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Microbial communities are ubiquitously found in Nature and have direct

implications for the environment, human health and biotechnology. The

species composition and overall function of microbial communities are largely

shaped by metabolic interactions such as competition for resources and cross-

feeding. Although considerable scientific progress has been made towards

mapping and modelling species-level metabolism, elucidating the metabolic

exchanges between microorganisms and steering the community dynamics

remain an enormous scientific challenge. In view of the complexity,

computational models of microbial communities are essential to obtain

systems-level understanding of ecosystem functioning. This review discusses

the applications and limitations of constraint-based stoichiometric modelling

tools, and in particular flux balance analysis (FBA). We explain this approach

from first principles and identify the challenges one faces when extending it

to communities, and discuss the approaches used in the field in view of

these challenges. We distinguish between steady-state and dynamic FBA

approaches extended to communities. We conclude that much progress has

been made, but many of the challenges are still open.
1. Introduction
Microbial communities are ubiquitous and of great interest for biotechnological

applications [1,2], health [3–6], food production [7] and environmental studies

[8]. Key questions in the field of microbial ecology are: ‘Who are the community

members?’, ‘What are they doing?’, ‘How do they interact?’ and ‘What function-

ality arises from these interactions?’. Metagenome sequencing is rapidly

answering the first question [9–12], and this makes the other questions all the

more pressing. Great strides have been made in analysing metabolic interactions

between the members of microbial communities [13–17]. Despite this progress,

the principles that shape the structure of microbial communities remain largely

elusive, making it challenging to understand, describe, predict and (ultimately)

design communities with particular behaviour.

Here, we review modelling approaches that take genome information as

the primary input and aim to predict community behaviour from a metabolic

perspective. Thus, we do not discuss interactions between microorganisms that

have no direct metabolic component, such as physical interactions or signalling

processes (quorum sensing, for example). The approaches we describe are all

constraint-based, stoichiometric, modelling methods for metabolic networks. The

associated models are essentially mappings of genes to metabolic enzymes, the

reactions of which form a (genome-scale) metabolic network where the edges

and nodes represent (enzyme-catalysed) reactions and metabolites, respectively.

Constraint-based modelling has been developed for sequenced microbes

in monoculture, and many methods have been developed to reconstruct,

query and predict the metabolic capacities of a species based on its genome
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Figure 1. Growth potential depends on the composition of the medium and
the metabolic capabilities of members in the community. Organism 1 (red)
can only use Aext that can be converted into a precursor of biomass, C. If it
grew alone, then it could not make use of Bext. When organism 2 (green) is
present, which is capable of using Bext and thereby excreting a growth
coupled compound D, organism 1 can increase its biomass production.
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sequence [18–24]. The most widely used method is flux balance

analysis (FBA) [25,26]. Given a biologically relevant objective

function and constraints on input/output rates (e.g. glucose con-

sumption, carbon dioxide excretion), FBA predicts steady-state

flux distributions that optimize the chosen objective—typically

biomass formation, but also multi-dimensional objectives exist

[27–29]. Under the right premises, to be discussed later, these

predictions are often surprisingly accurate—which is remarkable

considering that these models do not take kinetic information

into account [24]. When metagenome sequencing became

feasible for entire communities [9–12], the development of

constraint-based stoichiometric modelling approaches for

microbial communities has become attractive.

As we explain later in more detail, the results of FBA-type

approaches mainly depend on (i) the quality of the recon-

structed metabolic model, including the biomass composition

of the associated microorganism and the assumed gene–

protein reaction rules, (ii) the chosen objective function,

(iii) the considered constraints for exchange and intracellular

rates, and (iv) the considered nutrients that can be used for bio-

mass and product formation. If FBA is extended to analyse

metabolism on a community level, then additional layers of

complexity are added to all four of these points.

With respect to reconstructions, despite the progress that

has been made in automating the reconstruction of metabolic

models on the genome scale [30–34], model reconstruction

and manual curation is still a very time-consuming process.

In particular, detailed biomass compositions are available

only for a few microbial species, and their experimental deter-

mination requires the isolation and culturing of the species. If

one misses physiological characteristics, e.g. certain auxotro-

phies or transport reactions in the reconstruction process,

then it will have a considerable impact on the predicted

interactions between organisms.

Once a genome-scale model has been reconstructed, it is

essential for community modelling that it can be combined

with other models in a meaningful way. The construction of

community models is complicated by the fact that, in most

cases, such models will have been created by different authors

and research groups. Consider, for example, that all models

should be encoded to be readable by the same simulation soft-

ware; model components (reactions, metabolites, flux capacity

constraints) must be unambiguously annotated such that

they can be used to link models together and community

models themselves should be reproducible and exchangeable.

Fortunately, with regards to model interoperability, the con-

straint-based modelling community has recently adopted a

standard model encoding format that allows for efficient

model exchange [35]. However, the problem of seamless inte-

gration, when using models collected from different sources,

currently remains open.

Another difficulty is to define a community objective func-

tion in both biological and mathematical terms; typically, a

combination of the objective functions of individual species is

optimized but the exact formulation can differ [15,17,36–39].

This question touches upon fundamental questions in evol-

utionary biology about group selection versus selection at the

level of individuals.

Regarding exchange rates, at a monoculture level, exchange

rates can be calculated from extracellular concentration data, and

intracellular fluxes can be estimated using, for example, 13C-

labelling experiments [40,41]. Such data can then be used as

constraints for FBA. Both become much more complicated on
a community level; it is not trivial to determine individual con-

tributions of microbial species to measured net fluxes of

extracellular compounds, making it difficult to define appropri-

ate constraints on the species level. There are isotopic labelling

methods forcommunity-level quantification of fluxes, and meta-

transcriptomics and metaproteomics data may be translated to

flux constraints under simplifying assumptions [42–48], but

these have not reached a sufficiently quantitative level yet.

