
www.landesbioscience.com Tissue Barriers e24894-1

Tissue Barriers 1:4, e24894; October/November/December 2013; © 2013 Landes Bioscience

 REVIEW REVIEW

Introduction

Pancreatic duct cells not only deliver the enzymes produced by 
acinar cells into duodenum but also secrete a HCO

3
−-rich fluid to 

neutralize gastric acid from the stomach.1 Tight junctions of the 
pancreatic duct are regulators of physiologic secretion of the pan-
creas and disruption of the pancreatic ductal barrier. The tight 
junction, the most apically located of the intercellular junctional 
complexes, inhibits solute and water flow through the paracel-
lular space (termed the “barrier” function).2,3 It also separates the 
apical from the basolateral cell surface domains to establish cell 
polarity (termed the “fence” function).4,5 Tight junctions partici-
pate in signal transduction mechanisms that regulate epithelial 
cell proliferation, gene expression, differentiation and morpho-
genesis.6 The tight junction is formed by not only the integral 
membrane proteins claudins, occludin and JAMs, but also many 
peripheral membrane proteins.7-9 These tight junction proteins 
are regulated by various cytokines and growth factors via dis-
tinct signal transduction pathways.10,11 Normal ductal and acinar 
structures of the pancreas express claudin-1, -2, -3, -4, and -7, 
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Tight junctions of the pancreatic duct are essential regulators 
of physiologic secretion of the pancreas and disruption of 
the pancreatic ductal barrier is known to contribute to the 
pathogenesis of pancreatitis and progression of pancreatic 
cancer. Various inflammatory mediators and carcinogens 
can trigger tight junction disassembly and disruption of the 
pancreatic barrier, however signaling events that mediates 
such barrier dysfunctions remain poorly understood. This 
review focuses on structure and regulation of tight junctions in 
normal pancreatic epithelial cells and mechanisms of junctional 
disruption during pancreatic inflammation and cancer. We will 
pay special attention to a novel model of human telomerase 
reverse transcriptase-transfected human pancreatic ductal 
epithelial cells and will describe the roles of major signaling 
molecules such as protein kinase C and c-Jun N-terminal kinase 
in formation and disassembly of the pancreatic ductal barrier.
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whereas endocrine cells within the islets of Langerhans express 
claudin-3 and -7.12,13 In the pancreatic duct, freeze-fracture analy-
sis reveals that tight junctions contained a parallel array of three 
to five continuous sealing strands and the pancreatic enzymes 
cannot leak out from the lumen into the intercellular spaces.14,15

Pancreatic ductal tight junctions, which is leaky and has the 
function of selective permeability, may play a role of channels of 
Na+ and HCO

3
− via paracellular pathway.16,17 The tight junctions 

of pancreatic duct epithelial cells and exocrine cells are dynamic 
structures that can be disrupted by various external stimuli 
including ductal hypertension.18,19 The disruption of pancreatic 
duct tight junctions is an early event in different types of pancre-
atitis.20-25 Although dysfunction of tight junctions in pancreatic 
duct are observed by various pathological condition, the regu-
latory mechanisms of tight junctions remain unknown even in 
normal human pancreatic duct epithelial (HPDE) cells.

On the other hand, in pancreatic cancer, claudin-4 and -18 
are highly expressed and are diagnostic or therapeutic targets of 
monoclonal antibodies against their extracellular loops.26-28 Both 
the abundance and the subcellular distribution of specific claudin 
proteins are different between normal and transformed pancreatic 
epithelia and the changes in paracellular permeability accompany 
the formation of pancreatic intraepithelial neoplasia (PanIN).29 
The claudin family, which consists of at least 27 members, is 
solely responsible for forming tight junction strands and has four 
transmembrane domains and two extracellular loops.7,30 The first 
extracellular loop is the coreceptor of hepatitis C virus and influ-
ences the paracellular charge selectivity and the second extracel-
lular loop is the receptor of Clostridium perfringens enterotoxin 
(CPE).31-33 The 35-kDa polypeptide CPE causes food poisoning 
in humans, binds to its claudin receptor and then causes changes 
in membrane permeability via formation of a complex on the 
plasma membrane followed by the induction of apoptosis.34 In 
pancreatic cancer, claudin-4 is frequently overexpressed and is a 
high-affinity receptor of CPE.27,35 It is anticipated that it may be 
possible to develop a novel tumor-targeted therapy for pancreatic 
cancer using a claudin-4-targeting molecule.

