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Abstract: Cancer cachexia occurs in up to 85% of advanced cancer patients, affecting different tissues
and organs, mainly the liver, which plays a central role in body metabolism control. However,
liver responses to cancer cachexia progression are still poorly understood. Considering the possible
different challenges provided by the rodent’s phase of life and the cachexia progression, we evaluated
the liver metabolic alterations affected by Walker-256 tumour growth in weanling and young-adult
rats. For this, we applied a metabolomics approach associated with protein and gene expression
analyses. Higher amino acid levels and impaired glucose metabolism were important features in
tumour-bearing animals’ liver tissue. The weanling hosts had more pronounced cachexia, with
higher carcass spoliation, liver lipid metabolism and impaired CII and CIV mitochondrial complexes.
The liver alterations in young adult tumour-bearing rats were related to energy status and nucleotide
metabolites, such as uridine, NAD+, xanthosine, hypoxanthine and inosine. In conclusion, the
Walker-256 tumour-induced cachexia impaired liver metabolism, being more severe in the weanling
hosts. Further studies are needed to correlate these changes in the preclinical model, which can be
correlated to the clinical features of cancer cachexia, allowing for a translational potential involving
the liver function and its responses to potential treatments.

Keywords: cachexia; experimental model; liver; metabolomics

1. Introduction

Cancer cachexia is marked by a disrupted metabolism, mainly affecting the skeletal
muscle, accompanied or not by a loss of body fat mass, which occurs in up to 85% of
advanced cancer patients, being responsible for at least 22% of cancer-related deaths [1,2].
It is also considered a multiorgan syndrome, affecting other organs and tissues, including
damaging the hepatic system [1]. During cancer cachexia, the liver shows higher activity
and also contributes to chronic cancer-associated inflammation. However, its role in the
disease is still poorly understood [1,3]. The Cori cycle occurs in the liver and is responsible
for high energy dissipation rates, being responsible for exacerbating the energy waste in
cancer cachexia conditions [4]. In cachectic rats, an excess of cardiolipin leads to a reduced
mitochondrial oxidative phosphorylation, which exacerbates the energy-wasting [5]. Differ-
ent from skeletal muscle, liver protein synthesis is upregulated, increasing the production
of the acute phase reactants, such as the C-reactive protein (CRP) [6], which is associated
with a poor prognosis in cachectic patients [7]. Additionally, hepatic steatosis, another
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liver metabolism alteration, and liver-muscle crosstalk have been suggested to worsen the
cancer cachexia wasting, showing the importance of more studies on this topic [3,8].

Metabolomics is a valuable approach to studying highly complex systems, verifying
the ending results of metabolism. It allows the assessment of low molecular weight
components in biosamples, reflecting the phenotype derived from gene-environment
interactions of a response at a given time [9,10]. The metabolic profiling of biological
fluids or tissue samples provides information to help in disease diagnosis, staging and
prognosis, as well as to understand drug interactions and side effects [11,12]. Many studies
are emerging in the field of cancer cachexia metabolomics [13,14]. Our previous 1H-
NMR-based study showed serum metabolite alterations associated with muscle metabolic
pathways related to energy production and protein breakdown in Walker-256 tumour-
bearing animals [15,16]. We also found metabolic changes in skeletal muscle, showing
altered metabolites mainly related to increased levels of amino acids and altered energetic
metabolism, suggesting an expressive catabolic process and energy production in the
youngest host, depicting differences between muscle responses depending on the host
developmental stages [17].

Metabolomic analysis of liver tissue from C26 tumour-bearing animals showed per-
turbations on energy production and increased liver glucose and glycogen depletion [18].
Likewise, recent studies have reported liver metabolism impairment [19] and mitochon-
drial dysfunction [20] in this same experimental model. Pötgens et al. reported that liver
glycolysis and gluconeogenesis were impaired, and the CRP production was augmented
with a higher amino acid uptake by this organ, followed by reduction of carnitine levels
and lower activation of the phosphatidylcholine pathway, possibly contributing to liver
steatosis [19]. Despite these studies, the relationship between liver metabolism and its
impairment in cancer cachexia is still not fully clarified.

Considering the increasing need for knowledge of the hepatic metabolism responses to
the onset of cancer cachexia and the challenges of liver responses to diseases and medicines
during different stages of life [21], we proposed to evaluate the alterations in metabolic
liver profile in Walker-256 tumour-bearing rats in the weanling and adult stages of life.