On a single-species level, the growth potential of organ-

isms is directly determined by the composition of the

medium. This is not so on a community level where the avail-

able resources and the metabolic capabilities of other

community members determine the metabolism and growth

behaviour of particular species. Even if species cannot use cer-

tain compounds available in their environment directly, they

might be able to use those indirectly through the metabolic

activity of other members in the community, as illustrated

for a minimal example in figure 1. Interactions between species

are therefore context and medium dependent [49–54]. Thus, at

the moment, models are required to predict and quantify these

(hidden) metabolic interactions between microbial species,

given different environmental conditions and objectives, as

we can presently not measure them.

In this review, we discuss the several methods that have been

developed [14,15,17] to use FBA and variants thereof on a com-

munity level. The first work using genome-scale models for a

microbial community was published in 2007 [36]. Since then, it

has been used to estimate interspecies fluxes as well as intracellu-

lar flux distributions [36], to classify metabolic interactions [13],

to predict the compositions of media that induce interactions

between members of a community [55], to predict optimal rela-

tive biomass abundances [39] and many more, most of which are

summarized in [17]. We view these studies in the light of the

complications that we have identified. For a thorough under-

standing of these issues, however, we first need to derive the

classical FBA approach from its basic principles before we

move on to the specifics of community FBA (cFBA).
2. Basic principles and assumption of single-
organism flux balance analysis: the
foundation of microbial-community flux
balance analysis

The foundations of classical FBA were developed in the 1980s

[56–58] and today it is one of the most used methods to
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study metabolism [24–26]. By making assumptions about an

objective function (typically biomass formation) and using

information about transport fluxes (e.g. sugar uptake, product

formation) and intracellular rates, FBA can be used to deter-

mine flux distributions that optimize the respective objective;

kinetic parameters are not required. FBA and all of its variants

rely on a metabolic steady state. Hence, it strictly applies only

to cell populations displaying balanced growth, i.e. cells in

batch culture growing in the exponential phase, or cells cul-

tured in a chemostat, where the concentration of each

metabolic intermediate and the growth rate are constant.

The rationale of FBA is as follows: one considers all meta-

bolic reactions in the metabolic network, including those

reactions leading to the macromolecular components of cells

such as proteins, RNA, lipids and DNA (or their respective

building blocks) and one that specifies the macromolecular

component composition of cells, using an artificial biomass-

forming reaction. Next, one demands a metabolic steady

state, which then directly leads to a constant rate at which

new biomass is synthesized. Hence, the balanced growth

condition is modelled. To make this explicit and facilitate

the discussion of modelling microbial communities, in the

following classical FBA is derived from basic principles.

The starting point of this derivation is the definition of the

concentration ci of a metabolic intermediate i in the metabolic

network with ci ¼ ni/V, where ni is the number of molecules i
and V is the cell volume. V and ni are defined for the entire

population of cells; V is the total cell volume and ni is the

total amount of molecules i. Owing to growth, both variables

are time dependent, and the temporal change of ci is given by

applying the chain rule for differentiation

d

dt
ci ¼

1

V
@ni

@t
� ni

V2

@V
@t
: ð2:1Þ

When the volume is constant, i.e. @V/@t ¼ 0, the concentration

change is proportional to the change in the number of mol-

ecules. When the number of molecules is fixed, @ni/@t
evaluates to 0 and ci can be increased when the volume is

decreased and vice versa. At steady state, the temporal

change of ci is 0, i.e. (d/dt)ci ¼ 0. This yields for equation (2.1)

1

V
@ni

@t
¼ ni

V2

@V
@t
: ð2:2Þ

Multiplying equation (2.2) by V/ni allows us to define the

specific growth rate m at steady state as

1

ni

@ni

@t
¼ 1

V
@V
@t

:¼ m: ð2:3Þ

Rewriting equation (2.2) by using equation (2.3) illustrates

that the synthesis of new molecules equals their dilution by

(volume) growth at steady state

1

V
@ni

@t
¼ m

ni

V
¼ m � ci: ð2:4Þ

At a constant volume (so in the absence of volume

growth), the rates of the reactions vj occurring in metabolism

relate to equation (2.4) in the following way:

1

V
@ni

@t
¼ d

dt
ci ¼

X
j

sijvj, ð2:5Þ

whereby sij are stoichiometric coefficients which are positive/

negative if metabolite i is produced/consumed in reaction j.
Equation (2.5) means that the temporal change of ci is
determined by fluxes vj that can either produce or degrade

metabolite i. The vectorized version of equation (2.5) then reads

dc
dt
¼ S � v, ð2:6Þ

where c is the vector of concentrations, v is a vector of rates and

S is the stoichiometric matrix with m rows and r columns repre-

senting metabolites and reaction rates, respectively. It contains

the stoichiometric coefficients sij.
2.1. Biomass and growth dilution
In FBA, one now defines two classes of metabolites that appear

in the stoichiometric matrix S: molecules that are required for

biomass formation (metabolic end-products such as DNA,

RNA, protein, membranes or their respective building blocks)

and intermediates which are not. These two classes are treated

differently regarding the dilution by growth (equation (2.4)).

