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Abstract

Background and objective: Intervertebral disc degeneration (IDD) is a complex multifactorial and irreversible
pathological process. In IDD, multiple competing endogenous RNAs (ceRNA, including mRNA, lncRNA, and
pseudogenes) can compete to bind with miRNAs. However, the potential metabolic signatures in nucleus pulposus
(NP) cells remain poorly understood. This study investigated key metabolic genes and the ceRNA regulatory
mechanisms in the pathogenesis of IDD based on microarray datasets.

Methods: We retrieved and downloaded four independent IDD microarray datasets from the Gene Expression
Omnibus. Combining the predicted interactions from online databases (miRcode, miRDB, miRTarBase, and
TargetScan), differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were
identified. A ceRNA network was constructed and annotated using GO and KEGG pathway enrichment analyses.
Moreover, we searched the online metabolic gene set and used support vector machine (SVM) to find the critical
metabolic DEmRNA(s) and other DERNAs. Differential gene expression was validated with a merged dataset.

Results: A total of 45 DEmRNAs, 36 DElncRNAs, and only one DEmiRNA (miR-338-3p) were identified in the IDD
microarray datasets. GO and KEGG pathway enrichment analyses revealed that the DEmRNAs were predominantly
enriched in the PI3K-Akt signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, apoptosis, and
cellular response to oxidative stress. Based on SVM screening, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase
(PFK/FBPase) 2 is the critical metabolic gene with lower expression in IDD, and AC063977.6 is the key lncRNA with
lower expression in IDD. The ceRNA hypothesis suggests that AC063977.6, miR-338-3p (high expression), and
PFKFB2 are dysregulated as an axis in IDD.

Conclusions: The results suggest that lncRNA AC063977.6 correlate with PFKFB2, the vital metabolic signature gene,
via targeting miR-338-3p during IDD pathogenesis. The current study may shed light on unraveling the
pathogenesis of IDD.
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Background
Intervertebral disc degeneration (IDD), a complex multi-
factorial and age-dependent condition, is a critical con-
tributor to low-back pain (LBP) [1]. The increasing
incidence of IDD not only affects the life quality of pa-
tients because of chronic pain and disability, but also
causes a severe financial burden to the health care sys-
tem [2]. Moreover, current prevention, diagnosis, and
treatment modalities for IDD are hampered due to its
ambiguous pathogenic mechanisms. Previous studies
have shown that IDD is characterized by the abnormal
proliferation of nucleus pulposus (NP) cells, degradation
of proteoglycans and collagen in the extracellular matrix
(ECM), imbalance of homeostasis, and accelerated tran-
sition of NP cells from a healthy state to a catabolic and
degenerative state [3]. It is known that the cellular func-
tion of all life forms relies closely on metabolism [4, 5].
Metabolic genes are believed to play essential roles in
various cellular functions and many diseases such as
hepatic fibrosis, central nervous system diseases, and
hematologic malignancies [6–8]. However, investigations
concerning the role of metabolic networks in IDD re-
main sparse. Hence, in-depth comprehension of meta-
bolic gene expression and the regulatory mechanisms of
noncoding RNA may provide novel insights into the on-
set, development, and diagnosis of IDD.
Long noncoding RNAs (lncRNAs), a group of RNA

molecules consisting of more than 200 nucleotides with
no or feeble protein-coding ability [3], have been of great
interest because of their ability to regulate gene expres-
sion in various pathological and biological processes,
such as cell proliferation and apoptosis [9, 10]. Micro-
RNAs (miRNAs), consisting of approximately 18–22 nu-
cleotides without coding function, mediate post-
transcriptional regulation of target messenger RNA
(mRNA) [11]. Ample studies indicate that lncRNAs can
act as natural microRNA (miRNA) sponges to bind miR-
NAs, acting as competing endogenous RNAs (ceRNAs)
[12–14]. The ceRNA crosstalk plays a critical role in
modulating gene expression [15]. Accumulating evi-
dence has demonstrated the aberrant expression of sev-
eral mRNAs, miRNAs, and lncRNAs in NP cells in IDD
and explained the relationship between them with re-
spect to autophagy, apoptosis, and cell cycle [11, 16, 17].
Nevertheless, metabolic gene-associated ceRNA regu-
lated IDD progression remains largely unstudied. Hence,
further exploration of metabolism-related ceRNA cross-
talk in NP cells will benefit our understanding of the
metabolic gene regulatory network, which is of consider-
able significance for understanding IDD pathogenic
mechanisms. Besides, it is vital to identify the key meta-
bolic gene(s) and relevant key regulated noncoding
RNAs in the IDD. In addition, we previously screened
core RNAs of IDD based not only on differential

