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Abstract: Leptin is an obesity-associated adipokine that is known to regulate energy metabolism
and reproduction and to control appetite via the leptin receptor. Recent work has identified specific
cell types other than adipocytes that harbor leptin and leptin receptor expression, particularly in
cancers and tumor microenvironments, and characterized the role of this signaling axis in cancer
progression. Furthermore, the prognostic significance of leptin in various types of cancer and the
ability to noninvasively detect leptin levels in serum samples have attracted attention for potential
clinical applications. Emerging findings have demonstrated the direct and indirect biological effects
of leptin in regulating cancer proliferation, metastasis, angiogenesis and chemoresistance, warranting
the exploration of the underlying molecular mechanisms to develop a novel therapeutic strategy. In
this review article, we summarize and integrate transcriptome and clinical data from cancer patients
together with the recent findings related to the leptin signaling axis in the aforementioned malignant
phenotypes. In addition, a comprehensive analysis of leptin and leptin receptor distribution in a
pancancer panel and in individual cell types of specific organs at the single-cell level is presented,
identifying those sites that are prone to leptin-mediated tumorigenesis. Our results shed light on
the role of leptin in cancer and provide guidance and potential directions for further research for
scientists in this field.

Keywords: leptin; prognosis; cancer progression

1. Introduction

Leptin (LEP), a protein hormone secreted by adipose tissues, primarily functions as
the ligand of leptin receptor (LEPR) to regulate appetite and energy expenditure [1,2].
Leptin plays critical roles in the modulation of processes involving in the hormones syn-
thesis, blood pressure, reproduction, osteogenesis, hematopoiesis, angiogenesis, and im-
munity [3]. Moreover, leptin is also uncovered to participate in the pathophysiology of
energy metabolism [4], endocrine diseases [5], neurovascular diseases [6], or obesity and
metabolism-associated diseases [7]. Leptin is encoded by the OB gene on chromosome 7.
The 2 LEP isoforms and 6 LEPR isoforms are shown with the protein domains indicated
(Figure 1). The leptin receptor, encoded by LEPR, is a member of the class 1 cytokine
receptor family and has been indicated to play critical roles in the pathogenesis of many
malignant cancer types [1,8,9]. The downstream effects of leptin signaling can induce ma-
lignancies via the activation of specific signaling pathways in cancer cells [10–12]. Recent
studies indicate that leptin receptors are highly abundant in many cancer types [13–15].
Accumulated experimental results have highlighted the role of leptin–leptin receptor signal-
ing in promoting several processes linked to cancer progression, including cell proliferation,
metastasis, angiogenesis and chemoresistance [16–19]. In this review article, we integrate
and summarize the current literature on this topic, focusing on evidence demonstrating
leptin/leptin receptor expression levels in a broad range of cancer types together with its

Int. J. Mol. Sci. 2021, 22, 2870. https://doi.org/10.3390/ijms22062870 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5985-3580
https://orcid.org/0000-0001-8529-9213
https://doi.org/10.3390/ijms22062870
https://doi.org/10.3390/ijms22062870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22062870
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22062870?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 2870 2 of 18

biological effects on the regulation of several critical processes related to cancer progression.
In addition to the biological function of the leptin axis in cancer, its clinical and prognostic
significance in multiple cancer types is illustrated.

Figure 1. Human LEP (A) and LEPR (B) isoforms. The data were retrieved and analyzed from RefSeq. The protein domains
of various isoforms are indicated in orange. The start of transcription and stop codon position are indicated by green and
red arrowheads, respectively.