This review focuses on recent our findings about the relation-
ship between tight junctions and signal transduction pathways 
in normal human pancreatic duct epithelial cells, using hTERT-
transfected human pancreatic epithelial cells (Table 1).
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hTERT-HPDE cells with 10% FBS and pancreatic cancer cell 
lines PANC-1 and BXPC3 (poorly differentiated types), HPAF-II 
and HPAC (moderately or well-differentiated types), whereas in 
hTERT-HPDE cells without FBS, it is not detected at the mem-
branes (Fig. 1A). When the barrier function was measured by 
transepithelial electrical resistance (TER) values, the barrier func-
tion in hTERT-HPDE cells with 10% FBS was well maintained 
as well-diffrentiated pancreatic cancer cells HPAF-II and HPAC 
(Fig. 1B). The barrier function in the pancreatic duct may be inde-
pendent on the localization of occludin.

It is thought that normal HPDE cells are sealed well by tight 
junctions and the tight junctions play a crucial role in the reflux 
of the exocrine pancreatic juice. The barrier function of well-
diffrentiated pancreatic cancer cells is well maintained com-
pared with poorly differentiated pancreatic cancer cells.

Regulation of Tight Junction Molecules  
by a PKC Activator in hTERT-HPDE Cells

Protein kinase C (PKC) is a family of serine-threonine kinases 
known to regulate epithelial barrier function via tight junc-
tions.39,40 PKC has been shown to induce both assembly and 
disassembly of tight junctions depending on the cell type and 
conditions of activation.40-42 PKC activation can readily disrupt 
the integrity of pancreatic epithelial tight junctions by causing 
ROCK-II dependent actomyosin-driven contractility or remod-
eling of the spectrin-adducin based membrane skeleton.43,44

When hTERT-HPDE cells are treated with the PKC acti-
vator 12-O-tetradecanoylphorbol 13-acetate (TPA), claudin-1, 
-4, -7 and -18, occludin, JAM-A and ZO-1, -2 are increased 
and the upregulation is inhibited by the pan-PKC inhibitor 
GF109203X (Table 1).13,45

It is thought that claudins are regulated by various factors 
and that there is differential regulation among claudin fam-
ily members.9,39,40 When we investigated the time-dependent 
changes in proteins of claudin-1, -4 and -7 in hTERT-HPDE 
cells after treatment with TPA, claudin-1 was increased from 
1 h, claudin-4 was increased from 3 h, and claudin-7 was 
increased from 12 h (Fig. 1C).

Tight Junction Molecules of hTERT-HPDE Cells

The introduction of the catalytic subunit of human telomerase, 
human telomerase reverse transcriptase (hTERT), into human 
somatic cells such as fibroblasts and retinal pigment epithe-
lial cells typically extends their lifespan without altering their 
growth requirements, disturbance of the cell-cycle checkpoints, 
tumorigenicity or chromosomal abnormalities.36-38 We estab-
lished hTERT-transfected human pancreatic epithelial cells 
(hTERT-HPDE) with an extended life span.13

The hTERT-HPDE cells are positive for HPDE cell markers 
such as CK7, CK19 and carbonic anhydrase isozyme 2 (CA-II) 
and express epithelial tight junction molecules claudin-1, -4, 
-7 and -18, occludin, tricellulin, marvelD3, JAM-A, ZO-1 and 
ZO-2.13 The expression patterns of tight junction molecules in 
the hTERT-HPDE cells are similar to those of pancreatic tis-
sues in vivo.13

Induction of Tight Junction Molecules  
and the Barrier Function by FBS  

in hTERT-HPDE Cells

In this culture system, hTERT-HPDE cells in serum-free con-
ditioned medium have growth potential and a long lifespan. 
Treatment with FBS induces an increase of protein and mRNA 
of CA-II dependent on the FBS concentration, whereas pro-
teins of CK7 and CK19 are stably expressed independent of the 
FBS concentration. Claudin-1, -4 and -7, occludin, JAM-A and 
ZO-1, -2 are induced together with an increase of the barrier 
function by 10% FBS and the upregulation is inhibited by the 
pan-PKC inhibitor GF109203X (Table 1).13 The tight junction 
molecules and the barrier function induced by FBS in hTERT-
HPDE cells are in part regulated via a PKC pathway.