2. Results
2.1. Morphometric and Serum Parameters Indicate Cachexia Installation in Both Weanling and
Young Adult Groups

At the beginning of the experiment, the initial body weight showed no difference
between both weanling groups [(weanling tumour-bearing group (WW) = weanling control
group (WC)] and also for both adult groups [(adult tumour-bearing group (AW) = adult
control group (AC)] (Table S1). However, after the tumour growth, we observed a negative
impact in host weight, as both tumour-bearing groups had a significant decrease in carcass
weight (WW < WC, ≈31% of reduction; AW < AC, ≈13% of reduction; where tumour and
age factors were significant; Table S1). In relation to muscle spoliation, only the WW group
had a reduced gastrocnemius muscle relative weight compared to its respective control
(WW < WC, ≈41% reduction; being age, tumour, and interaction factors significant for
this parameter; Table S1). Meanwhile, the tumour growth had no impact on the relative
liver weight; nevertheless, the age factor was significant (Table S1). Also, the relative
tumour weights were similar between the WW vs. AW groups (Table S1). As an indicator
of cachexia installation, the cachexia index differed between WW vs. AW groups (Table S1),
showing an intense spoliation, especially in the weanling tumour-bearing group (WW,
≈51% compared to AW, ≈21% of cachexia index).

Regarding serum parameters, as expected in cachectic animals, glucose levels de-
creased in both tumour-bearing groups (≈49% less in WW vs. WC; and ≈30% less in
AW vs. AC; Table S1). This reduction was more expressive in the WW group (33% lower)
than in AW; tumour and age factors were responsible for this significance (Table S1). The
same reduction pattern occurred for total protein (≈25% decreased, WW < WC; ≈11%
reduced, AW < AC; and ≈24%, WW <AW; showing that tumour, age, and interaction
factors were significant; Table S1) and albumin contents (reduction of ≈26%, WW < WC;
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≈18%, AW < AC; and ≈14% less, WW < AW; in which tumour and age factors were
significant; Table S1).

2.2. Liver Metabolic Differences Provided by Tumour Growth in Different Stages of Life

For liver metabolomics analysis, 49 metabolites were assigned, and a representative
spectrum of the metabolite assignment is presented in Figure S1. To guide the discussion,
we manually separated the metabolites into five groups: amino acids, lipid metabolism-
related metabolites, energy status and nucleotide-related metabolites, glucose metabolism
and other metabolites. Betaine was included in the amino acid category, as a modified
amino acid and lipid metabolism-related category, as a metabolite that participates in
glycerophospholipid metabolism. Moreover, we included the liver glycogen content in this
metabolite grouping.

In the amino acid category, 12 metabolites presented differences in liver tissue among
the groups (Figure 1). The tumour factor significantly affected all these metabolites; the age
factor was significant only for betaine and creatine (Table S2). Comparing the weanling
groups (WW vs. WC), the tumour growth increased the levels of seven amino acids
(WW > WC): aspartate, beta-alanine, betaine, creatine, glutamine, glycine and tryptophan
(Figure 1). In addition, comparing the adult groups (AW vs. AC), eight amino acids
increased (AW > AC): glutamine, glycine, phenylalanine, tyrosine, tryptophan, isoleucine,
leucine and valine. Regarding tumour growth, only glutamine and tryptophan were
increased independent of animal age. Comparing the tumour-bearing groups (WW vs.
AW), beta-alanine, betaine and creatine concentrations were enhanced in the WW group
compared to the AW (the WW group was over 2-fold higher than AW for these amino
acids) (Figure 1).

The total liver fat was increased in the AW group in relation to the AC and WW groups
(AW > AC, ≈45% of increase; AW > WW, ≈27% of increase; tumour, age and interaction
were significant; Figure 2a). Moreover, in relation to lipid metabolism-related metabolites,
five of them presented differences among the groups (Figure 2). The tumour factor had a
significant effect on all these metabolites, being the age factor significant only for betaine.
For O-phosphocholine, tumour, age and interaction had a significant effect (Table S2).
Comparing the weanling groups, we verified that tumour evolution raised the content of
3-hydroxybutyrate, betaine and choline (WW > WC) (Figure 2). In addition, comparing the
adult groups, three metabolites (choline, nicotinurate and O-phosphocholine) increased
due to tumour growth (AW > AC). In this way, regarding tumour growth, only choline
increased independently of group age. Comparing the tumour-bearing groups (WW vs.
AW), betaine (WW was 2.2-fold higher than AW) and O-phosphocholine (WW was ≈54%
lower than AW) concentrations differed in the WW group in relation to the AW group
(Figure 2).

