22
protein sequence there are three CW_binding_2 domains which are responsible for binding this
protein to the bacteria cell wall. The protein sequence is preceded by a signal sequence directing the
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protein outside the bacteria cell [30]. This prediction suggests that the functional part of the protein
is surface-exposed.

It was not possible to build a reliable protein model because there is no crystallized protein having
enough homology to the Cwp22 protein that could serve as templates for the prediction. We used
the mathematical model to predict secondary structure of Cwp22 (PredictProtein server) (Figure 2B).
The analysis showed the presence of many α-helix structures localized in the region which binds the
protein to the cell wall. The functional part of the protein is mostly built of β-sheets and loops.

These data indicate Cwp22 protein as a conserved protein in CD strains but having no significant
homology to proteins from other strains and confirm that Cwp22 protein is a promising target for
further vaccine research.
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PredictProtein server.

3.3. Predicting the Epitopes of Cwp22 Protein

Data obtained by domain identification and protein modeling were used in the process of
designing peptides for epitope mapping. Additionally, we performed a set of epitope predictions using
bioinformatics tools in order to design peptides covering possible T- and B-cell epitopes. We applied
two prediction servers (BCPred, BEPIPred) for prediction of B-lymphocyte epitopes and TepiTool server
for prediction of T-lymphocyte epitopes. Predictions of the epitopes for B-lymphocytes performed using
two different servers (BCPred and BEPIPred) gave complementary results (Figure 3A,B). The epitopes
proposed for T-lymphocytes were mostly different than those proposed for B-lymphocytes. These
proposed sequences were considered when designing peptides for chemical synthesis (Figure 4).
During the peptide selection process we focused on the first part of the protein which is responsible for
its functionality since it contains the YkuD domian.
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3.4. Epitope Mapping

In order to determine the amino acid sequence recognized by antibodies, the truncation peptide
library was prepared using the PEPSCAN method. The epitope mapping begun with assessment
of the immunoreactivity of chemically synthesized peptides which were designed as is shown in
Figure 4. The twenty-one peptides (16-amino acid long) corresponding to predicted epitopes were
synthesized (Figure 5A). We tested their immunoreactivity against pooled sera from three groups:
group of patients undergoing CDI (n = 15), group of umbilical cord blood sera (n = 10), group of
healthy volunteers (n = 10). The immunoreactivity profile is similar for all groups, however different
titers of immunoreactivity were observed (Figure 5B). The highest level of immunoreactivity was in
the CDI patients’ group, next, the umbilical cord blood sera group and the last healthy volunteers.
The highest titers of immunoreactivity were found for peptides 2, 3, 4, 11, 14, 17, and 20, whereas
peptides with the lowest titer of immunoreactivity were 1, 5, 6, 7, 13, 16, and 18. The variance in
immunoreactivity was statistically significant (ANOVA, p < 0.05) and peptides with the lowest titer of
immunoreactivity were removed from further testing.Microorganisms 2019, 7, 565 11 of 19 
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Figure 5. Epitope mapping of Cwp22 protein. (A)—peptide sequences synthesized based on in silico
analysis; (B)—result of epitope mapping by ELISA using sera from three groups. ELISA was performed
using pin-bound peptides and 96-well plate. Primary antibody was detected by anti-human IgG-AP
conjugated goat antibody which reacts with AP Yellow substrate. The result of colorimetric reaction was
measured by reading absorbance in 405 nm. The figure shows results from at least three independent
measurements, means with SD.

We identified a region of the strongest immunoreactivity (for all three tested groups) that included
sequences from peptides 2 to 4 and two most immunoreactive sequences 11 and 14 (Figure 5B). Amino
acid sequence covering peptides from 2 to 4 falls into the YkuD functional domain, so we decided to
map this region in further details. The two additional highly immunoreactive sequences A6 and A8
located within YkuD functional domain (Figure 6) were identified by applying modified overlapping
peptide libraries. We decided to further investigate peptide sequence covering sequences A6–A8,
namely NNKLVKEFRVATGKKGSETP.

To sum up, peptides selected for further minimal epitope mapping are peptides
A6–A8 (48NNKLVKEFRVATGKKGSETP67), 11 (192GTYQKNSWLKVNGKMY207) and 14
(265QTGWQEKNGKKYYLGS280).
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Figure 6. Epitope mapping of highly immunoreactive region of Cwp22 protein. A—peptide sequences
designed for epitope mapping; B—the result of epitope mapping by ELISA using sera from two groups.
ELISA was performed using pin-bound peptides and 96-well plate. Primary antibody was detected by
anti-human IgG-AP conjugated goat antibody which reacts with AP Yellow substrate. The result of
colorimetric reaction was measured by reading absorbance in 405 nm. The figure shows results from at
least three independent measurements, means with SD.