Barrier Function of hTERT-HPDE Cells  
and Pancreatic Cancer Cell Lines

In immunocytochemistry, occludin which is a good marker of 
tight junction position, is localized at the cell membranes of 

Table 1. Changes of tight junction proteins and barrier function in normal human pancreatic duct epithelial cells via PKC and JNK pathways

Cell type Treatment Tight junction proteins Barrier function Ref.

hTERT-

HPDE

FBS CLDN-1, -4, -7 ↑; OCLN ↑;

ZO-1, -2 ↑
upregulation 13

PKC activator:TPA CLDN-1, -4, -7, -18 ↑; OCLN ↑;

ZO-1, -2 ↑
13,45

PKCa inhibitor:Gö6976 CLDN-1, -4, -7 ↑; OCLN ↑ upregulation 54,55

JNK activator:Anisomycin

:IL-1b, TNFa, IL-1a TRIC ↑ 60

JNK inhibitor:SP600125 CLDN-1, -4, -7 ↑; OCLN ↑;

MarvelD3 ↑; TRIC ↓
upregulation

hTERT-HPDE, hTERT-transfected human pancreatic duct epithelial cells; CLDN, claudin; OCLN, occludin; TRIC, tricelllulin.
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PKCα is considered one of the biomarkers for the diagnosis of 
cancers, including pancreatic cancer.52,53 We previously reported 
that the PKCα inhibitor Gö6976 modified claudin-1 and -4 in a 
well-differentiated pancreatic cancer cell line.54 When hTERT-
HPDEs were treated with Gö6976, expression of claudin-1, -4, 
-7 and occludin, and the barrier function measured as TER val-
ues, were significantly increased (Table 1).55 The TGF-β-PKC-
α-PTEN cascade is a key pathway for pancreatic cancer cells to 
proliferate and metastasize.56 PKCα inhibitors may be potential 
therapeutic agents against the malignancy of human pancreatic 
cancer cells.57

We investigated which PKC isoforms 
play key roles in the upregulation of tight 
junction proteins by TPA in hTERT-HPDE 
cells. The upregulation of tight junction 
proteins by TPA was inhibited completely 
by a pan-PKC inhibitor (GF109203X). A 
PKCθ inhibitor (myristoylated PKCθ pseu-
dosubstrate peptide inhibitor) prevented 
upregulation of claudin-18 by TPA, a PKCα 
inhibitor (Gö6976) prevented upregulation 
of claudin-4 and -18 by TPA, and a PKCδ 
inhibitor (rottlerin) prevented upregulation 
of claudin-7, -18, occludin, ZO-1 and ZO-2 
by TPA (Fig. 1D).

By GeneChip analysis of hTERT-HPDE 
cells treated with or without TPA, upregula-
tion of one of the ELF (E74-like factor) sub-
family of the ETS transcription factors ELF3 
was observed.13 It is reported that the expres-
sion of claudin-7 in epithelial structures in 
synovial sarcoma is regulated by ELF3.46 
In hTERT-HPDE cells, ELF3 mRNA is 
increased by TPA and a pan-PKC inhibi-
tor prevents upregulation of ELF3 mRNA 
by TPA and the upregulation of claudin-7 
by TPA is inhibited by knockdown of ELF3 
using siRNAs.13 These results suggest that 
claudin-7 in normal HPDE cells might be 
regulated via a PKCδ/ELF-3 pathway.

We previously reported that the regulation 
of tight junctions in normal ductal epithelial 
cells was closely associated with conventional 
or novel isoforms of PKC and PKC-induced 
transcriptional factors.47,48 PKC may be a 
useful target for pancreatic cancer therapy.49 
Further study of the tight junctions of normal 
HPDE cells via a PKC pathway including iso-
forms is important for not only physiological 
regulation of tight junction molecules and 
the barrier function in normal HPDE cells 
but also for therapeutic targeting in pancre-
atic cancer cells.