Five liver metabolites showed differences among the groups for the energy status
and nucleotide-related metabolites (Figure 2). The tumour and interaction age/tumour
factors significantly impacted all these metabolites, except for hypoxanthine, in which the
interaction factor was not significant. In addition, the age factor had significant importance
only for NAD+ (Table S2). Thus, no differences were found between the weanling groups
(WW = WC). However, all metabolites showed differences when comparing both adult
groups (AW vs. AC). Uridine, xanthosine, hypoxanthine and inosine contents increased in
the AW group (AW > AC), but NAD+ was reduced (AW < AC). Comparing both tumour-
bearing groups (WW vs. AW), uridine and xanthosine content decreased in the WW group
compared to the AW group (WW was ≈48% lower than AW) (Figure 2).

Two metabolites were assigned for glucose metabolism-related metabolites, in which
the tumour factor had a significant effect, and also the interaction factor significantly led
to glycogen depletion (Table S2). Hepatic glycogen content was reduced in both tumour-
bearing groups in comparison to respective control groups [(WW < WC (≈98% less);
AW < AC (≈52% less)], and lactate was only increased in the adult group, in which the AW
group had 2.2-fold higher levels than the AC group. O-phosphoethanolamine increased
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in WW in relation to WC (WW > WC), and dimethylamine increased in AW compared to
AC (AW > AC); both metabolites were grouped into the “other category”, and the tumour
factor had a significant effect (Table S2).

Figure 1. Liver metabolites grouped into amino acids in weanling and adult control and tumour-bearing animals: (a) aspar-
tate; (b) beta-alanine; (c) betaine; (d) creatine; (e) glutamine; (f) glycine; (g) phenylalanine; (h) tyrosine; (i) tryptophan and
BCAAs: (j) leucine; (k) leucine; (l) valine. Legend: WC, weanling control group (n = 7); WW, weanling tumour-bearing group
(n = 10); AC, adult control group (n = 6); AW, adult tumour-bearing group (n = 8). Data were expressed as mean ± standard
deviation (SD), millimolar/milligram of liver tissue. Data were analysed by two-way ANOVA and corrected for multiple
comparisons by the post hoc test Bonferroni. a represents differences from the WC group b indicates differences from AC
group and c indicates differences from the WW group. Differences were significant when p < 0.05.
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Figure 2. Liver metabolites in weanling and adult control and tumour-bearing animals. Lipid metabolism-related
metabolites: (a) hepatic fat; (b) 3-hydroxybutyrate; (c) betaine; (d) choline; (e) nicotinurate; (f) O-phosphocholine; (g) O-
phosphoethanolamine. Energy status and nucleotide-related metabolites: (h) uridine; (i) NAD+; (j) xanthosine; (k) hypox-
anthine (l) inosine. Glucose metabolism-related metabolites: (m) glycogen; (n) lactate. Others: (o) dimethylamine. Legend:
WC, weanling control group (n = 7); WW, weanling tumour-bearing group (n = 10); AC, adult control group (n = 6); AW,
adult tumour-bearing group (n = 8). Data were expressed as mean ± standard deviation (SD), millimolar/milligram of liver
tissue or mg/100 g of liver tissue for glycogen content. Data were analysed by two-way ANOVA and corrected for multiple
comparisons by the post hoc test Bonferroni. a represents differences from the WC group, b indicates differences from AC
group and c indicates differences from the WW group. Differences were significant when p < 0.05.
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2.3. Liver Differences in Protein and Gene Expression Modified by Tumour Growth in Different
Stages of Life

Some protein expressions related to liver metabolism were evaluated, and the results
are available in Table S3. The total mechanistic target of rapamycin (mTOR) protein ex-
pression had no change among the comparisons made (WC = WW; AC = AW; WW = AW,
Figure 3a), but both tumour and age factors were significant for this protein (Table S3).
Additionally, the protein expression of phosphorylated mTOR was higher in AW when
compared to the WW groups (AW > WW, Figure 3b), also presenting a significant effect
by age and tumour factors (Table S3). The protein expression of total AMP-activated
protein kinase (AMPK) decreased in WW when compared to respective control (WW < WC,
Figure 3c), being the interaction significant for this difference (Table S3). However, phos-
phorylated AMPK remained unchanged in all groups (Figure 3d). Regarding the citrate
synthase expression, there was no change in WW animals when compared to their control.
However, this protein expression increased in the AW group in comparison to AC and
WW (AW > AC and AW > WW, Figure 3e), in which the age factor had a significant impact
(Table S3). In relation to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the ex-
pression levels decreased in both weanling and adult tumour-bearing groups (WW < WC;
AW < AC, Figure 3f), with the tumour acting as a significant factor for this difference
(Table S3).