2. Leptin and Leptin Receptor Expression in Cancer

Single-cell RNA sequencing (scRNA-seq) has become a powerful tool to delineate
the composition of different cell types or states in a given tissue on the basis of sets of
differentially expressed genes [20–23]. Recently, scRNA-seq of normal tissue led to the
discovery of specific biomarkers in multiple cell types that might contribute to cancer
development [24]. A new cell-type atlas with publicly available genome-wide expression
scRNA-seq data of 192 individual cell-type clusters from 13 different human tissues was
launched in November 2020 (The Human Protein Atlas, https://www.proteinatlas.org/,
accessed on January 2021) [25]. The leptin receptor expression in the four normal tissues
with the highest leptin receptor levels, namely, the skin, lung, liver, and heart, is shown
at the single-cell scale (Figure 2). Relatively high leptin receptor expression was detected
in fibroblasts, endothelial cells, and macrophages in skin tissue. Hepatocytes, Ito cells,
endothelial cells and cholangiocytes in the liver all showed leptin receptor expression.
In addition, leptin receptor expression was specifically detected in alveolar type 2 cells
and endothelial cells compared with other lung cell types. In the heart, leptin receptor
expression was found in endothelial cells, mixed immune cells, smooth muscle cells, and
fibroblasts, but not in cardiomyocytes. These observations further suggest potential sites of
leptin-mediated signaling that may play roles in tumorigenesis.

https://www.proteinatlas.org/
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Figure 2. LEPR expression in single cells of different types. The LEPR expression level was analyzed by single-cell RNA
sequencing (scRNA-seq) in various human tissues. The RNA expression levels in the cell type clusters identified in each
tissue were visualized by a UMAP plot of single cells (top) and in a bar chart (bottom). The read counts were normalized to
transcripts per million protein-coding genes (pTPM) for each cluster.
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Cancer cells and the tumor microenvironment expressing leptin and leptin receptors
suggest that the potential leptin autocrine/paracrine signaling loop could affect tumor
progression. A total of 32 blood samples from colorectal cancer patients and 25 healthy
subjects were analyzed for serum levels of leptin. Leptin was significantly higher in patients
than in controls (p < 0.05) [26]. An immunohistochemical analysis of bone metastatic tissue
of breast cancer further showed that the leptin receptor was prevalently expressed in the
cytosol and the nuclei of metastatic cells, whereas leptin was detected in both metastatic
cells and stromal cells [27]. A cohort of gastric cancer enrolling 117 newly diagnosed and
untreated patients was studied. The results indicated that LEPR methylation levels were
significantly lower in tumor samples than in adjacent (5 cm away) nontumor samples,
suggesting the potentially high expression level of leptin receptor in gastric cancer [28].
An immunohistochemistry study using a tissue microarray of bladder cancer showed
that strong leptin expression tended to be present more often in tumors than in benign
tissues [29]. Higher RNA levels of both leptin and leptin receptors were found in prostate
cancer patients than in healthy controls in a study including 176 men [30]. Leptin levels
in patients with endometrial cancer were significantly higher than those in the control
group [31].

Relative leptin and leptin receptor expression data from different types of cancers were
retrieved from a public database (https://ist.medisapiens.com/, accessed on January 2021)
(Figure 3). The relative leptin expression level is high in head and neck cancer, peritoneal
cancer, pancreatic cancer, cervical cancer, and breast cancer. In addition, leptin receptor
expression is relatively high in liver cancer, indicating the potential pathological roles of
this axis in cancers.

Figure 3. LEP and LEPR expression in a pancancer panel. In a pancancer dataset, LEP and LEPR expression levels were
presented separately in various cancer types. The colored dots represent individual patients with higher expression of the
indicated molecule among all cancer types. The raw data were retrieved from the online IST database.

https://ist.medisapiens.com/
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3. LEP Somatic Mutations and Cancer

Genetic variants of the LEP gene in cancer patients have been reported in several
studies. In a case-control study with 380 gastric cancer patients and 465 normal controls,
the LEP G19A polymorphism was statistically correlated with a decreased risk of cancer
susceptibility [32]. Similar results were published exploring this association in a bladder
cancer cohort enrolling 355 cancer cases and 435 controls (all Chinese Han). The LEP
G19A polymorphism was reported to be significantly associated with lower cancer risk,
smaller tumor size, less node metastasis, and less distant metastasis [33]. In a colorectal
cancer cohort of 1003 cases and 1303 matched controls, LEPR rs6588147, rs1137101, and
LEP rs2167270 polymorphisms were found to be associated with a decrease in cancer risk,
whereas LEPR rs1137100 was associated with cancer susceptibility [34]. In addition, a com-
prehensive encyclopedia of somatic mutation calls in cancer patients has been published
by TCGA [35]. LEP mutation signatures in several cancer types are shown (Table 1).

Table 1. LEP and LEPR mutations in 5 major types of cancer.