It is neglected for intermediates as the metabolic rates of

intermediate conversions are assumed to be much higher in

value than m . ci. For biomass components, however, dilution

by growth is taken as their main sink, and, therefore, equations

(2.4) and (2.5) become

X
j

sijvj ¼
d

dt
ci ¼ 0, 8 i [ intermediates ð2:7Þ

and

X
j

sijvj ¼
d

dt
ci ¼ m � ci, 8 i [ biomass components, ð2:8Þ

which means that intermediate concentrations do not change

over time, i.e. their production rates equal their consumption

rates, whereas biomass components accumulate exponentially

with rate m, reflecting the exponential increase of biomass. In

stoichiometric models, the fluxes vj are usually expressed in

mmol (h . g)21 and growth ratem has the unit g (g . h)21 reflect-

ing the increase of biomass per biomass per hour. Considering

this, one sees that ci has the unit mmol g21 (equation (2.8)).

Hence, ci is the amount of biomass component i per gram of

biomass. A biomass-forming reaction vbiomass can be defined as

c1 �Mc1
þ c2 �Mc2

þ � � � þ cz �Mcz

¼
Xz

i¼1

ci �Mci ���!
m

1 gram biomass,
ð2:9Þ

where Mci represents one of the z biomass components (dimen-

sionless) and the coefficients ci the contribution of biomass

component i to 1 g of biomass with unit mmol g21.

Summarizing, FBA involves the following mass-balance

constraints, with the rates vj as unknowns:
X

j

sijvj ¼ 0, 8 i [ intermediates

and
X

j

sijvj ¼ m � ci, 8 i [ biomass components,

9>>>=
>>>;
ð2:10Þ

or in a more compact form

S � v ¼ 0, ð2:11Þ

whereby the flux vector v contains vbiomass and the stoichio-

metric matrix S a corresponding column that contains 0s in

rows that correspond to intermediates and the factors ci

in rows that correspond to biomass components. So-called

boundary species (Senv and Penv in figure 2) do not appear in



Senv Sext M1 M2 Mn

BM
m

Pext Penv

J1 J2v1 · X

C1 · Mc1
+ ... + Cz · Mcz

v2 · X vn · X

Figure 2. Illustration of the different rates in FBA. One distinguishes environ-
ment fluxes Ji with unit mmol h21, specific rates vi with unit mmol (h . g)21

and the organism’s specific growth rate in h21. X denotes the organism’s
biomass in unit g, Mci are components required for biomass formation
and their respective contribution to 1 g of biomass is denoted by ci with
unit mmol g21.
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the stoichiometric matrix; they just serve as parameters and do

not have any influence on the actual simulations. In some

model formulations, they are omitted, and the environmental

fluxes J are expressed as ‘hyperspace’ reactions. The net units

on the left- and right-hand sides of the relations in equation

system (2.10) are per unit ‘gram cells’. So they remain valid

when the biomass increases owing to growth. These relations

are therefore the balanced growth condition that was mentioned

earlier. The rate of biomass increase equals dX/dt ¼ m . X
with X as biomass in gram cells. Biomass therefore does not

need to be considered explicitly in FBA on monocultures. This

is different for communities, as we see!
2.2. Flux distributions have variability
As there are typically more unknown fluxes than metabolites,

the linear system defined in equation (2.11) is usually under-

determined. The solution space can be reduced (i) by

constraining individual rates with so-called capacity con-

straints, using information about reversibility of reactions

and constraints based on experimental data, such as uptake

rates, and (ii) by optimizing a particular objective as, for

example, vbiomass, using linear programming. The optimization

problem in FBA can be expressed in a compact form as follows:

max
v

Z ¼ wT � v,

s:t: S � v ¼ 0

and vmin � v � vmax,

9>>=
>>;

ð2:12Þ

where Z represents the objective function and is expressed as a

linear combination of fluxes v with weights contained in

vector w and has been discussed extensively in [27,28]; typically,

growth rate is maximized, thus Z ¼ vbiomass. The vmin and vmax

contain the lower and upper bounds of the rates; if a reaction

is irreversible, then the corresponding lower bound is set to 0.

Usually, multiple flux distributions exist that optimize the

respective objective function. The flexibility of individual

fluxes can be examined by using flux variability analysis

(FVA), where each flux is minimized and maximized, using

the optimal value of the objective function as an additional

constraint [59–62]. FVA can be formulated as follows:

max=min vi, 8 vi [ v
and s:t: S � v ¼ 0

vmin � v � vmax

and Z ¼ Zopt,

9>>>=
>>>;

ð2:13Þ

whereby Zopt is determined, using FBA. More advanced

methods exist to study all the alternative optimal flux

distributions [63,64].
2.2.1. A closer look at the units in classical flux balance analysis
In FBA, one can distinguish three different rates, which are

depicted in figure 2: environmental (exchange) fluxes J with

unit mmol h21, specific rates v with unit mmol (h . g)21 and

a biomass-forming reaction vbiomass occurring at the specific

growth rate m which has the unit h21. In the following, we

explain how these different rates are connected, using the

small example system from figure 2.

The external metabolite, Sext, is made available at a rate of

J1(t) and is consumed by the organism at a rate of v1
. X(t).

The temporal change of Sext is therefore given by

dSext

dt
¼ J1ðtÞ � v1 � XðtÞ, ð2:14Þ

where X(t) denotes the biomass of the organism. In most FBA

formulations, Sext is also balanced by uptake and exchange

reactions, and because the biomass increases exponentially

the steady-state solution to equation (2.14) must read

dSext

dt
¼ 0 ¼ J1ð0Þ � em�t � v1 � Xð0Þ � em�t:

Normalizing this expression with respect to the total biomass

given by

XtotðtÞ ¼ Xtotð0Þ � em�t,

one obtains for the specific rate v1

dSext

dt
¼ 0 ¼ J1ð0Þ � em�t

XtotðtÞ
� v1 �

Xð0Þ � em�t
XtotðtÞ

v1 ¼ ves ,

where

ves :¼ J1ð0Þ
Xtotð0Þ

ð2:15Þ

is the specific exchange flux with the environment. ves has the unit

mmol (h . g)21 consistent with the units of the remaining rates.