expression (DE) but also using the machine learning
technology, namely support vector machine (SVM) [18].
Currently, the definitive diagnosis of IDD is sometimes

difficult because the intervertebral disc has a particular
anatomical structure. In addition, LBP usually has atyp-
ical clinical features [19], and the definitive diagnosis is
not often achieved using clinical imaging methods [20].
It is even more difficult to correctly diagnose dorsal disc
migrations [21], and misdiagnosis often occurs [22]. A
transcriptomic signature is beneficial for clear and early
diagnosis and timely treatment of patients with IDD
[23], especially those that are at a high risk of IDD. Cur-
rently, the metabolic gene signature is a collection of
metabolism-related genes that can characterize the out-
come events; it accounts for the top differentially regu-
lated genes in many disorders but is relatively poorly
explored in IDD [24, 25]. In the current study, we aimed
to explore the key metabolic gene(s) signature and its
key ceRNA regulatory systems to provide insight into
IDD pathogenesis. Combining database prediction and
gene expression validation, we explored the metabolic
abnormalities of NP cells in IDD and revealed their
underlying metabolic, molecular signatures and regula-
tion profiles based on microarray datasets.

Methods
Data acquisition and study design (Fig. 1)
After searching the National Center of Biotechnology In-
formation (NCBI) Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo), we re-
trieved and downloaded all four IDD microarray datasets
(lncRNA microarray set, GSE56081; miRNA microarray
sets GSE116726 and GSE19943; and mRNA microarray
sets, GSE56081 and GSE70362). According to the
Thompson grading system, grade I to grade III NP sam-
ples were classified as control samples, and grade IV and
grade V NP samples were classified as IDD samples [26].
GSE56081 consists of five IDD and five control samples,
whereas GSE116726 and GSE19943 include three IDD
and three control samples, respectively. The GSE70362
consists of 14 control samples and 10 IDD samples
(Table 1). In order to obtain standardized data, we per-
formed batch normalization on GSE116726 and
GSE19943 using the R package ‘sva’. For mRNA analysis,
the GSE56081 microarray set was used for initial explor-
ation, and the GSE70362 microarray set was normalized,
merged and used for further validation (batch
normalization and merging with GSE56081 to obtain
large sample size). Because the data were publicly ob-
tained from the GEO database, we strictly followed the
publication guidelines approved by GEO (details with
platform information, sample size, and access are shown
in Supplementary Table 1. The characteristics of IDD
patients in related GEO datasets are shown in

Cao et al. BMC Musculoskeletal Disorders          (2021) 22:249 Page 2 of 11

https://www.ncbi.nlm.nih.gov/geo


Fig. 1 Flowchart of our bioinformatic analysis. The logical steps: 1. Differential expression analysis; 2. Target gene prediction; 3. ceRNA network
construction; 4. Machine learning (for screening core gene); 5. RNA expression and validation. Intersection means the set of common gene IDs in
different gene sets
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Supplementary Table 2). And, ethics committee approval
was not required to conduct this study.

DE lncRNAs, miRNAs, mRNA screening
The ceRNA network was constructed based on DE ana-
lysis for differentially expressed lncRNAs (DElncRNAs),
differentially expressed miRNAs (DEmiRNAs) and differ-
entially expressed mRNAs [DEmRNAs, responding to dif-
ferentially expressed genes (DEGs)] of microarrays with R
package ‘limma’ and the prediction for interactions in the
online database. First, DElncRNAs were identified be-
tween IDD and control samples in GSE56081. Next, a
highly conservative miRNA family profile on the Mircode
database (http://www.mircode.org/) was used to predict

interactions between miRNAs for the above DElncRNAs.
To validate and ensure the reliability and accuracy of the
predicted data, we obtained another set of DEmiRNAs in
IDD samples from GSE116726 and GSE19943 for com-
parison, with the thresholds of P < 0.05 (two-tailed) and
|log2 fold change (FC)| ≥ 1. Then, the overlapped miRNAs
were used for the final DElncRNA screening.