Figure 3. Protein and gene expression in the liver of weanling and adult control and tumour-bearing animals. Western blot
analysis from: (a) total mTOR; (b) phosphorylated mTOR; (c) total AMPK; (d) phosphorylated AMPK; (e) citrate synthase;
(f) GAPDH; (g). The western blot images are representative of the total analysis of all animals in each group. Rt-PCR
analysis for gene relative expression of: (h) CREB1, (i) PEPCK and (j) PPAR α. Legend: WC, weanling control group (n = 7);
WW, weanling tumour-bearing group (n = 10); AC, adult control group (n = 6); AW, adult tumour-bearing group (n = 8).
Data were expressed as mean ± standard deviation (SD). The units used were as follows: (a–f): protein/vinculin protein
expression (optical density, OD—western blot image) and (h–j): relative protein expression (rt-PCR; expressed as arbitrary
unit- AU). Data were analysed by two-way ANOVA and corrected for multiple comparisons by the post hoc test Bonferroni.
a represents differences from the WC group and c indicates differences from the WW group. Differences were significant
when p < 0.05.

Also, to show gene expression related to the main analysed proteins, Table S4 presents
all data of the rt-PCR, showing all analysed genes. The CAMP responsive element binding
protein 1 (CREB1) was evaluated, and the age and the interaction between age/tumour
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factors were significant (Table S4) and the relative gene expression decreased in WW vs
AW (WW < AW; Figure 3h). Moreover, the relative expression of phosphoenolpyruvate
carboxykinase (PEPCK) was increased in WW when compared to the respective control
(WW > WC; Figure 3i). Comparing both tumour-bearing groups, the PEPCK relative
expression was reduced in the AW group in relation to the WW group (WW > AW).
Also, the age, tumour and interaction were significant for this result (Table S4). For
peroxisome proliferator-activated receptor alpha (PPAR α) expression, comparing both tumour-
bearing groups, the AW relative expression was diminished in relation to WW (WW < AW,
Figure 3j).

Regarding the mitochondrial liver content and activity, we also evaluated CI–V res-
piratory chain subunits (Figure 4a). The expression of the CII subunit was diminished in
WW animals compared to the respective control (WW < WC, Figure 4c). The expression
of the CIV subunit was also lower in the WW group when compared to the WC and AW
groups (WW < WC; WW < AW, Figure 4d). The interaction factor was significant for CII
and CIV subunit differences (Table S3). The CI, CIII and CV subunits remained unchanged
in all groups (Figure 4b,e,f, respectively).

Figure 4. Liver protein expression of the mitochondrial respiratory complex. (a) Western blot images are a representative
image of the mitochondrial respiratory complexes and the loading control vinculin of the total analysis of all animals in
each group. Analyses of the protein expression of mitochondrial respiratory complexes; the subunits protein expression
are presented in (b) V subunit; (c) III subunit; (d) IV subunit; (e) II subunit; and (f) I subunit. For subunit details, please
see the Material and Methods section. Legend: WC, weanling control group (n = 7); WW, weanling tumour-bearing group
(n = 10); AC, adult control group (n = 6); AW, adult tumour-bearing group (n = 8). Data were expressed as mean ± standard
deviation (SD). The units used were protein/vinculin protein expression (optical density, OD—western blot image). Data
were analysed by two-way ANOVA and corrected for multiple comparisons by the post hoc test Bonferroni. a represents
differences from the WC group and c indicates differences from the WW group. Differences were significant when p < 0.05.
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3. Discussion

The liver is also severely compromised, in addition to the widely studied loss of
skeletal muscle, during the progression of cancer cachexia. However, the hepatic role and
its alterations in this disease are still poorly understood [1,3]. Cancer cachexia is a clinical
need that is not totally met; thereby, preclinical studies designed with the correct choice of
the animal model are of extreme importance to elucidate the mechanisms and treatments
for this syndrome [22,23]. In this context, it is important to consider the differences in liver
metabolism responses to diseases and drug administration in accordance with the rodent
phase of life [21]. Therefore, here, we evaluated the impact of Walker-256 tumours on
changes in liver function, according to disturbance of hepatic metabolism and metabolomic
profile during tumour development in weanling and young adult rats.

