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Background: Salvianolic acid A (Sal A), a natural polyphenolic compound extracted from
Radix Salvia miltiorrhiza (Danshen), exhibits exceptional pharmacological activities against
cardiovascular diseases. While a few studies have reported anti-obesity properties of Sal
A, the underlying mechanisms are largely unknown. Given the prevalence of obesity and
promising potential of browning of white adipose tissue to combat obesity, recent research
has focused on herbal ingredients that may promote browning and increase energy
expenditure.

Purpose: The present study was designed to investigate the protective antiobesity
mechanisms of Sal A, in part through white adipose browning.

Methods: Both high-fat diet (HFD)-induced obese (DIO) male mice model and fully
differentiated C3H10T1/2 adipocytes from mouse embryo fibroblasts were employed
in this study. Sal A (20 and 40mg/kg) was administrated to DIO mice by intraperitoneal
injection for 13-weeks. Molecular mechanisms mediating effects of Sal A were evaluated.

Resluts: Sal A treatment significantly attenuated HFD-induced weight gain and lipid
accumulation in epididymal fat pad. Uncoupling protein 1 (UCP-1), a specialized
thermogenic protein and marker for white adipocyte browning, was significantly
induced by Sal A treatment in both white adipose tissues and cultured adipocytes.
Further mechanistic investigations revealed that Sal A robustly reversed HFD-
decreased AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1)
expression in mice. Genetically silencing either AMPK or SIRT1 using siRNA abolished
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UCP-1 upregulation by Sal A. AMPK silencing significantly blocked Sal A-increased SIRT1
expression, while SIRT1 silencing did not affect Sal A-upregulated phosphorylated-AMPK.
These findings indicate that AMPK was involved in Sal A-increased SIRT1.

Conclusion: Sal A increases white adipose tissue browning in HFD-fed male mice and in
cultured adipocytes. Thus, Sal is a potential natural therapeutic compound for treating
and/or preventing obesity.

Keywords: salvianolic acid A, AMPK, SIRT1, adipocyte browning, obesity

INTRODUCTION

Obesity is a worldwide public health problem. The chronic energy
excess can lead to obesity and further metabolic dysfunctions
(Chaput, 2014; Gonzalez-Muniesa et al., 2017). Obesity is
characterized by expansion of white adipose tissue and
reduced brown adipose tissue activity (Chait and den Hartigh,
2020). While it is difficult in humans to increase brown adipose
tissue mass, in recent years, browning of white adipose tissue was
identified as a promising tool to reduce obesity (Carpentier et al.,
2018). Brown fat tissue dissipates surplus calorie intake into heat
energy via a process known as non-shivering thermogenesis
(Harms and Seale, 2013; Hanssen et al., 2016). Adaptative
thermogenesis occurs mostly in brown fat (Ahmadian et al.,
2018), which contains specialized mitochondria-rich brown
adipocytes whose thermogenic functionality is conferred by
the uncoupling protein 1 (UCP-1) (Pisani et al., 2018; Lettieri-
Barbato, 2019). Although brown and white adipocytes originate
from different cell lineages and each lineage has a different
progenitor, they are proposed to be readily interconvertible to
each other (Rosenwald et al., 2013).

Browning or beiging refers to expression of UCP-1 in
multilocular cells with thermogenic capability within white
adipose tissue. This occurs in presence of some external
stimuli, which convert white adipocytes into beige or brite
(brown in white) adipocytes (Lim et al., 2012). Ectopic
expression of hallmark proteins for brown adipocytes such as
UCP-1 in white adipocytes induces acquisition of brown adipose
tissue (BAT) features (Tiraby et al., 2003). Cold exposure is a well-
established effective way to stimulate adipose tissue
thermogenesis. Several pathways have been identified to
contribute to cold exposure-induced UCP-1 expression and
subsequent WAT browning (Liu et al., 2019), among which,
AMP-activated protein kinase (AMPK) (Lee et al., 2020), sirtuin 1
(SIRT1) (Liao et al., 2018), and protein kinase A (PKA) (Cong
et al., 2018) stimulate, while p38 mitogen-activated protein kinase
(MAPK) inhibits, white adipose tissue browning (Wang et al.,
2019). Obesity adversely impacts these signaling pathways,
contributing to defective WAT browning in HFD-induced
obesity (Zhang et al., 2019).