Prediction of DEmRNAs
As shown in Fig. 2, DEmiRNA targets were predicted
using three independent experimental databases, includ-
ing miRDB (http://mirdb.org/), miRTarBase (http://
mirtarbase.mbc.nctu.edu.tw/php/index.php), and Tar-
getScan (http://www.targetscan.org/vert_72/). Here, a

Table 1 Details and sample size with studied GEO datasets

Datasets Platform information Control(N) IDD(N) Application

GSE56081 GPL15314 Arraystar Human LncRNA microarray V2.0 5 5 identification of DElncRNA

GSE116726 GPL20712 Agilent-070156 Human miRNA [miRNA version] 3 3 identification of DEmiRNA

GSE19943 GPL9946 Exiqon human miRCURY LNA™ miRNA Array V11.0 3 3 identification of DEmiRNA

GSE56081 GPL15314 Arraystar Human LncRNA microarray V2.0 5 5 identification of metabolic DEGs

GSE70362 GPL17810[HG-U133_Plus_2] Affymetrix Human Genome U133 14 10 validation of metabolic DEGs

Abbreviations: GEO Gene Expression Omnibus, IDD Intervertebral disc degeneration, DElncRNAs differentially expressed lncRNAs, DEmiRNAs differentially expressed
miRNAs, DEGs differentially expressed genes

Fig. 2 The method for genes scan of miRNAs. Targets of DEmiRNAs were predicted by three experimentally independent databases, including
miRDB (http://mirdb.org/), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/index.php) and TargetScan (http://www.targetscan.org/vert_72/).
The target gene is the one at least overlapping by two of three binding prediction databases. Intersection means that the number of overlapping
genes in different databases (2 or 3)
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scoring system was used to predict genes in the DEmR-
NAs group (DEmRNAs-1). One score was added to the
target (mRNA) for each above database that could inter-
act with each other. If the score was ≥2, the mRNA was
put into the DEmRNAs-1 group. Meanwhile, the
DEmRNAs-2 group was directly identified in GSE56081.
Besides, the targets of the overlapped miRNAs from
datasets GSE116726 and GSE19943 were predicted as
the DEmRNAs-3 group. Next, we kept the overlapped
mRNAs in all DEmRNA groups (DEmRNAs-1,
DEmRNAs-2, and DEmRNAs-3) as the final DEmRNAs
in this study.
After the DE analysis process (Fig. 1), we visualized

DElncRNAs, DEmiRNAs, and DEGs between IDD and
control samples using clustering heat maps and volcano
maps, respectively, using the R package ‘pheatmap’. The
key DElncRNAs, DEmiRNAs, and DEGs were selected
as the sources of the ceRNA network, which was con-
structed using Cytoscape3.8.0 [27]. Dark blue rectangle
nodes represent the lncRNAs in the network, the purple
rhombus nodes represent the target genes, and lines in-
dicate interactions.

Functional enrichment analyses of the ceRNA network
We performed Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of DEGs using R packages (“cluster-
Profiler”, “org. Hs.eg.db”, “enrichplot”, and “ggplot2”
package) with identified filters of p-Value < 0.05 and q-
Value < 0.05 [28–30].

Feature selection based on SVM and metabolic gene set
Support vector machine (SVM), a machine learning
technology, is a supervised learning model with associ-
ated learning algorithms that analyzes data used for clas-
sification and regression analyses. Based on the
expression levels of the ceRNA, we used the R package
‘caret’ and adopted 5-fold cross-validation to conduct
the SVM model for screening vital RNAs. The random
seed was set to 39 in all SVM progress. Moreover, we
searched for genes on the metabolic gene set based on
metabolism-related pathways, which were downloaded
from the gene set enrichment analysis (GSEA) website
(GSEA, c2.cp.kegg.v7.1.symbols.gmt; https://www.gsea-
msigdb.org/gsea/downloads.jsp). We obtained 948
metabolism-related genes for follow-up analysis (Supple-
mentary Table 3). Finally, we used the Venn method
(http://bioinformatics.psb.ugent.be/webtools/Venn/) to
search for the key DEG(s) from the results of SVM, ex-
pression levels, and the metabolic gene set. Furthermore,
we searched for other differentially expressed RNAs
(DERNAs) based on the SVM and expression levels to
find the critical ceRNAs regulated by the key metabolic
gene(s).

Statistical analyses
The R software (version 3.6.2, The R Foundation for
Statistical Computing, Vienna, Austria) and MedCalc
statistical software (Version 19.0.4, MedCalc Software
bvba, Ostend, Belgium) were used for the statistical ana-
lyses. Prism (version 8.0, GraphPad Prism Inc.) and R
software were used for graphics. DElncRNAs, DEmiR-
NAs, and DEmRNAs between IDD and control samples
were identified using filters with P < 0.05 (two-tailed)
and |log2FC| ≥ 1. A positive log2FC value indicated up-
regulated expression, whereas a negative log2FC value
indicated downregulated expression. The chi-square test
was used for enrichment analyses. Difference with P <
0.05 were considered statistically significant.