The role of the liver during cancer-cachexia has aroused increasing interest, with
evidence suggesting that it is closely involved in cachexia-induced body weight loss and
muscle atrophy [24,25]. Following literature data, here, we found a diminished carcass
weight added to a reduction in serum albumin and total protein levels, features related
to the cachexia process. These results were similar to previous studies using the same
experimental model [26–28]. Of note, these alterations happened in both tumour-bearing
groups but were more severe in WW animals, likely suggesting a higher spoliation in
younger hosts, corroborating our previous report [17]. Although we did not find differences
in relative liver weight in the present study, we found an altered liver metabolomic profile,
gene and protein expressions imposed by the tumour growth, which were differentially
affected by life stage in tumour-bearing animals.

During cancer cachexia, the liver plays a central role in regulating the systemic
metabolic response to nutritional deficit [3]. Regarding glucose metabolism, we found
diminished serum glucose in parallel to a depletion in the liver glycogen stores in both
tumour-bearing groups. In this way, to provide glucose attempting to sustain the host
metabolism, this intense glycogenolysis, which is not maintaining the glycaemia, is associ-
ated with an increased gluconeogenesis process [29]. In muscle wasting during cachexia,
amino acids are mobilised and released from skeletal muscle, providing higher availability
of precursors for gluconeogenesis [29,30]. Moreover, liver gluconeogenesis could also
be supported by substrates provided from lipolysis (glycerol) and other sources, such
as lactate derived from muscle and tumour tissue [25]. In the present study, we found
an increase in amino acid content in the liver tissue of tumour-bearing animals. These
results are in accordance with a liver metabolomic study using the C26 cachexia murine
model [19] and possibly indicate that the uptake these substrates is derived from muscle
protein breakdown. Nevertheless, among the twelve amino acids found here, only the
content of glutamine, tryptophan and glycine increased in both tumour-bearing groups,
requiring further studies to better understand this differential increase in amino acids
between different stages of life.

The liver protein synthesis may also be affected during cancer cachexia. It was shown
that tumour burden increases protein synthesis rates in the liver of cachectic APCMin/+

tumour-bearing mice [31]. In this way, as mTOR is activated during protein synthesis [29],
the increased p-mTOR/mTOR ratio (1.4-fold in AW and 1.8-fold in WW rats) likely sug-
gests a higher liver activity in these tumour-bearing animals. Supporting this increased
activity, during muscle spoliation, the liver utilises the free amino acids available to syn-
thesise proteins, especially the acute-phase proteins, such as the C-reactive protein [32].
However, we did not find any change in C-reactive protein gene expression in either
tumour-bearing animal group. In addition to this point, similar to results from Pötgens
et al. [12], we also found a 5-fold higher pAMPK/AMPK ratio in WW, which is a hallmark
of a low-energy state in the liver. In our results, the activated mTOR likely led to an
enhanced in hepatic activity, which in the case of cachexia is likely associated with higher
liver AMPK [29], possibly favouring increased gluconeogenesis in these animals [29]. Cor-
roborating these findings, a study with the C26 model also showed higher activation of
liver’s AMPK expression, in which the phosphorylation of AMPK increased in body weight
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stable tumour-bearing mice and remained elevated in moderate cachexia [19]. In addition,
gluconeogenesis is regulated by the availability of gluconeogenic substrates [29]. Thus, the
main glucogenic and some ketogenic metabolites found increased in both tumour-bearing
animals, such as alanine, lactate and other amino acids, such as glutamine, glycine, trypto-
phan, isoleucine and phenylalanine, could give their carbon skeletons to be transformed
into new glucose [29,33,34], reinforcing the increased gluconeogenesis process.

Otherwise, the CREB1 expression, a gluconeogenic transcription factor phosphory-
lated by protein kinase A (PKA), which stimulates the expression of PEPCK, G6P and
PGC1α [35], unexpectedly decreased in WW rats, which is curiously followed by an aug-
mented expression of liver’ PEPCK (the main gluconeogenic enzyme) in these animals. In
this way, increased activation of gluconeogenesis represented a higher energy expenditure
by the Cori cycle, likely leading to an intense glucose demand, confirmed by the higher
host spoliation in the WW group. On the other hand, we reinforced that the liver function
changed in both tumour-bearing animals since the decrease in GAPDH protein expres-
sion might reflect the diminished activity of the glycolytic process, even with no changes
in GAPDH gene expression but similar liver content of NAD+ in WW, or significantly
decreased in the AW group. These results require further investigations since the main
protein keys found here were related to the increased gluconeogenesis process.