3.5. Defining the Epitopes of Cwp22 Protein

Peptides A6–A8, 11 and 14 were shortened from N- or C- ends in order to define the shortest, but
still strongly immunoreactive amino acid sequence. Two kinds of sera were used obtained from CDI
patients and umbilical cord blood. During the analysis of immunoreactivity, we compared the shortest
yet immunoreactive peptides (Figure 7). In the A6–A8 (NNKLVKEFRVATGKKGSETP) peptide we
identified 54EFRVAT59 epitope since the removal of its C-end glutamic acid or N-end threonine caused
a decrease in immunoreactivity. We noticed that in the peptide number 11 (GTYQKNSWLKVNGKMY)
after removing the second lysine from C-end or methionine from N-end resulted in the substantial
loss of peptide immunoreactivity which indicates 201KVNGKM206 as the epitope. In the peptide
number 14 (QTGWQEKNGKKYYLGS) removing tryptophan from the C-end or tyrosine from the
N-end resulted in the loss of immunoreactivity indicating 268WQEKNGKKYY277 as the epitope.
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Figure 7. Finding epitopes in Cwp22 protein. A shows the shortening of NNKLVKEFRVATGKKGSETP
peptide; B shows the shortening of GTYQKNSWLKVNGKMY peptide; C shows the shortening of
QTGWQEKNGKKYYLGS peptide. Peptides were shortened either from C- (upper panel) or N- (lower
panel) end and tested for their immunoreactivity by pin-bound ELISA. Experiment was repeated three
times. Red arrows indicate the shortest, still immunoreactive sequences.

To sum up, we found the shortest immunoreactive peptides for each tested sequence (A6–A8, 11
and 14) (Figure 7). Epitope 268WQEKNGKKYY277 located in sequence 14 is a part of probable B-cell
epitope (Figure 3). Mostly interesting is that sequence A6–A8 showed higher immunoreactivity titer
tested with the sera from umbilical cord blood than from CDI patients’ sera. Such finding suggests
that these sequences possess potential protective activity.

3.6. Epitopes Characteristics

We characterized physicochemical properties of studied epitopes, completed their
autoimmunoreactivity and crossreactivity by in silico analysis. All three identified epitopes are soluble
in water. 54EFRVAT59 and 201KVNGKM206 form loops. 268WQEKNGKKYY277 forms an alpha helix.
The three epitopes differ in their pI, 54EFRVAT59 has no charge in physiological pH, 201KVNGKM206 and
268WQEKNGKKYY277 have the same charge in physiological pH which is 2 (Table 3).

Table 3. Epitope characteristics. The physicochemical properties were calculated by PepCalc.
The secondary structure was modeled by PepFOLD server.

54EFRVAT59 201KVNGKM207 268WQEKNGKKYY277

Molecular mass (g/mol) 721.8 675.84 1343.49

Water solubility good good good

pI 6.86 10.69 9.9

Charge in physiological pH 0 +2 +2

Peptide structure
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When we started looking for new anti-CD vaccine antigens, the Cwp22 protein was identified 
bioinformatically as one of the cell wall proteins [35]. Next, it was found in the CD proteome [36], 
characterized [29] and recently, predicted to be a good vaccine antigen by Zhou et al. [13]. Now, we 
are the first to identify Cwp22 protein as an immunoreactive one using CDI patient sera. There are 
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The potential cross-reactivity was analyzed by comparing homological sequences present in the
NCBI database and the analysis was performed by BLAST algorithm. The sequence 54EFRVAT59 was
found to be quite common since it is found in sequences of 130 bacteria strains, however mostly in
hypothetical proteins. Also, it is present in cellulose biosynthesis protein from Burkholderia multivorans,
hyaluronoglucosaminidase of Streptomyces sp. 2131.1 or vitamin B12-dependent ribonucleotide
reductase of Rhizobiales bacterium. The sequence 201KVNGKM206 was found in many different
species like Plasmodium malariae (erythrocyte membrane-associated antigen), Fusobacterium varium
(autotransporter domain-containing protein). It was also discovered in bifunctional (p)ppGpp
synthetase/guanosine-3′,5′-bis(diphosphate) 3′-pyrophosphohydrolase from some Lactobacilli and
Streptococcus, yet these strains are colonizing mostly animals. Probably the frequent occurrence of this
sequence it is connected with the epitope location in a conserved domain COG5263, which is a choline
binding sequence [31]. The sequence 268WQEKNGKKYY277 is specific only for Clostridioides.