Results
Identification of DElncRNAs, DEmiRNAs, and DEGs using
integrated microarray analysis
A total of 502 DElncRNAs and 2295 DEmRNAs were
directly identified on GSE56081. Moreover, 15 DEmiR-
NAs were identified in GSE116726 and GSE19943
(Figs. 1 and 3).

Target prediction for DElncRNAs, DEmiRNA, and DEGs
Of the 502 DElncRNAs, 137 could bind to 207 miRNAs.
Target prediction for the above 207 miRNAs revealed
that 55 miRNAs could predict the downstream target
mRNAs (DEmRNAs-1 group). Surprisingly, we found
that miR-338-3p was the only overlapping miRNA be-
tween the 55 miRNAs and the 15 DEmiRNAs. Thus, fo-
cusing on miR-338-3p, we mined 36 upstream lncRNAs
that could bind to it. Furthermore, 366 downstream
mRNAs (DEmRNAs-3 group) related to miR-338-3p
were also predicted. There were 8612 target mRNAs
(DEmRNAs-1 group) of the 55 miRNAs, which were
predicted using the miRDB, miRTarBase, and TargetS-
can databases (Fig. 2). Finally, 45 DEmRNAs (final
DEmRNAs, Supplementary Table 4), which bind to miR-
338-3p, were the overlapping genes among the 366
mRNAs, 8612 mRNAs, and 2295mRNAs. The 45
DEmRNAs, which combine with miR-338-3p, were
concentrated.
To reveal the underlying molecular signatures of IDD,

we constructed a ceRNA network using overlapped
DElncRNAs and DEGs, the core of which was miR-338-
3p. The ceRNA network displayed 45 miR-338-3p/
lncRNA links and 36 miR-338-3p/mRNA links (Fig. 4a).

Functional enrichment analyses
The GO terms (45 DEGs) indicated that several genes,
which existed in the cell trailing edge, were enriched in
the phosphatidylinositol 3-kinase signaling pathway and
the cellular response to reactive oxidative stress in bio-
logical process (Fig. 4b, details of actual gene IDs and
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GO descriptions are shown in Supplementary Table 5).
Moreover, the KEGG pathway enrichment analysis
showed that the 45 DEGs were predominantly enriched
in 16 pathways, including the MAPK signaling pathway,
IL-17 signaling pathway, apoptosis, and TNF signaling
pathway, et al. (Fig. 4c) The details of actual gene IDs
per pathway are shown in Supplementary Table 6.

Feature selection based on SVM and metabolic gene set
In dataset GSE56081, we defined 45 overlapping DEGs.
Moreover, the metabolic gene set consisted of 948 genes.
Hence, we used the SVM method to build a classifier
and create a decision boundary for the 36 DElncRNAs
and 45 DEGs (Fig. 5a, b). SVM was not used for screen-
ing DEmiRNAs because miR-338-3p was the only core

Fig. 3 Difference analysis. a-c The differentially expressed heat-maps of lncRNA, microRNA, and mRNA. The lncRNA heat-map of GSE56081
dataset (a); The merged microRNA heat-maps of GSE116726 and GSE19943 datasets (b); The mRNA heat-map of GSE56081 dataset. d-f The
volcano plot (c). The lncRNA dataset of GSE56081 (d); The merged microRNA datasets of GSE116726 and GSE19943 (e); The mRNA dataset of
GSE56081 (f). The screening condition: absolute values of log (fold change) > 1.0 and adjusted p-Value < 0.05. In the plots, the rose red and blue
dots represent high and low RNA expressions with statistical significance between the IDD NPs and the normal NPs, respectively. And, the black
dots represent no statistical significance between them
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DEmiRNA. Then, the Venn method was used to search
for the key DElncRNAs and DEGs from the results of
SVM signature, expression levels, and the metabolic
gene set (Fig. 5c, d, e). The core DElncRNA was lncRNA
AC063977.6 (Fig. 5c). The core metabolic gene was 6-
phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2
(PFK/FBPase2) after training by SVM and intersecting
with the metabolic gene set (Fig. 5e). The expression
levels of core RNAs are presented as a histogram
(Fig. 5f).