Searching for safe small molecular compounds that can
activate WAT browning is believed to be an effective strategy
to improve obesity. A number of dietary compounds and medical
herbs have been proposed as tools for increasing energy
expenditure and decreasing fat accumulation in mammals
(Azhar et al., 2016; Silvester et al., 2019). Danshen, a

traditional Chinese medicinal herb, is the dried root and
rhizome of Radix Salvia miltiorrhiza, and has been widely
used for the prevention and treatment of cardiovascular
diseases (Cheng, 2007). Salvianolic acid A (Sal A) is one of the
main water-soluble phenolic carboxylic acid derivatives in
Dansen (Fan et al., 2010). Several studies have reported that
Sal A possesses a variety of pharmacological properties, including
anti-oxidant, anti-inflammatory, anti-fibrotic and anti-
carcinogenic activities (Li et al., 2018; Zhang H. F. et al., 2018;
Qin et al., 2019). Previous studies showed that salvianolic acid A
intervention effectively reversed obesity induced by HFD (Ding
et al., 2016). However, the underlying mechanisms are not fully
understood.

In this study, we confirmed that Sal A intervention reversed HFD-
induced obesity.We also provided strong evidence that Sal A induced
browning in both WAT of HFD-fed mice and in differentiated
C3H10T1/2 adipocytes. We demonstrate, for the first time that
activation of AMPK-SIRT1 pathway contributed to the browning
process via UCP-1 induction. Thus, our study provides new
mechanisms by which Sal A exerts antiobesity effects.

MATERIALS AND METHODS

Animals
All experiments described in this study were performed in accordance
with the guidelines for animal experiments released by the National
Institute of Animal Health. This study is approved by the Animal
Ethic Committee of Zhejiang Chinese Medical University. 48 male
C57BL/6 mice (8 weeks) had free access to food and water. Mice were
housed in a temperature-controlled environment (23 ± 2°C) with a
12 h light/dark cycle. After adapting to the feeding regimen,mice were
randomly divided into four groups (n � 12), namely, the normal diet
(ND) group, high-fat diet (HFD) group (60% fat, D12492, Research
Diets, New Brunswick, NJ), HFD with low-dose Sal A intraperitoneal
injection (HFD-LS, 20mg/kg) group, and HFD with high-dose Sal A
intraperitoneal injection (HFD-HS, 40mg/kg) group. Sal A was
obtained from Chengdu mansite bio-technology solarbio Co., Ltd.
(Sichuan, China). After one-week environmental adaption, mice were
fed with normal diet or HFD with or without Sal A intervention for
another 13-weeks. Sal A was dissolved in distilled water and
administered every other day. Body weight and food intake were
measured once per week. At the end of the experiment, all mice were
anesthetized with sodium pentobarbital (30mg/kg body weight) after
overnight fasting and sacrificed. Fat tissues were weighed and
harvested for further analysis.
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Cell Culture
Mouse embryo fibroblast C3H10T1/2 cells were obtained from
American Type Culture Collection (Manassas, VA) and grown in
Dulbecco’s modified Eagle’s medium (DMEM, Gino Biomedical
Technology Co. LTD., Hangzhou, China) containing 5% fetal
bovine serum (FBS, Thermo Fisher Inc., VA), 1.0 μmol/L
dexamethasone (Sigma-Aldrich, St. Louis, MO), 10 mg/L
insulin (Sigma-Aldrich, St. Louis, MO), and 1.0 μmol/L
rosiglitazone (Sigma-Aldrich, St. Louis, MO) for 3 days. Cells
were then transferred to DMEM with 5% FBS, 10 mg/L insulin,
and 1.0 μmol/L rosiglitazone until 80% of adipocytes
differentiated. Cultured medium was re-fed every 2 days.
Maturation of adipocytes was confirmed by Oil Red O
(Yuanye Biological Technology Co., LTD., Shanghai, China)
staining for lipid droplets.

Histology
The epididymal fat samples were cut into sections (10 μm) using a
Leica cryostat and were then stained using hematoxylin and eosin
(H&E) to visualize the size of adipocytes in epididymal white
adipose tissue (eWAT) using a microscope (OLYMPUS BX51,
Japan). The number of cells within four randomly chosen areas
(100 × 100 μm) was counted, and the mean value was calculated.