Lung Liver Colon Glioblastoma Ovarian

LEP
p14p p23p t37t t48m
m89i l101l e102g w121r g8r p23l c7c v134cfs*38
h109l v134a g166v l161q

LEPR

a21s l24f p30t
44n a51d y64f

e65d r92r i123i
s146* y155f q182q
h185y v229v p264s
i281f a284a s303s x14_splice d124y
s320i t330k p338s g179afs*35 v198a
t342a g345w g345v s256y s303s
s385t n395qfs*4 e424* x429_splice l1094f
i432i t451a l464m v430i s541p s60l
c498y r514s d523y t685s w558* r573h a458v t85i
e565q v600f d602y k994k s595s l598p x799_splice q463h
y630f m640v k1135* f1104y v606v r612c s905*
g651r q677h s686f i814l i845t s1090i
c687g g696e l715p v846v d921y
w758* v792l e805* s927s q1034h
q837k l860i w883r k1074t s1090r
k891k a904t l942v
s952c q958* e971d

l1020m s1027r l1061l
e1070* g1081v s1084*
k1086r e1089* r1114k
l1116l g1131v

Missense and frameshifts mutation (fs) were labelled in red color. Silent, nonsense (*) and splice site (_splice) mutations were labelled in
blue color.

3.1. Leptin and Ovarian Cancer

The influence of leptin on chemoresistance in epithelial ovarian cancer has been stud-
ied. Treatment with exogenous leptin decreased paclitaxel/docetaxel-induced G2/M phase
cell cycle arrest in ovarian cancer cells [36]. However, experimental results from another
research group showed that serum levels of leptin were not correlated with the response
to paclitaxel/carboplatin therapy in ovarian cancer patients [37]. Leptin-induced ovarian
cancer cell invasion via overexpression of MMP7, MMP9, and uPA was reported, and the
involvement of the estrogen-independent role of ERα in regulating the phenotype was
indicated [38]. In addition, leptin was found to elicit matrix metalloproteinase 7 expression,
leading to increased ovarian cancer cell invasion via ERK and JNK pathway activation [39].
Furthermore, the RhoA-ROCK signaling axis was verified to mediate leptin-promoted uPA
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expression to promote cell invasion in ovarian cancer cells [40]. Leptin has also been shown
to regulate cancer cell proliferation. The biological effect of leptin on inducing ovarian
cancer cell growth was mediated by an increase in cyclin D1 and Mcl-1 expression after
the activation of the PI3K/Akt and MEK/ERK1/2 signaling axes [41]. Treatment with
recombinant leptin was found to contribute to ovarian cancer cell migration, invasion,
peritoneal metastasis and epithelial-mesenchymal transition (EMT), and the malignant
phenotypes were caused by activation of the PI3K/Akt/mTOR signaling pathway [42]. The
overexpression of histone deacetylases (HDACs) was known to elicit carcinogenesis, and
leptin receptor antagonists, SHLA and Lan2, were shown to eliminate the effect induced
by leptin in ovarian cancer [43].

3.2. Leptin and Brain Tumor

Leptin and its receptor were reported to be highly expressed in brain tumors, and
the patients with the tissues displaying those biomarkers associated with the degree of
malignancy [44]. The roles of the leptin-leptin receptor signaling axis in brain tumor
progression were evaluated. The biological interaction of leptin with Notch signaling
pathways was found to be required for glioblastoma multiforme (GBM) development and
progression. The activation of leptin downstream effectors induced growth and motility
in GBM cells, and the induced effects on GBM cancer cells were inhibited by the selective
leptin antagonist as well as by the specific inhibitor of Notch signaling, suggesting that
leptin/Notch crosstalk may be a potential novel target for GBM therapeutics [45]. Leptin
treatment alone and cotreatment with secreted phospholipase A2-IIA (sPLA2-IIA) led to
the phosphorylation activation of the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway, thereby
inducing cell proliferation in the human astrocytoma cell line 1321N1 [46]. In addition,
leptin signaling is linked to angiogenesis in glioblastoma, and the correlation of leptin
receptors with vasculogenic mimicry (VM) has been identified [47]. The observation of the
leptin signaling axis in inducing angiogenesis was then reported by another group, which
further showed the reverse effect of Aca1 (leptin receptor antagonist) on endothelial cell
tube formation activity [48]. Moreover, ectopic leptin receptor overexpression resulted in
temozolomide (TMZ) resistance in glioblastoma, and the involvement of stem/progenitor
cell properties and STAT3 signaling was indicated [49].