Discussion
The metabolic homeostasis and the construction of the
ECM of intervertebral discs mainly depend on its active
NP cells, which form the inner core of the intervertebral
disc. An imbalance of cellular functions because of
metabolic imbalance, nutrient deprivation, dysregulated
apoptosis, and some transcellular signaling interrupts
homeostasis in NP cells, resulting in IDD [31–33]. Fur-
thermore, the metabolic signature represents a broad
molecular signature of systemic metabolism and covers

Fig. 4 The ceRNA network and its enrichment analysis by GO annotation and pathways identified by KEGG for Differentially expressed genes. The
ceRNA network created by Cytoscape 3.8.3 (a). The connections DElncRNA (purple rectangle), DEmicroRNA (blue), and target genes (purple pink
rhombus) were represented as nodes, and their interactions were denoted by lines. The top terms of enriched GO analysis (b). The top terms of
enriched KEGG pathway [28–30] (c). Abbreviation: GO, the gene ontology; KEGG, the Kyoto encyclopedia of genes and genomes; BP, the
biological process; CC, the cellular component. The details for actual gene IDs and GO descriptions were shown in Supplementary Table 5. The
details for actual gene IDs per KEGG pathway were shown in Supplementary Table 6. We are grateful to Kanehisa Laboratories
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multiple cellular metabolic pathways [34]. The metabolic
signature and its relevant mechanism are critical for un-
derstanding the cellular mechanisms of various diseases.
Accordingly, it would be reasonable to assume that NP
cell metabolic disorder might be a pathogenic factor of
IDD. However, the metabolic investigations and

associated ceRNA regulation mechanism of NP cells in
IDD remaine inconclusive. The ceRNAs regulate the ex-
pression of various genes and play a significant role in
the pathogenesis of many diseases [35]. Identifying
ceRNA regulation with the metabolic signatures in NP
cells would shed a novel light on IDD. Thus, based on

Fig. 5 Screening for key metabolic gene and associated ceRNAs. SVM for screening core DElncRNA (a). SVM for screening core DEGs (b). A 3 set
Venn diagram (c). The pink circle represents for results of SVM with DElncRNAs, the blue circle represents for DElncRNAs, and the green circle
represents for genes with low expression. A 2 set Venn diagram (d): the blue circle represents for batch normalized DEmiRNAs, and the green
circle represents for genes with high expression. A 3 set Venn diagram (e): the pink circle represents for results of SVM with DEGs, the blue circle
represents for DEGs, the yellow circle represents for dataset of metabolic genes, and the green circle represents for genes with low expression.
The expression profile of metabolic gene and associated ceRNAs in cotrol cohort and IDD cohort (AC063977.6, miR-338-3p, PFKFB2,). Expressional
values are means ± SD; *, p < 0.05 (f). The expression profile also numerically shown in supplementary Table 7. Validation represents the PFKFB2
expression profile in validation dataset (GSE70362 merging GSE56081)
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the GEO dataset, we identified a novel gene metabolic
signature and related ceRNA regulatory mechanisms to
gain insight into the IDD pathogenic mechanism.
In the present study, 45 DEGs and 36 DElncRNAs

were identified. MiR-338-3p was the only key
DEmiRNA, which was upregulated in IDD. A vast
ceRNA network was constructed to reveal the under-
lying molecular signatures of IDD. GO annotation re-
vealed that the DEmRNAs/DEGs were mostly enriched
in the PI3K-Akt signaling pathway. The PI3K-Akt signal-
ing pathway participates in the synthesis of ECM, regu-
lating apoptosis and cell proliferation in IDD.
Furthermore, the GO annotation showed that many bio-
logical processes were categorized in response to oxida-
tive stress of NP cells, which indicates that oxygen and
oxygen-associated processes might play an essential role
in IDD. The KEGG pathway enrichment analysis showed
that the MAPK signaling pathway, IL-17 signaling path-
way, apoptosis, and TNF signaling pathway might be re-
lated to IDD. Based on batch normalization, we found
that miR-338-3p was the only DEmiRNA validated in
two datasets and was correctly predicted for lncRNA-
miRNA and mRNA-miRNA binding. However, there
were 45 overlapping DEGs and 948 genes defined by the
metabolic gene set. To further determine the key meta-
bolic signature and critical lncRNA(s) of the 36 DElncR-
NAs in IDD, we used the SVM method. Thus,
AC063977.6 was identified as the critical lncRNA with
recursive feature elimination, based on the results of
SVM and related expression regulation of DElncRNAs.
Moreover, PFKFB2 is the key metabolic gene with recur-
sive feature elimination, based on the results of SVM,
metabolic gene set, and related expression regulation of
DEmRNAs.
According to the online database prediction,