 
Regulation of Tight Junction Molecules  

and the Barrier Function by a PKCα Inhibitor  
in hTERT-HPDE Cells

At least 12 different isozymes of PKC are known and can be 
subdivided into three classes (classic or conventional, novel and 
atypical isozymes) according to their responsiveness to activa-
tors.50 In the human intestinal epithelial cell lines HT-29 and 
Caco-2, stimulation with TLR2 ligands leads to activation of 
the specific PKC isoforms PKCα and PKCδ and enhances bar-
rier function through translocation of ZO-1 on activation.51 

Figure 1. (A) Immunostaining for occludin and (B) TER values in hTERT-HPDE cells with or 
without 10% FBS and pancreatic cancer cell lines PANC-1, BXPC-3, HPAF-II and HPAC. Bars: 40 
μm. Data represent the mean (n = 6). (C) A line graph for the changes in proteins of claudin-1, 
-4 and -7 in hTERT-HPDE cells treated with 100 nM TPA. (D) Diagram showing regulation of 
tight junction molecules via PKC isoforms in hTERT-HPDE cells. CLDN: claudin, OCLN: occludin.
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Regulation of Tight Junction Molecules  
and the Barrier Function by a JNK Inhibitor  

in hTERT-HPDE Cells

Recently, it was reported that the JNK inhibitor SP600125 
enhanced epithelial barrier function through differential mod-
ulation of claudin expression in murine mammary epithelial 
cells.66 When hTERT-HPDE cells were treated with 10 μM 
JNK inhibitor SP600125 for 24 h, the cells in phase-contrast 
images rapidly changed from a cobblestone appearance to a 
round shape (Fig. 2A). This change was similar to that in FBS- 
or TPA-treated cells.13 In hTERT-HPDE cells after treatment 
with 10 μM SP600125, claudin-1, -4, occludin and marvelD3 
were increased, whereas tricellulin was decreased (Fig. 2B). The 
barrier function measured by the TER values were increased in a 
time-dependent manner after treatment with 10 μM SP600125 
(Fig. 2C).

Activation of JNK promotes developments of various 
tumors.67-69 JNK1-deficient mice exhibits a decrease in carci-
nogenesis of chemical induced gastric cancer or hepatocellu-
lar carcinoma, and JNK2-deficient mice shows reduced skin 
tumors.70-72 Furthermore, JNK inhibitors decrease growth of 
human and murine pancreatic cancer in vitro and in vivo.73 JNK 
may be involved in the regulation of tight junctions, including 
tricellulin expression and the barrier function in normal pan-
creatic duct epithelial cells and may be a potential therapeutic 
target for pancreatic cancer.

Conclusion

Using hTERT-HPDE cells, we indicated that the expression 
of tight junction molecules and the barrier function in normal 
HPDE cells were regulated by various factors including PKC 
and JNK signal pathways (Table 1). It is necessary to investigate 
the detailed regulation of tight junctions in normal HPDE cells 
via other signal transduction pathways as Hedgehog and Wnt/
β-catenin. It is also important that the regulation of MARVEL 
family members, including tricellulin and marvelD3, be further 
investigated and compared with that of the claudin family in 
normal pancreatic duct epithelial cells.74 The profile of tight 
junctions and the signaling in normal human pancreas may be 
potential diagnostic or therapeutic targets in inflammation and 
cancer of pancreas.
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Regulation of Rricellulin by JNK Activators  
in hTERT-HPDE Cells

c-Jun N-terminal kinase (JNK) activation is essential for disassem-
bly of adherens and tight junctions in human keratinocytes and 
colonic epithelial cells.58,59 When hTERT-HPDE cells are treated 
with JNK activators, anisomycin and the proinflammatory cyto-
kines IL-1β, TNFα and IL-1α, only tricellulin expression is sig-
nificantly increased by all JNK activators, and the upregulation 
was prevented by the JNK inhibitor SP600125 (Table 1).60

Tricellulin was identified as the first marker of the tricellular 
tight junction, which forms at the meeting points of three cells. 
It is required for the maintenance of the transepithelial barrier 
and expressed in both the normal pancreatic duct and pancre-
atic cancer.61-63 It is one of three members of the tight junction-
associated MARVEL protein family (TAMP) and is specific 
to tricellular tight junctions, whereas the other two members, 
occludin and marveld3, are localized at bicellular tight junc-
tions.61,64,65 It is possible that the regulation of tricellulin may be 
more sensitive to the activation of JNK than that of bicellular 
tight junction proteins in normal HPDE cells.

Figure 2. (A) Phase-contrast images of hTERT-HPDE cells treated with 
10 μM SP600925. Bar: 40 μm. (B) Western blotting for claudin-1, -4 and 
-7, OCLN, TRIC, MARVELD3 and E-cadherin in hTERT-HPDE cells treated 
with 10 μM SP600925. (C) TER values of hTERT-HPDE cells treated with 
10 μM SP600925. Data represent the mean ± SD (n = 3). CLDN: claudin, 
OCLN: occludin, TRIC: tricellulin.
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