Ribonucleic Acid Interference
Cultured cells were transfected with mouse siRNA for SIRT1 or
AMPK (Santa Cruz, CA) using Lipofectamine 2000 according to the
manufacturer’s instructions. In the control group, cells were
transfected with scrambled siRNA (Santa Cruz, CA). Gene
silencing efficiency was verified by detecting protein content with
immunoblotting analysis after transient transfection with siRNA.

Quantitative-Real-Time Polymerase Chain
Reaction
Total RNAwas isolated fromWAT and cultured adipocytes using
RNAiso Plus (Takara, Dalian, China) according to the
manufacturer’s instructions, and cDNA was synthesized from
RNA using the PrimeScript™ RT Master Mix (Takara, Dalian,
China). Quantitative real-time PCR was performed to analyze
gene expression using the SYBR Premix ExTap II (Takara, Dalian,
China) and the LightCycler 480 System (Roche, Germany). The
mRNA levels were normalized to 18s. Primers for UCP-1, PGC-
1α, Prdm16, Cidea, Fgf21, AMPK, and 18s were listed in
Supplementary Table S1.

Western Blot Analysis
Western-blot was performed as previously described (Dou et al., 2018)
and the following antibodies were used: anti-phospho-PKA, anti-
PKA, anti-phospho-p38, anti-p38, anti-phospho-AMPK, anti-
AMPK, anti-phospho-ACC, anti-ACC, anti-SIRT1, anti-UCP-1
and anti-GAPDH (Cell Signaling Technology, Danvers, MA).

Statistical Analysis
All data are presented as the means ± SD. The statistical analyses
were performed using one-way analysis of variance (ANOVA) by
SPSS 22.0 software (SPSS Inc., Chicago, IL), followed by the least

significant difference (LSD) test for multiple comparisons. p <
0.05 was considered statistically significant.

RESULTS

Sal a Upregulates Uncoupling Protein 1
Expression in Fully Differentiated C3H10T1/
2 Adipocytes
UCP-1 induction is the predominant feature of white adipocyte
browning. The effects of Sal A on UCP-1 expression in adipocytes
were investigated by treating fully differentiated C3H10T1/2
adipocytes to exogenous Sal A. Expressions of UCP-1 at both
mRNA and protein levels were determined by real time-PCR and
Western blotting, respectively. A dose-dependent effect of Sal A on
UCP-1 expressionwas detectedwhen adipocytes were treatedwith Sal
A at 0, 20, 40, and 80 μM, respectively, for 4 h. Both mRNA and
protein of UCP-1 were upregulated by Sal A in a dose-dependent
manner (Figures 1A,B). Time-course effects of Sal A on UCP-1
expressionwere subsequently examined using 80 μMexogenous Sal A
for 0, 2, 4, and 8 h. As shown in Figures 1A,C,D significant increase of
UCP-1 expression at both mRNA and protein levels could be
observed at as early as 2 h time point and peaked at 4 h time
point. The UCP-1 expression returned to the basal levels at 8 h point.

AMP-Activated Protein Kinase Activation
Contributes to Sal A-Induced Uncoupling
Protein 1 Upregulation
To delineate the mechanism(s) by which Sal A upregulated UCP-1
expression, we first examined the effects of exogenous Sal A exposure
on several signaling pathways/enzymes previously being reported to
be involved in the regulation of UCP-1 expression, including PKA,
p38, andAMPK.As shown inFigure 2A, a dose-dependent activation
of Sal A on all these enzymes was observed after a 4 h Sal A treatment.
Subsequent investigations using specific inhibitors, H89 for PKA
(20 μM), SB203580 for p38 (10 μM), excluded the implication of
PKA and p38 in the observed UCP-1 upregulation in response to Sal
A. However, inhibition of AMPK, via either pharmacological
(compound C, 1 μM) or genetic (siRNA transfection) approach,
blunted Sal A-induced UCP-1 upregulation (Figures 2B,C),
suggesting that AMPK activation contributes to Sal A-evoked
white adipocyte browning’.