AC063977.6 directly targets miR-338-3p, whereas miR-
338-3p directly targets PFKFB2, suggesting that
AC063977.6, miR-338-3p, and PFKFB2 might form an
axis that modulates NP cell metabolism in IDD. Further-
more, the gene expression validation based on micro-
array data of GSE116726 and GSE19943 further
enhanced the credibility of this axis. In conclusion, we
found that AC063977.6, miR-338-3p, and PFKFB2
formed an axis in IDD to modulate the metabolism of
NP cells. This study revealed that miR-338-3p was up-
regulated in degenerating NP cells, accompanied by
downregulation of PFKFB2 expression. Moreover,
AC063977.6, acting as a ceRNA sponging miR-338-3p,
was significantly attenuated in IDD progression.
The central part of the DEGs is PFKFB2, which is

an isoform of the PFKFB family that mainly regulates
glycolytic metabolism and catalyzes the fructose 2,6-
bisphosphate (Fru-2,6-P) [36]. PFKFB2 is a key bi-
functional enzyme involved in glycolytic metabolism

[37]. Moreover, glycolysis significantly diminishes cel-
lular oxidative stress [38, 39]. Similarly, bioinformatics
analysis with the GEO microarray datasets revealed
that the DEGs were significantly enriched in the oxi-
dative stress process in GO enrichment. Compared to
normal cells, several cancer cells exhibit elevated ex-
pression levels of PFKFB [40]. However, in this study,
we found that the expression level of PFKFB2 in NP
cells with IDD was lower than that in control NP
cells, suggesting that reduced glycolysis may increase
the level of cellular oxidative stress in NP cells; thus,
it may be associated with IDD.
Accumulating evidence suggests that lncRNAs and

miRNAs dysregulate essential pathological processes
of IDD, such as apoptosis, angiogenesis, ECM degrad-
ation, and inflammatory responses [41]. The miR-338-
3p originates from the apoptosis-associated tyrosine
kinase gene, and it is dysregulated in many tumors
and plays distinct roles in different diseases [42]. The
upregulation of miR-338-3p could promote glioma
cell invasion and metastasis of lung cancer, whereas
the downregulation of miR-338-3p was related to
poor outcomes in gastric cancer [43–45]. In this
study, miR-338-3p was remarkably upregulated in
IDD, serving as an impetus with metabolic dysregula-
tion by targeting PFKFB2, thereby disturbing the me-
tabolism of NP cells. IDD severely threatens the
health of patients, and identification of genetic signa-
ture is beneficial for its early diagnosis and early
treatment [23]. Moreover, a strong negative correl-
ation was observed between IDD and PFKFB2 expres-
sion levels in both the training cohort and validation
cohort, which indicates that low expression of
PFKFB2 is a key factor in IDD. The results suggest
that PFKFB2 is an player in IDD. According to our
experience in clinical work and reported literature,
misdiagnosis of IDD occasionally occurs, which often
leads to incorrect treatment and even unnecessary
surgery. Based on our results, the metabolic signature
could be used in providing clues for IDD mechanism
research, and may aid in surgery for differential diag-
nosis in clinical practice.

Limitations of this study
There are some limitations to this study. First, we focused
only on the regulatory roles of target genes without fur-
ther classification into specific subgroups according to
their functions, which limited the excavation of those data.
Second, further in vitro and in vivo experiments on the
sophisticated regulating mechanism involved with
AC063977.6 and miR-338 in IDD progression are urgently
needed. Third, although a small sample size is a common
problem in orthopedic research, it is undeniable that this
study is based on a small sample size (a total of 46 samples
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were included). Sufficient in vitro and in vivo experiments
are warranted to establish the functions and mechanisms
of the lncRNAs and miRNAs involved in the pathogenesis
of IDD and may further promote the translation of precise
gene diagnosis in IDD.

Conclusion
The results suggest that lncRNA AC063977.6, acting as
a ceRNA that sponges miR-338, correlating with the me-
tabolism of NP cells via the AC063977.6/miR-338/
PFKFB2 axis in IDD. PFKFB2 can serve as a metabolic
biomarker to contribute to the differential diagnosis of
IDD in clinical practice.
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