For all internal metabolites, the biomass cancels out at

steady state, as shown here for metabolite M1

dM1

dt
¼ v1 � XðtÞ � v2 � XðtÞ

and
dM1

dt
¼ 0 ¼ v1 � v2:

9>>=
>>;

ð2:16Þ

Note that this is not the usual way that FBA and the role of

exchange fluxes are presented: rather, exchange fluxes ve are

often ‘just’ assigned for every external metabolite under the pre-

mise of fixed external metabolite concentrations in steady state.

Yet, strictly speaking, Sext can only remain constant under expo-

nential growth if the feeding rate increases exponentially with

biomass. It illustrates an important point often taken for

granted: in FBA, we fix some input flux(es) through capacity

constraints. In real systems, this can be achieved in different

ways. In fed-batch growth, the feeding rate of Sext is indeed

increased exponentially to keep its concentration constant

during exponential growth. In the chemostat, we use dilution

to achieve a steady state of biomass and nutrient levels; in

normal batch growth, we define a region where the inevitable

changes in external metabolites do not affect the uptake (and

production) rates. For substrates taken up, this implies satur-

ation—or nutrient excess. As we see, a clear distinction of the

units of the different fluxes will be essential to understand the

FBA approaches applied to communities.



Senv Sext

M11 M12 M1n P1ext

P2ext

P1env

P2env

J1

J2

J3

V11 · X1

M21 M22 M2mV21 · X2

v12 · X1 v1n · X1

v2m · X2
v22 · X2

Figure 3. Two organisms live in the same environment competing for a sub-
strate Sext. Xi represent their respective biomass, Ji are environment fluxes
with unit mmol h21 and vi are specific rates with unit mmol (h . g)21.
Internal metabolites are denoted by Mij.
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2.2.2. Limitations of single-organism flux balance analysis
FBA has been proven to be a useful tool in several contexts, such

as strain design [65–67], the outcome prediction of evolution

studies [68,69] and gene deletion studies [70–72] (many more

can be found in various reviews and references therein [24–

26]). However, because of its stoichiometric nature, and because

it uses optimization, FBA comes with inherent limitations. Most

prominently, one should be aware of the fact that FBA predicts

flux distributions that provide the maximal yield on the limiting

nutrient, and does not actually predict kinetic rates. If one sets

the uptake rate of a nutrient, e.g. vglucose, to a certain value

and m is maximized by finding optimal values of the remaining

vj, then the fluxes that maximize the ratio m/vglucose are found.

This expression is defined as a yield, Ybiomass/glucose, with unit

grams of biomass per mol glucose. While there are examples

where the predicted flux distributions are in good agreement

with experimental data [68,69,73], there is poor agreement

under conditions of nutrient excess that favour low-yield

strategies such as fermentation [74–76].

As mentioned earlier, owing to the assumption of time-invar-

iant extracellular conditions, classical FBA can only be applied to

chemostat cultures and cells in batches that grow exponentially,

i.e. populations that display balanced growth. External fluctu-

ations of metabolite concentrations cannot be incorporated.

Furthermore, owing to the linear nature of the system, FBA

neither allows absolute concentrations to be predicted nor incor-

porates saturation effects. In addition, regulatory effects cannot

be examined. To overcome some of the limitations, classical

FBA has been extended in recent years [77–84]. The most exciting

extensions from a community point of view are dynamic FBA

(dFBA) [85]—discussed in more detail later—and very recent

methods that couple metabolic fluxes to enzyme synthesis

costs, thus allowing growth-rate-dependent switches in meta-

bolic fluxes according to the principle of limited resource

allocation [82–84,86,87]. The latter approaches have not been

used in community modelling as far as we are aware, but

show much more realistic behaviour than classical FBA.
2.2.3. Summary of the main assumptions for classical flux
balance analysis

FBA allows steady-state flux distributions to be determined

given a genome-scale stoichiometric model, flux capacity

constraints (e.g. sugar uptake) and an objective function

(e.g. growth rate). One distinguishes two classes of relevant

metabolites for which different mass-balance constraints

apply: intermediates for which dilution by growth is not

considered and biomass components for which growth

dilution is the main sink (equations (2.7), (2.8), (2.10)).

There are three different kinds of rates: environmental

exchange fluxes with unit mmol h21, specific rates with

unit mmol (h . g)21 and a biomass-forming reaction occurring

at the specific growth rate m which has the unit h21 (figure 2).

In classical FBA, biomass does not have to be taken into

account explicitly when uptake rates are calculated (§2.1)

which is a major difference from FBA on the community

level as discussed in the following sections.
3. Steady-state community flux balance analysis
In Nature, microorganisms usually do not occur in monocul-

tures but are rather organized in communities where they
interact in various ways [88]. Until now, it has remained a

great challenge to qualify and quantify metabolic interactions

between community members and to understand how these

influence the community structure and its dynamics. For this

purpose, several approaches have been developed [14,15,17],

one of which is FBA on a community level where stoichio-

metric models of different species are connected [14,17,36,89].

Such a meta-species network allows for an analogue math-

ematical representation as described for classical FBA. The

choice of an appropriate objective function, however, is even

less obvious on the community level than it is for monocultures

as there has been a long-standing debate on which level natural

selection actually occurs [90–97].