As mentioned above, the liver energy metabolism is deeply affected in cancer cachexia [36].
It is known that betaine and choline, in addition to being related to lipid metabolism,
are also involved in mitochondrial activity and function [37–39]. Recently, Lee suggested
that betaine is a positive regulator of mitochondrial respiration in betaine-treated H2.35
cells, an epithelial-like cell line derived from a primary hepatocyte culture, showing an
upregulation of mitochondrial respiration and cytochrome c oxidase activity added to
increased mitochondrial membrane potential and cellular energy levels [37]. However, our
results showed that the tumour’s effect in enhancing the content of these two metabolites in
the liver might likely be related to altered liver mitochondrial function. Corroborating this
fact, in C26 tumour-bearing mice, impaired liver mitochondrial dynamics has been reported
to contribute to altered bioenergetics and further impaired skeletal muscle respiration [20].
Halle et al. described that uncoupling of mitochondrial oxidative phosphorylation could
worsen the energy inefficiency contributing to body weight loss [20]. In this way, the
tumour evolution probably affected the liver mitochondrial activity by enhancing de novo
synthesis of choline and betaine as well, using phosphocholine (despite being increased
only in the AW group). This new synthesis occurs even under the lower nutritional
provision, as found by the anorexia presented in tumour-bearing mice [17]. Therefore,
even at increased levels of choline or betaine, there was a decrease in the enzymes CII and
CIII of the OXPHOS mitochondrial complex, suggesting the diminished mitochondrial
activity in the liver of the WW group. Similarly, Khamoui et al. [40] found decreased
protein expression of mitochondrial complex II and III in moderate and severe body weight
loss in C26-tumour-bearing mice. Moreover, the changes found in GAPDH and CREB1
protein expression could be related to a decreased glycolytic process, tricarboxilic acid cycle
and increased gluconeogenesis [29,40–42], respectively, probably reflecting a reduced liver
cell respiration and their inability to maintain ATP production. These alterations likely
implied mitochondrial dysfunction, contributing to the pronounced cachexia described in
this WW group.

Liver lipid metabolism is also disrupted by tumour evolution, which is linked with the
mentioned increased content of choline and betaine, as well as the O-phosphocholine and
nicotinurate augmented only in AW animals, possibly reflected in liver lipid accumulation,
as denoted by the higher liver lipid content. Additionally, these points could be associ-
ated with no change in WW, or even a decrease in the expression of PPAR-α, in the AW
group [43,44], which is likely related to hepatic steatosis [45,46] or enhanced lipid oxidation
or ketogenesis, suggested by increased 3-hydroxybutyrate in the WW group. These results
were similar to the one found by Pötgens’ [19], in which the expression levels of PPAR,
among other genes involved in mitochondrial fatty acid oxidation, were unchanged in
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C26 tumour-bearing mice. In addition, corroborating this point, we found increased con-
tent in uridine, xanthosine, hypoxanthine and inosine, metabolites related to purine and
pyrimidine metabolism, in both tumour-bearing groups regardless of animal age. These
alterations were likely related to changes in nucleotide metabolism and degradation [47].
In fact, as shown by Pillwein et al., these metabolites were directly affected in rat hepatoma,
showing compromised liver function [48]. However, AW animals had an important hepatic
impairment related to these metabolites, requiring further exploration of tumour effects
that affect this pathway in the liver of the tumour-bearing host.

As metabolic disturbance is one of the critical features during tumour development,
the present work reported the liver metabolic disruption due to the cachectic state under
different life stages, which may provide some points to better understand how the liver
could be altered in the face of these adverse tumour effects. Indeed, some study limitations
should be stated. Our results are restricted to the Walker-256 tumour preclinical model,
but more evidence about liver metabolism disturbance in cachexia condition arises. Also,
regarding the animal age choice in preclinical studies, young hosts are commonly used in
cancer cachexia studies. As we could see, more pronounced cachexia effects were presented
in weanling rats, although this condition is not found in the clinic. Therefore, more studies
are needed to better understand the liver function in cancer cachexia and guide possible
translational processes that improve conventional clinical treatment.

4. Materials and Methods
4.1. Animals and Experimental Protocol

Weanling (W ≈ 21 days old) and young adult Wistar rats (A, ≈90 days old) were
classified according to the developmental stage [49]. The animals obtained from the Animal
Facilities at the State University of Campinas, UNICAMP, Brazil) were housed in collective
cages under controlled environmental conditions (light and dark 12/12 h; temperature
22 ± 2 ◦C; and humidity 50–60%). They were monitored daily, weighed 3 times/week and
given food and water ad libitum.

The general guidelines of the United Kingdom Co-ordinating Committee on Cancer
Research [50] regarding animal welfare were followed, and the Institutional Committee
approved the experimental protocol for Ethics in Animal Research (CEEA/IB/UNICAMP,
protocol #4918-1/2018; # 5178-1/2019).