Sirtuin 1 Activation Contributes to Sal
A-Induced AMP-Activated Protein Kinase
Activation and Uncoupling Protein 1
Upregulation
BothAMPK and SIRT1 activation improved thermogenic program in
adipocytes and a mutual regulatory relationship exists between these
two enzymes (He et al., 2017; Inagaki et al., 2017). In an attempt to
understand whether Sal A also activates SIRT1 and, if so, whether
SIRT1 activationmediates Sal A-inducedAMPK activation andUCP-
1 induction. Time-course changes of SIRT1 activation status were
determined by treating fully differentiated C3H10T1/2 adipocytes
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with 80mM Sal A for 0, 2, 4, 8 h. As shown in Figure 3A, SIRT1
protein abundance was elevated in response to Sal A exposure and
peaked at 4 h time point. To determine if SIRT1 activation is required
for SalA-inducedUCP-1 upregulation, we transfected adipocyteswith
SIRT1 siRNA, followed by exogenous Sal A exposure (80 μM) for 4 h.
Importantly, SIRT1 siRNA resulted in an approximate 65% reduction
of Sal A-upregulated UCP-1 protein expression (Figure 3B). To
further determine the sequence of cellular and molecular signaling
events, differentiated C3H10T1/2 adipocytes were transfected with
siRNA for either SIRT1 or AMPK, respectively, before been treated
with Sal A (80 μM) for 4 h. Whereas AMPK silencing attenuated Sal
A-induced SIRT1 upregulation, SIRT1 silencing did not affect AMPK
activation by Sal A exposure (Figure 3C), implicating that SIRT1 is a
downstream event of AMPK activation in response to Sal A.

Sal a Supplementation Improves Obesity in
High-Fat Diet Fed Mice
To investigate the in vivo relevance of Sal A supplementation as a
potential anti-obesity treatment, we fed two doses of Sal A (low
dose: 20 mg/kg; high dose: 40 mg/kg) to male C57BL/6 mice (8-
week old) on a HFD (60% energy as fat) for 13 weeks. Sal A

supplementation, at both doses, ameliorated HFD-induced body
weight gain (Figure 4A), which was associated with significantly
lowered adiposity (Figures 4B,C), eWAT adipocyte hypotrophy
(Figure 4D), and hyperplasia (Figure 4E) in Sal A-treated mice
compared to HFD-fed mice. We did not observe any statistical
differences between the two doses of Sal A for the above markers.
Also, there was no difference in food intake between the HFD and
Sal A-treated groups (Figure 4F).

Sal a Supplementation Improves
AMP-Activated Protein Kinase-Sirtuin 1
Pathway Activation and Prevents
Uncoupling Protein 1 Downregulation in
Epididymal White Adipose Tissue of
High-Fat Diet-Fed Mice
The effect of Sal A supplementation on AMPK-SIRT1 pathway
activation as well as UCP-1 expression in eWAT from different
groups were subsequently measured. HFD feeding resulted in
AMPK inhibition in eWAT (Figure 5A). However, when
compared with the HFD group, the p-AMPK/AMPK ratio was

FIGURE 1 | Sal A treatment induced UCP-1 expression in adipocytes. (A,B)Differentiated C3H10T1/2 adipocytes were treated with Sal A (0, 20, 40, and 80 μM) for
4 h, intracellular UCP-1 content was determined by RT-PCR andWestern blot, respectively. (C,D) Time-course changes of intracellular mRNA and protein levels of UCP-
1 were determined on Sal A (80 μM) treatment with different duration (0, 2, 4, and 8 h). All values are denoted as means ± SD from three independent batches of cells.
#p < 0.05 vs. the UT. All groups contain two or three samples (n � 2 or n � 3).
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increased by approximately 5.8- and 8.7-fold in the HFD-LS and
HFD-HS groups, respectively (Figure 5A). HFD feeding
decreased Sirt1 expression in eWAT, which was rescued by Sal
A supplementation (Figure 5A). We also analyzed the mRNA
expression of thermogenic genes, including Cidea, Fgf21, and
AMPK in eWAT. Our data showed that Sal A intervention
significantly reversed HFD-caused reduction of these genes
(Supplementary Figure S1A). Moreover, HFD led to a 96%
reduction of UCP-1 mRNA when compared with control mice
(Figure 5B). Both doses of Sal A supplementation rescued UCP-1
mRNA reduction in eWAT of HFD-fed mice (Figure 5B). The

protein expression of UCP-1 in both subcutaneous (inguinal) and
brown adipose tissue were also detected in our study. Sal A
intervention did not improve HFD-reduced UCP-1 in
subcutaneous (inguinal) adipose tissue (Supplementary Figure
S1B). In brown adipose tissue, there was no significant difference
in UCP-1 expression among the groups (Supplementary Figure
S1C). To strengthen our conclusion, we measured gene
expression of PGC-1α and Prdm16, two critical genes
controlling mitochondrial biogenesis and adipose tissue
browning, using adipose tissues obtained previously. As shown
in Figure 5B, both genes show similar changes as UCP-1 does.