Nevertheless, in brave attempts to use the time-invariant

constraint-based formalism for communities, several expres-

sions for an objective function have been proposed, such as

linear combinations of individual species objectives [36], a com-

munity growth rate meaning that all species grow at the same

rate [39] as well as a bilevel objective function where individual

as well as community objectives are taken into account [37]. We

now extend the mathematical formulation of classical FBA to

describe the steady-state growth of communities.

For this, a community is considered that consists of only

two members, as depicted in figure 3; a more generalized

derivation can be found in [39].

First, the steady-state concentration of the external metab-

olite Sext is considered (the same formalism applies to P1ext

and P2ext). Sext is made available by an environmental flux J1

and taken up by both organisms. These uptake rates are pro-

portional to their biomass: X1 and X2, respectively. The

differential equation for Sext therefore reads as follows:

dSext

dt
¼ J1ðtÞ � v11 � X1ðtÞ � v21 � X2ðtÞ,

where vij is the specific uptake/production rate of compound j
by species i. At steady state, the temporal change of Sext is 0 and

the organisms’ biomass increases exponentially with their

respective growth rates

XiðtÞ ¼ Xið0Þ � emi�t,

so that one obtains

dSext

dt
¼ 0 ¼ J1ðtÞ � v11 � X1ð0Þ � em1�t � v21 � X2ð0Þ � em2 �t: ð3:1Þ

The clearest solution to equation (3.1) can be derived if

both organisms grow at the same rate and J1(t) also increases

exponentially with that same rate

dSext

dt
¼ 0 ¼ J1ð0Þ � em�t � v11 � X1ð0Þ � em�t � v21 � X2ð0Þ � em�t:
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Normalizing this expression with respect to the total biomass

in the system given by

XtotðtÞ ¼
XS

i¼1

Xið0Þ � em�t ¼ em�t �
XS

i¼1

Xið0Þ ¼ Xtotð0Þ � em�t

yields

dSext

dt
¼ 0 ¼ J1ð0Þ

Xtotð0Þ
� v11 �

X1ð0Þ
Xtotð0Þ

� v21 �
X2ð0Þ
Xtotð0Þ

:

When we introduce

fi :¼ Xið0Þ
Xtotð0Þ

and

vej :¼
Jjð0Þ

Xtotð0Þ
,

for the relative biomass abundances and the specific envi-

ronmental exchange fluxes, respectively, we obtain the final

expression

ve1 ¼ v11 � f1 � v21 � f2: ð3:2Þ

Equation (3.2) shows that biomass abundances have to be

taken into account when the balances of external metabolites

are calculated. This is a major difference from classical FBA

where the relative biomass abundance is always 1 by defi-

nition (equation (2.15)). For all internal metabolites biomass

abundances do not matter as seen before (equation (2.16))

and cancel out as demonstrated for M11

dM11

dt
¼ v11 � XðtÞ � v12 � XðtÞ

and
dM11

dt
¼ 0 ¼ v11 � v12:

9>>=
>>;

ð3:3Þ

This derivation assumed equal growth rates for both organ-

isms. In many cases, this is the only sensible steady state that can

be achieved by communities. For communities in chemostats,

equal growth rates are obvious, as the dilution rate sets the

steady-state growth rate for each organism independently. In

fed-batch growth, however, one might consider organisms

with different growth rates, combined with a double-exponential

feeding regime to keep the nutrients constant, following

equation (3.1). In addition, during batch growth, in analogy

with monoculture batch FBA, there may be a window in time

where all organisms are in balanced growth, i.e. their internal

components are in steady state, even when the external concen-

trations are not. However, this is provided that there is no cross-

feeding present. If the two organisms were to have different

growth rates, the one with the highest growth rate would rapidly

outgrow the other. If this fast-growing organism is dependent on

a factor D secreted by the slow organism (as in figure 1), its

growth will soon start to become limited by the relatively slow

production of D, according to the balance

dD
dt
¼ JðtÞ � v1D � X1ðtÞ þ v2D � X2ðtÞ: ð3:4Þ

Here, the signs indicate that species 1 consumes D produced by

species 2, and J is the exchange rate of D. A small fraction of

species 2 will result in slow production of D, and, unless D is

provided from the environment, D will decrease until it affects

the specific uptake rate of species 1, i.e. v1D. At that point,

growth rate will start to decrease for species 1, and the system

will settle into a global steady state only when the growth
rates are equal. Thus, using steady-state FBA for modelling

communities is allowed even if organisms grow at different

rates, as long as within that regime the conditions allow con-

stant uptake and production rates. For all practical purposes,

that means saturation of the uptake systems. For metabolites

that are exchanged such as D, saturation is rather unlikely;

hence, these models can only represent short snapshots of the

system. Either one can resort to dFBA, which glues many

such snapshots together (as we discuss later), or one sticks to

equal growth rates, as is done in cFBA [39], as discussed in §3.1.
3.1. Community flux balance analysis: applications
and limitations

cFBA has a number of advantages. First, it provides an unam-

biguous objective function for all consortium members: the

identical growth rate. Moreover, imposing equal growth

rates ensures that the relative biomass abundances are

constant, and it was shown that these abundances affect the

optimal growth rate [39]. Thus, these models predict species

abundance ratios, something that can be readily determined

experimentally by (metagenomics) sequencing. Steady-state

cFBA is, however, mainly applicable to systems in fairly con-

stant environments such as cells grown in the chemostat or

cultures used for waste-water treatment.