For the potential autoimmunoreactivity we checked an IEDB database of known autoepitopes.
The search was not restricted to any host nor MHC type. The result of the search for 54EFRVAT59

showed that there is a congenial epitope in a staphylokinase produced by Staphylococcus aureus
(TAYKEFRVAEADPSAKI). Moreover, T-lymphocytes specific for this epitope (TAYKEFRVAEADPSAKI)
were found in human [32]. There are no known epitopes or autoepitopes for 201KVNGKM206 nor
268WQEKNGKKYY277.

4. Discussion

In this study, we identified a new immunoreactive surface protein isolated from CD which
is named Cwp22 and we mapped its epitopes using human sera obtained from CDI patient sera
and umbilical cord blood sera. We defined three specific epitopes: 54EFRVAT59, 201KVNGKM206,
and 268WQEKNGKKYY277, that we characterized thoroughly and evaluated for future use in a
vaccine construction.

Peripheral CDI patients blood sera and umbilical cord blood sera were used for Cwp22 protein
epitope mapping. The antibody transfer through the placenta is an active and selective process since
most molecules of such high molecular mass do not cross the placenta. Those are mostly protein-specific
IgG antibodies which protect the baby after the birth [33]. In case of some pathogen specific antibodies
are even selectively accumulated in the fetus [34]. Based on the above we routinely use umbilical cord
blood sera for mapping bacterial proteins since maternal antibodies passed to the fetus may have
highly protective properties [14,24]. We observed, that anti-Cwp22 protein antibodies from umbilical
cord blood sera are more immunoreactive with Cwp22-derived peptides than those sera gathered from
healthy volunteer group (Figure 5), in some cases they almost reach the activity of antibodies from CDI
patient group (Figure 6) or even are more active (Figure 7A). It is one of the limitations of the study not
knowing if mothers were asymptomatic carriers of CD or if they did have contact with these bacteria
since there is no routine testing for CD in healthy people. Nevertheless, this enrichment of specific
antibodies against Cwp22 protein in umbilical cord blood sera comparing to healthy volunteers’ sera
may be a proof of their great importance in protective immunity against CD.

When we started looking for new anti-CD vaccine antigens, the Cwp22 protein was identified
bioinformatically as one of the cell wall proteins [35]. Next, it was found in the CD proteome [36],
characterized [29] and recently, predicted to be a good vaccine antigen by Zhou et al. [13]. Now, we are
the first to identify Cwp22 protein as an immunoreactive one using CDI patient sera. There are some
papers concerning searching for the immunoreactive surface proteins of CD [27,37,38]. Wright, et al. [27]
extracted surface proteins from CD M9 (ribotype 017, toxin type A+, B-) and separated them using 2D
electrophoresis. Then the gels were subjected to Western blotting with CDI patient sera followed by mass
spectroscopy identification. These authors identified forty-two different immunoreactive proteins, but
no Cwp22 protein among them. This can be explained using different extraction method. Wright, et al.
used TS buffer (10 mM Tris/HCl (pH 6.9), 10 mM MgCl2, 0.5 M sucrose) with the addition of mutanolysin,
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lysozyme, lysostaphin, RNase and 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride which mostly
extracted proteins of pI between 4 and 6, whereas Cwp22 protein pI is 8.89 [13].

Cwp22 protein is an enzyme that is involved in production of unusual peptidoglycan in CD since
it mainly contains 3→3 crosslinks [15], which occurs prevalently in mycobacteria [39]. There are three
paralogs of this enzyme in CD named LdtCd1, LdtCd2, LdtCd3 (l,d-transpeptidase, Ldt) [40]. Deletion
of LdtCd1 and LdtCd2 led to decreased content of 3→3 peptidoglycan crosslinks. So far, it was not
possible to inactivate LdtCd3 by deletion resulting in no CD mutant totally lacking 3→3 peptidoglycan
crosslinks. The absence of such a mutant makes it difficult to study the biological meaning of 3→3
peptidoglycan crosslinks. About 30% of CD peptidoglycan has the 4→3 crosslinks which are typical
for bacteria and are produced by D, d-transpeptidases (PBP). The activity of PBPs is arrested by all
classes of β-lactams whereas Ldts can be inhibited by carbapenems only. In E. faecium changing PBPs
to Ldts ensures high level resistance to β-lactams of the penam class, for example MIC for penicillin
can be >2000 µg/mL [41]. We are still lacking data about similar phenomenon in CD but aiming Cwp22
protein could become at least helpful in the process of antibiotic treatment.