FIGURE 2 | AMPK activation contributes to Sal A-induced UCP-1 upregulation. (A) Differentiated C3H10T1/2 adipocytes were treated with Sal A (0, 20, 40, and
80 μM) for 4 h, intracellular p-PKA, PKA, p-p38, p38, p-AMPK, and AMPK contents were determined byWestern blot. (B) Fully-differentiated C3H10T1/2 cells were pre-
treated with PKA inhibitor (H89, 20 μM), p38 inhibitor (SB203580, 10 μM), and AMPK inhibitor (compound C, 1 μM), respectively, for 2 h before incubated with Sal A
(80 μM) for 4 h. Intracellular UCP-1mRNA level wasmeasured by RT-PCR. (C) Fully-differentiated C3H10T1/2 adipocytes were transfected with siRNAs for AMPK.
After silencing AMPK by siRNA, cells were exposed to 80 μMSal A for 4 h. The protein levels of UCP1, AMPK, p-ACC and ACCwere detected byWestern blot. All values
are denoted as means ± SD from three independent batches of cells. #p < 0.05 vs. the UT or Mock; *p < 0.05 vs. the Sal A treatment group. All groups contain two or
three samples (n � 2 or n � 3).
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The protein expression of UCP-1 in eWAT of HFD-fed mice was
notably lower than that in the ND-fed mice, which were reversed
by Sal A supplementation at both doses (Figure 5C).

DISCUSSION

The present study documents for the first time that Sal A, a
natural polyphenolic compound extracted from Radix Salvia
miltiorrhiza (Danshen), protects against obesity in a long-term
high-fat diet (HFD) feeding mouse model through activating
white adipose tissue (WAT) browning process. Our mechanistic
investigations further reveal that Sal A induces WAT browning
via eliciting the AMPK-SIRT1 pathway activation in adipocytes.

Obesity and related comorbidities are major health concerns.
Individuals with obesity have a substantially higher risk of
developing many diseases, such as type 2 diabetes mellitus,
hyperlipidemia, and cardiovascular diseases (Rangel-Huerta
et al., 2019). Thus, the search for compounds that have
potential to prevent or even reverse obesity development has

been intensified. Sal A is an important bioactive water-soluble
ingredient in Danshen, which is widely used in functional foods
and drugs in China for the treatment and prevention of
cardiovascular diseases (Wang et al., 2017). The positive
association between obesity and cardiometabolic health has
been well-established (Kachur et al., 2017), however, the
potential anti-obesogenic role of Sal A has received little
investigative attention. Obesity occurs as a combined result of
WAT expansion and compromised adipose tissue (white and
beige adipose) browning (references), which otherwise can
protect against obesity via increasing energy expenditure by
generating heat (Rui, 2017). To the best of our knowledge, the
current study is the first research to investigate the potential anti-
obesity function of Sal A and elucidate underlying mechanisms.

Using long-term HFD feeding mouse model of obesity in male
C57BL/6 mice and clinically relevant doses of Sal A (Salvianolic
acid A) (Mu et al., 2020), our results showed that Sal A treatment
markedly reversed HFD-induced body weight gain, which was
associated with a significantly reduced HFD-induced the mass of
eWAT gain. The morphological observations showed that the