It is currently unclear whether organisms in a community

are actually capable of adjusting their metabolism to operate

in an optimal manner: ideally, long-term community chemo-

stats should be studied. In yoghurt fermentations, which

are derived from serial transfer of two microorganisms

(Streptococcus thermophilus and Lactobacillus bulgaricus), we do

observe biomass abundances close to the predicted optimum

(M Hanemaaijer et al. 2016, unpublished results). In our view,

predictions made by steady-state cFBA should probably be

best seen as idealized states that represent potential final states

of evolutionary/adaptation processes. Its main applications

are the same as for classical FBA in terms of qualitative

exploration of medium compositions, metabolic engineering

strategies and—most interestingly perhaps—the prediction of

essential interactions between species given a certain medium

composition. Additionally, cFBA gives an indication of the

corresponding optimal relative biomass abundances.

Essential interactions can be identified by optimizing the

system’s community growth rate and by performing FVA

(equation (2.3)) on all the transport reactions of shared metab-

olites. If the lower and upper values of a flux have the same

sign, then it is unidirectional and can therefore be classified as

essential. This way, one can easily identify feeding mechan-

isms and also competition for resources. Please note that in

this framework no assumptions are made about the meta-

bolic interactions between species but that these are a direct

outcome of the simulations.

If a community of only two species is examined, then the

optimal biomass abundances can be obtained by systemati-

cally scanning ratios of biomass abundances and calculating

the corresponding maximal community growth rate. A plot

of the optimal community growth rate versus the biomass

ratio then identifies the optimal ratio of biomass abundances

[39]. For communities of larger size, a systematic scan is

not feasible and therefore optimization methods as gradient

descent or evolutionary algorithms can be used with the

constraint that the sum of all biomass fractions is 1.
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As for classical FBA, steady-state cFBA also comes with

certain limitations: absolute metabolite and biomass concen-

trations cannot be determined but only flux distributions

that optimize the community growth rate. It is also important

to keep in mind that the results obtained by this method

highly depend on the quality of the reconstructed models,

and especially their biomass compositions: these define the

community growth rate. In addition, the correct identification

of possible auxotrophies of individual species during the

reconstruction is crucial as these give rise to potential

interactions between organisms.
J.R.Soc.Interface
13:20160627
3.2. Other approaches to model steady-state behaviour
of microbial communities

In most studies that have been published using FBA to study

metabolism on a community level, equal growth rates are not

assumed. For example, in the first paper on community FBA

[36] a syntrophic two-species consortium was examined con-

sisting of Desulfovibrio vulgaris and Methanococcus maripaludis
and an objective function of the type

max w1 � m1 þ w2 � m2

s:t: S � v ¼ 0

and vmin � v � vmax

9>=
>;

ð3:5Þ

was used for different combinations of weights wi. Similarly,

pairwise interactions of 118 species were investigated and classi-

fied as neutral, competitive or cooperative based on a weighted

sum of biomass production rates [13]. In [98], growth rates of Lep-
tospirillum ferriphilum and Ferroplasma acidiphilum are examined

in terms of a unidirectional feeding flux from L. ferriphilum to

F. acidiphilum resulting in different specific growth rates. In

[99], pairwise interactions of 11 gut bacteria were studied by

iteratively fixing the growth rate of one organism and optimizing

the other species’ growth rate, whereby the resulting Pareto fron-

tiers revealed four different types of interactions. In the OptCom

framework, a nested objective function is used whereby a

community-level objective is optimized (e.g. maximizing the

total biomass of the community) subject to the single-species

objectives (e.g. maximizing individual biomass production)

[37]. Considering both species-level objective functions and a

community-level objective allows cellular and interspecies

fluxes to be calculated and trade-offs between species- and

community-level objectives to be analysed [37,38,100]. This

approach makes no assumption on the relation between individ-

ual growth rates that are calculated for each individual species. It

is most suitable for well-characterized communities with a

defined community objective and, for example, does not include

the analysis of communities whose members only compete for

resources. However, this approach requires the formulation of

a non-convex, bilinear optimization problem that cannot be

solved by standard linear programming solvers [37].

Under the constraint that two organisms have to be

able to produce biomass at a rate greater than a certain

threshold—which allows growth rates to differ—medium

compositions that can induce interactions between two species

were determined [55]. With this method, known interactions

between organisms could be confirmed and new ones predic-

ted, and it allows synthetic communities to be created without

modifying the organisms themselves.

These examples show that a lot of valuable information can

be gained without assuming equal growth rates, but there are
two issues regarding this kind of approach. First, as discussed

earlier, these results will describe only a snapshot of the com-

munity dynamics, because unequal growth rates will result

in rapid changes of shared external metabolites and the bio-

mass abundances of the species. This means that stable

relative biomass abundances cannot be inferred when the

species’ growth rates differ. If this is desired to compare with

experimentally determined data, then the equal growth rate

constraint needs to be taken into account.

There is a second point to consider when an approach such

as equation (3.5) is used, which occurs for communities whose

members compete for shared metabolites. If the community

species differ in their biomass composition, then a weighted

sum of biomass-forming rates will lead to a solution where

all available resources are invested in the growth of the organ-

ism with the highest biomass yield, i.e. there will be only one

biomass formation reaction that carries an actual flux, and

which one this is depends on the chosen weights wi. In other

words, all resources will be invested in the least expensive bio-

mass. Technically, this issue can be avoided by assuming equal

growth rates [39], by setting lower limits on the growth rates,

as in, for example, [55,99], or by coupling the respective

transport fluxes to growth rate, as in [101].

One might argue that this problem could be solved by

interspecies feeding mechanisms. The reasoning behind this

is that then resources cannot only be invested in one organism,

but also in the other one because they depend on each other.