Cwp22 protein plays a pleiotropic role in CD. ClosTron-generated cwp22 mutant was
characterized [13]. Zhu, et al. showed cwp22 CD mutant as less viable, producing lower levels
of TcdA and TcdB toxins during early stage of growth and autolyzing faster than the parent strain.
More surprisingly, is that the cwp22 mutant showed impaired adherence in vegetative strain and spores.
In vivo studies on mice showed impaired colonization and pathogenesis when they were infected
with cwp22 mutant strain as to compare with parent strain. This means that targeting Cwp22 protein,
for example with therapeutic antibodies, can have tremendous impact on the CD virulence.

During the pathogen invasion human body builds up humoral response producing a substantial
variety of antibodies with different specificities. Not all of them are protective. Only a portion
of these antibodies targets crucial entities for the pathogen virulence. In this paper, we report for
the first time a surface protein Cwp22 as an immunoreactive one. Previously, it has been shown
that a peptide was more immunogenic than the intact protein as shown in higher antibodies titer
induced [42]. Wherefore, we mapped the epitopes of Cwp22 protein by combining bioinformatics
approach and empirical study. Potentially immunoreactive peptides were designed by taking into account
B-cell and T-cell epitope predictions and modelled secondary structure. Further, epitope mapping by
PEPSCAN method [23] exposed three epitopes 54EFRVAT59, 201KVNGKM206 and 268WQEKNGKKYY277.
A particularly interesting epitope, the 54EFRVAT59 is located in the domain responsible for the biological
activity of the enzyme. Its structure was bioinformatically predicted to be a coil (Table 3). In native
protein it located on a β-sheet. The second epitope 201KVNGKM206 is also predicted to form a coil.
The third epitope was predicted to be an alpha helix (Table 3). In native protein it was predicted to be
located on an exposed loop. Predicted secondary structure showed that the part of protein containing
all three identified epitopes forms mostly β-sheets and coils, therefore it should be further evaluated
whether this change in structure influences peptide immunoreactivity. Our epitopes have six to ten
amino acids which is in line with the generally accepted principle that reactive linear epitopes should
have five to twenty-two amino acid residues [43] or six to nine polar amino acids [44]. Recently, Pyclik,
et al. published data showing a very short 4 amino acid sequence to be strongly immunoreactive [45].
However, it was suggested previously that 15 amino acid sequence are optimal immunogens [46].
In further studies, it might become necessary to add flanking amino acids to increase immunogenicity
of identified epitopes. Further studies concerning protective properties of all identified epitopes are
in progress.

Vaccines based on proteins and peptides should be carefully tested for cross-reactions. Too much
similarity of vaccine antigen sequence to proteins of own microbiota or self-antigens can lead
to unpredictable effects. As we previously showed some bacterial conservative antigens, like
glyceraldehyde 3-phosphate dehydrogenase, can be implicated in autoimmunoreactivity [14]. There
are known T-cell autoepitopes that cross-react with M-protein group A streptococci which was
previously suggested as a vaccine candidate [47]. Cwp22 protein amino acid sequence is highly
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conserved among CD strains regardless of their ribotype or type of produced toxins (Table 1) and
have low homology to other l,d-transpeptidases (Table 2). We searched for the epitopes’ sequences
(54EFRVAT59, 201KVNGKM206, 268WQEKNGKKYY277) in IEDB database and they did not match with
any known autoepitope.

There is a possibility of host microbiota interfering with vaccine. Williams, et al. induced anti-
HIV-1 env response by vaccination of healthy participants. They found that even though the vaccine
contained both gp120 and gp41 the response was focused on gp41. The antibodies were mostly
non-neutralizing and cross-reactive with intestinal microbiota [48]. In order to avoid above effect,
we examined epitope sequences homology to microbiota proteins using BLAST algorithm. 54EFRVAT59,
201KVNGKM206 were found in some bacteria with uncertain clinical importance. Nevertheless,
this finding should be further evaluated. Also, we tested weather epitopes determined in this study
occur in human proteins. Epitopes 54EFRVAT59, 201KVNGKM206, and 268WQEKNGKKYY277 were not
found by us in human proteins sequences deposited in NCBI database.

In conclusion, we documented that Cwp22 protein is one of the immunoreactive proteins present
on the surface of C. difficile. We mapped its epitopes using CDI patient blood and umbilical cord
blood sera, analyzed their homology to proteins from other bacteria strains, also human proteins.
We comprehensively characterized the epitopes using bioinformatics and empirical methods. Based
on our studies, the epitopes 54EFRVAT59, 201KVNGKM206, and 268WQEKNGKKYY277 are an attractive
vaccine antigen candidates.
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