FIGURE 3 | SIRT1 increment underlies Sal A-induced AMPK activation and UCP-1 upregulation. (A) Differentiated C3H10T1/2 adipocytes were treated with Sal A
(80 μM) for 0, 2, 4 and 8 h. Intracellular SIRT1 contents were determined by Western blot. (B) After silencing SIRT1 by siRNA, cells were exposed to 80 μMSal A for 4 h.
The protein levels of UCP-1 and SIRT1 were detected by Western blot. (C) C3H10T1/2 adipocytes were transfected with siRNA for SIRT1 or AMPK, respectively. Then
cells were treated with Sal A (80 μM) for 4 h. Total cellular lysates were collected for the immunoblotting assay for SIRT1, p-AMPK and AMPK. All values are denoted
as means ± SD from three independent batches of cells. #p < 0.05 vs. the UT or Mock; *p < 0.05 vs. the Sal A treatment group. All groups contain two or three samples
(n � 2 or n � 3).
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FIGURE 4 | Sal A lowered body weight gain and decreased the eWAT mass and the size of adipocytes within eWAT. (A) Change in body weight gain. and (B) the
eWATmass. (C)Morphological photographs of epididymal fat. (D)H&E staining of eWAT to observe the size of adipocytes, scale bar � 100 μm; and (E) the cell count of
per unit area in H&E-stained sections. (F) The daily food intake. # reflects comparing with normal diet (ND) group; * reflects comparing with high-fat diet (HFD) group. All
groups contain 12 animals (n � 12).
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HFD-fed mice with Sal A administration had smaller-sized
adipocytes within eWAT when compared to these in HFD-fed
mice. The browning of WAT provides a new perspective in the
identification of therapeutic strategies for weight loss. Several
studies have focused on the relationship between the anti-obesity
effects of plant extracts and WAT browning (Wang et al., 2015;
Lone et al., 2016). UCP-1, a thermogenic protein, is abundantly
expressed in BAT. The increase of UCP1 expression in WAT
induces the formation of beige adipocytes (Roh et al., 2018). In
this study, we observed that Sal A administration significantly
increased mRNA and protein abundance of UCP-1 in both
eWAT of mice fed with HFD and cultured adipocytes,
indicative of enhanced WAT browning. Due to the lack of
metabolic monitoring equipment, we were not able to measure
energy metabolism in these mice, which is a limitation of
our study.

The underlying mechanism(s) by which Sal A stimulated
UCP-1 upregulation remains unknown. The cAMP/PKA
pathway plays a central role in inducing UCP-1 expression
and adipose tissue browning (Meng et al., 2017). It has been
reported that Sal A activated PKA in human umbilical artery
smooth muscle cells (Sun et al., 2016). These reports spurred us to
explore whether PKA activation is attributable to Sal A-triggered
UCP-1 upregulation in adipocytes. In line with our conjecture, Sal
A treatment enhanced PKA phosphorylation in cultured
adipocytes, however, H89, a special chemical inhibitor of PKA,
failed to block Sal A-stimulated UCP-1 expression, suggesting
that PKA is not involved in Sal A-promoted WAT browning.

Given that genetic ablation of p38 in adipose tissues facilitated
WAT browning upon cold stress and prevented diet-induced
obesity (Zhang S. et al., 2018) and Sal A inhibited p38 MAPK
signal pathway in variety of cells (Zhang et al., 2017; Zhang H. F.
et al., 2018; Feng et al., 2020), we subsequently analyzed the
possibility of p38-mediated UCP-1 induction in Sal A-treated
adipocytes. Unexpectedly, Sal A exposure indeed enhanced p38
activation in cultured adipocytes. Our observation is consistent
with a previous report which showed Sal A supplementation
stimulated p38 phosphorylation in the brain tissue of
subarachnoid hemorrhaged rat (Gu et al., 2017), suggesting
that Sal A regulates p38 signaling pathway in a cell type- and/
or tissue-specific manner. Furthermore, our data that SB203580, a
specific p38 inhibitor, failed to block Sal A-stimulated
transcriptional activation of UCP-1, excluded the involvement
of p38 in Sal A-promoted WAT browning.

AMPK is a well-recognized energy sensor, which plays an
important role in the regulation of cellular energy homeostasis
(Zhang et al., 2009). AMPK activation promoted thermogenesis
in both brown and WAT (Zhang et al., 2014; Wu et al., 2018),
whereas AMPK ablation resulted in cold intolerance and a
reduction in non-shivering thermogenesis in mouse adipocytes
(Desjardins and Steinberg, 2018). To this end, we subsequently
analyzed the involvement of AMPK in Sal A-provoked UCP-1
up-regulation. Our results clearly indicated that Sal A
intervention markedly enhanced AMPK phosphorylation in
both WAT of HFD-fed mice and fully-differentiated
C3H10T1/2 adipocytes. In support of our finding, several lines