While this will indeed lead to several metabolically active

networks and an exchange of metabolites, still only the

biomass-forming reaction of the organism with the highest

biomass yield will carry a non-zero flux (if both organisms com-

pete for the same resource and have different biomass yields for

this substrate). The network of the other organism will only be

used to provide the required metabolite, but resources will not

be invested in growth. This is rather artificial as these fluxes

require a catalyst—biomass. Coupling of excretion flux to

growth rate is one way this problem has been tackled [101].

Besides using explicit constraints on the growth rates,

one can also overcome this issue by merging the species’

biomass equations into one, so that all the required macro-

molecules are produced. Instead of maximizing

w1 � m1 þ w2 � m2 (in the case of a two-species community)

one defines according to equation (2.9)

b11 �Mb11 þ b12 �Mb12 þ � � � þ b1z �Mb1z þ b21 �Mb21

þ b22 �Mb22 þ � � � þ by2 �Mb2y, ð3:6Þ

as an objective function where Mb1i and Mb2k correspond to

the biomass components in organisms 1 and 2, respectively.

Such a lumped biomass reaction ensures that biomass

components of all species in the community are produced.

Merging of models into one network, however, should still

take the biomass abundances into account for the exchange

fluxes; if not it will implicitly assume a species ratio of 1 : 1.
4. Dynamic metabolism-based models of
microbial communities: dynamic community
flux balance analysis

Steady-state cFBA based on balanced growth is well suited

to make predictions about communities in fairly constant

environments, such as chemostats, regarding their metabolic
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Figure 4. dFBA allows the prediction of time courses for metabolite and biomass concentrations using the quasi-steady-state (QSS) approximation. In this figure, we
illustrate the typical results of a dFBA simulation. While a carbon source, Glc, is consumed over time, the associated biomass, X, increases. The concentration profiles
are described by a set of differential equations incorporating the growth rate m and the net uptake rate for Glc, VGlc. These rates are determined using classical FBA
whose constraints are dynamically calculated, using Michaelis – Menten kinetics.
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interactions and optimal relative biomass abundances. How-

ever, in batch cultures and many natural communities,

organisms are exposed to dynamically changing conditions

and can grow sequentially, something this framework cannot

accommodate. For such an analysis, dFBA can be used—

under simplifying conditions. dFBA was first used to describe

the diauxic growth of Escherichia coli [85] and has since

also been extended to describe community dynamics

[14,15,102–107].

dFBA models are similar to FBA models, except that the

constraints on the input fluxes are made dependent on extracellu-

lar concentrations through kinetic rate expressions. Usually

Michaelis–Menten kinetics are used, which are sometimes

extended with inhibitory terms [15],

vj ¼ vmax �
Sext,j

Kj þ Sext,j
: ð4:1Þ

When the Kj parameter is equated to the affinity of the

transporter, equation (4.1) describes purely substrate-limited

uptake, and thus assumes that the transport step is fully

controlling the downstream metabolic pathway. From meta-

bolic control analysis, we know that this is not necessary and

in fact not very likely, as control over steady-state flux tends

to be distributed [108]. On the other hand, Kj can be interpreted

as the Monod constant for growth (which tends to be lower

than the KM of the transporter [109]). In practice, Kj is often

fitted to data, and the distinction does not have an effect on

the simulations, but it is good to be aware of the underlying

assumptions. With the uptake kinetics, a system of differential

equations can be defined that describes the dynamics of exter-

nal metabolite concentrations, the consequent dynamics of

uptake rates and, via FBA, biomass formation. Thus, at each

time integration step, a linear program computes the growth

rate from the uptake kinetics, and both biomass and external

metabolites are updated according to

dX
dt
¼ mðviðSext,iÞÞ � X, ð4:2Þ

for the biomass, and for the external concentration

dSext,i

dt
¼ viðSext,iÞ � X, ð4:3Þ

where vi is the net uptake or production of an external metab-

olite and the convention in the field is to assign a negative value

for uptake fluxes.

One important assumption in dFBA is that the time con-

stants related to intracellular dynamics are much smaller
than those that describe changes of external concentrations.

This is the basis for the quasi-steady-state (QSS) approximation

inherent in the approach. The assumption that metabolism is in

QSS during the relatively slow medium transitions, invoked by

the cell’s own metabolic activities, is very reasonable and

generally accepted in the field. However, for adaptations that

require gene-regulatory processes that may act at comparable

time scales to the environmental changes, this does not

apply, and so cells need not to be in balanced growth, in the

sense that all biomass components, so also proteins, are in

steady state. As long as proteome reallocations are not expli-

citly modelled in genome-scale metabolic models—but they

will be in the future—this complication is not an issue. The

concept of dFBA is summarized in figure 4.

Extending dFBA to communities is then relatively straight-

forward: one defines input fluxes for which kinetic expressions

are required, and solves the set of differential equations, using

FBA for each organism individually. However, here we also

face a challenge in the interactions between the species, and

different solutions that researchers have suggested.

4.1. Dynamic community flux balance analysis:
applications and limitations

dFBA has been proven to be a very useful tool to analyse

metabolism on a community level [14,15,102–107,110]. It

allows communities where species grow in succession to be

modelled, which cannot be achieved by steady-state cFBA.

Multi-species dFBA was first used to describe the competition

between Rhodoferax ferrireducens and Geobacter sulfurreducens in

an anoxic subsurface environment leading to predictions about

the conditions under which one can outcompete the other

[102]. Later on, this approach was applied to a synthetic

community consisting of E. coli and Saccharomyces cerevisiae
that—in this study—exclusively consume xylose and glucose,

respectively, to engineer a co-culture system in which both

sugars are consumed simultaneously [104]. Chiu et al. [111]

combined FVA and dFBA to examine 6670 two-species com-

munities consisting of 116 species regarding metabolites that

can be produced in a community, but not by a single species

growing on the same medium. They showed that emergent

biosynthetic capacity occurs in most of the communities,

and in two phases: once the two organisms are introduced

into the same growth medium and when the medium is

nutrient-depleted at the end of a growth phase.