W and A animals were randomly distributed into four experimental groups. For
tumour-bearing groups, WW and AW rats were implanted with Walker 256 tumour cells
(2 × 106 viable cells Walker 256 tumour cells injected subcutaneously into the right flank)
and euthanised at pre-agonic state: 14th day of tumour evolution for WW, and 21st day
for AW. The control groups (WC and AC) received the same volume injection (0.5 mL) of
saline solution (0.9%) subcutaneously into the right flank. The maximal n for each group
was as follows: WC, n = 10; WW, n = 12; AC, n = 8; AW, n = 9. The control groups were
euthanised at the same time as the respective tumour groups. After euthanasia, carcass,
gastrocnemius muscle, liver and tumour were removed and weighed. Blood samples were
centrifuged at 12,000× g for 15 min, and the serum was collected and stored at −20 ◦C.
Fragments of liver were frozen directly in liquid nitrogen and stored at −80 ◦C for further
glycogen content, metabolomics, gene and protein expression analyses.

4.2. Serum Parameters and Cachexia Indexes

Serum glucose, total serum proteins and albumin were quantified spectrophotomet-
rically using commercial kits (Bioclin, Belo Horizonte, Brazil), according to the manufac-
turer’s instructions.

The following formula determined cachexia indexes: cachexia index = [(initial body
mass—carcass weight + tumour weight + body weight gain of control group)/(initial body
mass + body weight gain of control group)] × 100% [51]. The control groups considered
in the cachexia index formula were young adult (AC) and weanling (WC), for AW and
WW, respectively.
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4.3. Liver Glycogen and Lipid Quantification

The liver tissue (≈200 mg) was digested with 1 mL of KOH (30%, w/v) and heated in a
boiling water bath for 15 min. Total glycogen was extracted with ethanol (96%, v/v), spun
down for 10 min and the final volume was measured. The suspension of total glycogen
was added to 20 µL of H2SO4 and 200 µL of NaOH 1 M and boiled in a water bath for
10 min. The separated fraction was added to glacial acetic acid (94%, v/v), ortho-toluidine
(6% v/v) and thiourea following 10 min of boiling in a water bath and cooled in ice. The
total glucose detected was read in a spectrophotometer at 620 nm [52]. Total liver glycogen
was expressed as mg/100 g of liver tissue.

Total liver fat was extracted and quantified with petroleum ether using a soxhlet
apparatus. One gram of liver tissue was placed in the apparatus, and solvent was added
under controlled heating with an electric heating plate. After boiling, rinsing, solvent
recovery and pre-drying, the total fat amount was calculated and expressed as a percentage
of fat (g per 100 g hepatic tissue), as previously described [53].

4.4. Metabolomic Analysis

Liver samples were processed following the protocol established by Le Belle et al. [54].
Briefly, liver tissue fragments were weighed, added to a cold methanol/chloroform so-
lution (2:1 v/v, total of 2.5 mL) and sonicated (VCX 500, Vibra-Cell, Sonics & Material
Inc., USA) for 3 min with a 10 s pause interval between each minute. Afterward, a cold
chloroform/distilled water solution (1:1 v/v, total of 2.5 mL) was added to the samples.
Samples were briefly vortexed (to form an emulsion) and centrifuged at 3000× g for 20 min
at 4 ◦C. The upper phase (containing methanol, water and polar metabolites) was col-
lected and dried in a vacuum concentrator (miVac Duo Concentrator, GeneVac, UK). The
remaining solid phase was rehydrated in 0.6 mL of D2O-containing phosphate buffer
(0.1 M, pH 7.4) and 0.5 mM of TMSP-d4. Samples were added to a 5-mm NMR tube for
immediate acquisition.

1D proton nuclear magnetic resonance (1H-NMR) spectra acquisition was performed
using the Inova Agilent NMR spectrometer (Agilent Technologies Inc., Santa Clara, CA,
USA) operating at a frequency of 600 MHz, equipped with a triple resonance cold probe
at a constant temperature of 298 K (25 ◦C). A total of 256 scans were collected with 32-k
data points over a spectral width of 8000 Hz. An acquisition time of 4 s and 1.5 s relaxation
delay was incorporated between scans, during which a continual water pre-saturation
radiofrequency field was applied. After data acquisition, spectroscopic data pre-processing
was performed. Manual spectral processing, which included Fourier transform, phasing
correction, baseline correction, water region deletion, shim correction, apodisation (line
broadening with lb~0.3) and referencing control were applied before the profiling was
performed. The identification and quantification of the metabolites were made by computer-
assisted manual fitting using the Chenomx RMN Suite software (Chenomx Inc., Edmonton,
AB, Canada). To avoid bias, samples were randomly profiled blindly to the evaluator,
and identified metabolites fit each spectrum and double-checked by another evaluator.
Also, the metabolites found were crosschecked consulting the Chenomx and The Human
Metabolome Database (http://hmdb.ca (first accessed on 1 February 2021). The resulting
sample profiles consisting of each metabolite and its concentration were presented in
millimoles per litre/mg of liver tissue and analysed.