FIGURE 5 | Sal A supplementation improves AMPK-SIRT1 pathway activation and prevents UCP-1 downregulation in eWAT of HFD-fed mice. (A) Results of the
Western blot analysis of AMPK signaling in eWAT, including p-AMPK, and AMPK, SIRT1. (B) The gene expressions of UCP1, PGC-1α, and Prdm16, related to WAT
browning. (C) The protein levels of UCP1 and quantification of the bands. The same internal reference (GAPHD) was used for p-AMPK, AMPK, SIRT1, and UCP1
quantitative analysis, since the results come from the same experiment based on the same batch of loading samples. In order to satisfy the logical rationality of the
argument, we put the results in panel (A,C), respectively. #p < 0.05 vs. the ND group; *p < 0.05 vs. the HFD group. All groups contain 12 animals (n � 12).
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of evidence reported that Sal A supplementation stimulated
AMPK in hepatic and skeletal muscle cells and sciatic nerve
(Yu et al., 2012; Qiang et al., 2015). Importantly, compound C, a
commonly used chemical inhibitor of AMPK, effectively
suppressed Sal A-stimulated UCP-1 increase, indicating that
AMPK is required for the induction of browning in WAT by
Sal A.

SIRT1 is an intranuclearly located NAD+-dependent deacetylase
and plays an important role in the regulation of WAT browning
(Qiang et al., 2012). UCP-1 in WAT was dramatically decreased in
SIRT1−/− mice, while increased in SIRT1 overexpressed mice in
response to cold (Qiang et al., 2012). Several studies documented
that Sal A supplementation up-regulated SIRT1 in the liver of
experimental animals (Xu et al., 2013; Zhu et al., 2018). Based on
these observations, we examined whether SIRT1 could potentially
contributes to Sal A-promoted UCP-1 upregulation in WAT in mice
and our data demonstrated that SIRT1 expression was enhanced by
Sal A in both WAT of HFD-fed mice and in fully-differentiated
C3H10T1/2 adipocytes, and was involved in Sal A-induced UCP-1.
Previous studies have reported the mutual regulatory role between
AMPK and SIRT1 in different experimental settings (He et al., 2017;
Thirupathi and de Souza, 2017). In this study, we investigated the
cross-talk betweenAMPKand SIRT1under SalA treatment.Our data
showed that AMPK silencing significantly blocked Sal A-increased
SIRT1 expression, while SIRT1 silencing did not affect Sal
A-upregulated phosphorylated-AMPK, indicating AMPK was
involved in Sal A-increased SIRT1. A well-established mechanism
accounting for AMPK-induced SIRT1 activation is the upregulation
ofNampt, a rate-limiting enzyme for intracellularNAD+biosynthesis
via the salvage pathway, leading to cellular NAD + elevation. It has
also been reported that NAD + -enhancing agents including
nicotinamide mononucleotide (NMN) not only activate SIRT1
activity but also upregulate its expression, implying that AMPK
activation, via upregulating Nampt expression and resultant
cellular NAD + elevation, is capable of increasing Sirt1 expression
(Song et al., 2019).

The potential mechanisms linking Sal A-regulated AMPK
activation are still unclear. Commonly, AMPK is stimulated by
two classical signals. One is Ca2+-dependent pathway, which is
mediated by calcium/calmodulin-dependent protein kinase
kinase β (CaMKKβ), and the other one is AMP-dependent
pathway, which is regulated by liver kinase B1 (LKB1) (Qiang
et al., 2015; Lin and Hardie, 2018). Although how Sal A-regulated
AMPK activation in adipocytes is still unclear, recent evidence
confirmed that CaMKKβ inhibitor could significantly block Sal
A-activated AMPK in HepG2 cells implying that a Ca2+-
dependent pathway may contribute to Sal A-induced AMPK
activation (Qiang et al., 2015).

In conclusion, the present study provides evidence that Sal A
administration is protective against HFD-induced obesity in mice. Sal
A administration promotes WAT browning in mice fed with HFD,
evidenced by an increased UCP-1 expression in WAT of long-term
HFD-fed mice with Sal A administration. Mechanistically, we
uncovered that the AMPK-SIRT1 pathway activation contributes
to Sal A-induced UCP-1 upregulation in adipocytes. Our results
suggest that Sal A represent a promising therapeutic choice for the

prevention and/or treatment of obesity, as well as its metabolic
complications. The future clinical studies are warranted.
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