In these studies, the important assumption is made that

communities are spatially homogeneous. Often, however,
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natural occurring communities tend to be structured, which

can give rise to interesting dynamics [112–114]. This layer

of complexity was addressed in [110], where multi-species

community dFBA is coupled with diffusion, allowing the

analyses of spatio-temporal effects. This framework was

used to predict the species ratio to which a community of

two and three members converges, which was found to be

in agreement with experimental findings. Similar approaches

have also been developed for monocultures [115–117].

As for any application of FBA, the choice of the objective

function has certain implications. It has been debated for a

long time on which level natural selection occurs: on the

species or community level [90–97]. Without specific knowl-

edge about the examined community’s objective, it is

reasonable to assume that each member of a community

attempts to maximize its own growth rate. This is indeed

the assumption made in the dynamic multi-species metabolic

modelling (DMMM) framework [102], which was the first

that allowed dFBA to be performed on a community level.

One very interesting—and challenging—consequence of

optimizing organisms individually is that one needs to hard-

wire the interactions between the organisms, as they cannot

be predicted. The reason for this is that at each time instance

FBA will predict the currently most optimal flux distribution

for growth. It will not predict the suboptimal excretion of a

metabolite (e.g. D), even though, in the long run, providing

D to another organism would provide a growth benefit later

on. The models cannot predict the optimal strategy over a

longer period of time, only at each time instance. If another

organism is auxotrophic for this compound D and it is not pro-

vided in the medium, the growth dynamics of this organism

cannot be described without explicitly setting the model

up for this purpose. In contrast, in steady-state cFBA, this

interaction would show up without explicitly enforcing it.

The d-OptCom framework [107] tries to capture this kind of

behaviour by using not only fitness functions of individual

species, but also a community-level objective. Using this, the

authors claimed to be, indeed, able to describe interactions

that could not be modelled using DMMM [107]. Obviously,

this approach assumes that a community-level objective func-

tion exists, which does not necessarily have to be the case.

Moreover, owing to the nonlinear nature of this optimization

problem, it is unclear whether this approach will scale—from

a computational point of view—when larger communities

are examined.

Scaling up to more complex communities is, in fact, a general

problem also for dFBA. The extension to larger naturally occur-

ring communities is non-trivial: sequencing and reconstructing

metabolic models—including the determination of the respective

biomass compositions—for a representative amount of species is,

as for all FBA approaches, very time-consuming. It is however

important to have good reconstructions as they determine the

inference of the interactions between microorganisms. Moreover,

as all the interactions ultimately require some kinetic description

of the input fluxes, with increasing size of the community, also

the number of parameters required to model exchange rates

will increase considerably, making it computationally harder to

integrate the system and fit the parameters given experimental

data. Not surprisingly therefore, so far, dynamic cFBA has

mainly been applied to small well-characterized communities

whose members have been sequenced (i.e. genome-scale

models exist) and where metabolic interactions are known. In

these cases, modelling the community with dFBA provides flux
distributions within and between species, and can provide

insight into the strength of metabolic interactions that cannot be

measured directly.
5. Summary and outlook
In this paper, we illustrated and discussed how steady-state

cFBA can be derived from classical FBAwithout any additional

assumptions. We made a clear distinction between different

types of fluxes—specific internal fluxes, exchange fluxes and

fluxes towards biomass—as they have different units that are

relevant in a community setting. We concluded that stable bio-

mass abundances in communities can only be modelled if

(i) the species’ relative biomass abundances are explicitly

considered and (ii) all organisms grow with the same

growth; this ‘community growth rate’ can then serve as the

objective function.

cFBA allows optimal biomass abundances and the associated

community growth rate at a steadystate of balanced growth to be

calculated. Furthermore, this approach can be used to infer

essential interactions between species in a certain environment

without making any assumption about how and whether species

interact. However, the cases in which community members

all grow at the same rate may be rather limited because

that can only be achieved in fairly stable environments. In

natural occurring communities, however, dynamically

changing environmental conditions are prevalent which cannot

be incorporated into cFBA. Here, dcFBA can be used. This

approach is, however, limited in its predictive power of unknown

interactions and usually requires that the entire system structure

is defined beforehand. This is, in particular, true for mutual inter-

actions based on suboptimal growth strategies, i.e. if the excretion

of a by-product comes at a growth cost but would benefit an

organism in the long run, as it would allow growth of another

organism that conversely provides growth-promoting metab-

olites. While dcFBA is a very powerful tool to describe small

synthetic well-characterized communities, its extension to

larger communities is not straightforward, owing to the

number of parameters required to model transport rate dynamics

and the associated numerical instability. One way to keep the

number of parameters in a reasonable range is to use explicit

exchange kinetics only for metabolites that are essential for the

community to grow optimally. This information could be

revealed by performing FVA on the solution computed

by steady-state cFBA. This combination of cFBA and dcFBA

therefore seems promising.

We still face many challenges in modelling metabolism in

communities that go significantly beyond insufficient exper-

imental data or reconstructed genomes. We require advances

in how to define the objective function of communities, how

to deal with dynamics and subsequent (sub)optimal dynamic

strategies within the constraint-based modelling format,

and how to incorporate the recent advances made in modelling

monocultures [82–84]. It seems clear however that better use of

metagenomics data towards understanding ecosystem func-

tioning will require models that incorporate such genomics

data and ways to make these models useful.
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