4.5. Protein Expression

Samples of liver tissue were lysed in RIPA buffer (150 mM NaCl, 25 mM Tris-Cl, pH 7.4,
5 mM EDTA, 1% (v/v) Triton-X, 0.5% (w/v) sodium deoxycholate) and supplemented with
protease and phosphatase inhibitors. After protein extraction protocol, protein concentra-
tion was measured by the bicinchoninic acid (BCA) method, following the manufacturer’s
instructions (Pierce™ BCA Protein Assay Kit, Sigma Aldrich, Poole, UK). The proteins
(40 µg) were separated by electrophoresis and transferred to nitrocellulose membranes,
certifying the transference by staining the proteins with Ponceau S. After that, the mem-

http://hmdb.ca
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branes were incubated with primary antibodies against PGC1-α (CellSignaling, Danvers,
MA, USA, 1:500), mTOR (CellSignaling 1:1000), p mTOR (CellSignalling 1:1000), AMPK
(CellSignaling 1:1000), p AMPK (CellSignalling 1:1000) FOXO 1 (CellSignaling 1:1000),
citrate synthase (Santa Cruz Biotechnology 1:1000), LDHa (CellSignaling 1:1000), GADPH
(Santa Cruz Biotechnology 1:1000, Santa Cruz, CA, USA), OXPHOS (Abcam 1:2000, Cam-
bridge, MA, USA) and vinculin (CellSignaling 1:1000) as a loading control. After that, the
membranes were probed with secondary antibodies conjugated with peroxidase, and bands
were visualised using a chemiluminescent reagent (ThermoFisher Scientific, Waltham, MA,
USA). The membrane images were captured using an image system (Amersham Imager
600, GE Healthcare, Uppsala, Sweden), and band volume quantitation was quantified by
Gel-Pro Analyzer software (Media Cibernetics, Inc., Rockville, MD, USA).

4.6. Gene Expression

Total RNA from liver tissue was extracted with TRIZOL® reagent (Invitrogen) follow-
ing the manufacturer’s instructions. The quality of the RNA samples was examined at
260/280 nm and 260/230 nm with a UV spectrophotometer (Nanovue Spectrophotometer
28923215 Ge BioSciences, USA). cDNA was produced using a high-capacity cDNA reverse
transcription kit (Applied Biosystems®, Waltham, MA, USA) containing MultiscribeTM

Reverse Transcriptase. cDNA was synthesised using 1 µg of RNA at 42 ◦C, according to a
high-capacity kit, following the manufacturer’s instructions. Real-time polymerase chain
reaction (rt-PCR) was performed using standard methods (ABI Prism 7500 Sequence Detec-
tion System; Applied Biosystems, Foster City, CA, USA). Gene expression was normalised
considering the expression of the beta-actin gene and calculated by applying the arithmetic
formula 2−∆∆Ct. The genes and primer sequences evaluated using rt-PCR are presented in
Table S5.

4.7. Statistical Analysis

The data analyses were performed by two-way ANOVA, followed by Bonferroni
post-hoc test to correct multiple comparisons. We direct the discussion with the following
comparisons: WC vs. WW, to extract the tumour effects in the weanling animals; AC vs.
AW, to extract the tumour effects in the young adult animals; and WW vs. AW, to extract
the age-related differences in the tumour-bearing animals. The student’s t-test was applied
to comparisons between WW vs. AW for cachexia indexes and relative tumour weight.
Data are expressed as means ± standard deviation (SD) and considered significant when
p ≤ 0.05 (Graph Pad Prism software, version 5.0, San Diego, CA, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11120831/s1, Figure S1: Representative liver 1H NMR spectra of a control group,
Table S1: Morphometric parameters in weanling and adult control and tumour-bearing groups,
Table S2: Liver metabolite concentrations in weanling and adult control and tumour-bearing groups,
Table S3: Protein expression in the liver tissue in weanling and adult control and tumour-bearing
groups, Table S4: Gene expression in the liver tissue in weanling and adult control and tumour-
bearing groups, Table S5: Primer sequences for gene expression in the liver tissue in weanling and
adult control and tumour-bearing groups.
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