3.3. Leptin and Breast Cancer

The reciprocal interaction of the adipose microenvironment and breast cancer tissue
is a critical factor in promoting cancer cell migration [50]. Experimental results showed
that adipose cells led to a decrease in the viability of myoepithelial cells (MECs), which
are known as tumor suppressor cells that block the transition from ductal carcinoma in
situ to invasive carcinoma. Both leptin amplification and the disruption of genes involved
in extracellular matrix maintenance were observed during this stage [51]. The effect
of the adipokine leptin on normal mammary epithelial cells was investigated. Leptin
treatment triggers EMT-like features, including migration speed, via the interdependent
activity of leptin receptor and Ca2+ channel-mediated myosin light chain kinase-2 (MLC-
2) phosphorylation [52]. An orthotopic implantation metastasis model further revealed
that plasminogen activator inhibitor-1 (PAI-1) is required for breast cancer metastasis.
Mechanistically, the upregulation of PAI-1 expression was elicited by leptin-LEPR-miR-34a
axis-mediated STAT3 signaling activation [53]. Leptin also elicits metabolic reprogramming
in breast cancer. This function was found to be accompanied by autophagy activation and
SREBP-1 induction, leading to stimulated cell proliferation [54]. A breast cancer cohort
including 106 cases was studied. Higher leptin receptor expression levels were associated
with an increased incidence of bone metastasis in breast cancer patients. Leptin addition
also activated the SDF-1/CXCR4 axis to promote invasive behavior in the breast cancer
cell lines MCF-7 and SK-BR-3 [55]. The loss of LEPR expression in breast cancer was
also observed to modulate the tumor microenvironment. With LEPR loss, cancer cells
exhibited a less aggressive phenotype, and macrophage recruitment was abolished; the
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phagocytic activity and cytokine production of macrophages also appeared to decrease [56].
Cotreatment with leptin and adipose tissue-derived fibroblast growth factor-2 (FGF2) was
reported to induce the malignant transformation of breast epithelial MCF-10A cells, and this
effect was found to be attenuated by ruxolitinib and AG490, two separate inhibitors of Jak2,
which is downstream of the leptin receptor, suggesting the critical interplay of leptin, leptin
receptor and Jak2 in cancer progression [57]. The inhibitory effects of globular adiponectin
on leptin-promoted inflammasome activation and tumor growth were further verified
in breast MCF-7 cell and xenograft models via mechanisms including HO-1 induction
and ER-α signaling modulation [58]. In addition, tamoxifen was found to increase the
expression of leptin receptor in breast cancer cell lines, leading to the decrease of drug
sensitivity in inhibiting cell proliferation [59].

3.4. Leptin and Liver Cancer

The role of the leptin-leptin receptor axis in triggering hepatic tumor malignancy was
identified. Leptin was discovered to elicit the phosphorylation activation of STAT3, ERK1/2,
and Akt in liver cancer cells, thereby enhancing cell proliferation and migration ability. In
particular, the adaptor protein APPL1 directly interacts with STAT3 and leptin receptors
to enhance the aforementioned phenotypes in the human hepatocellular carcinoma cell
line HepG2 [60]. In addition, leptin receptor was characterized to be expressed in various
types of cancer, suggesting biological functions for leptin outside of appetite regulation.
Overexpression of leptin receptor was significantly associated to the unfavored TNM status
in hepatocellular carcinoma [61]. In another report of human hepatocellular carcinoma,
leptin/leptin receptor expression was observed in both tumor and endothelial cells, in
parallel to the degree of angiogenesis [62]. The underlying mechanisms of LEPR in liver
cancer metastasis were addressed. LEPR could enhance proliferation, migration, and
invasion and inhibit apoptosis in lymphatic metastasis of hepatocellular carcinoma by
directly interacting with ANXA7 [63]. Interestingly, the leptin-derived peptide (mimetic),
OB3, was able to abolish leptin-induced cell proliferation by reducing phosphoinositide
3-kinase (PI3K) activation and the expression of proinflammatory genes in hepatocellular
carcinoma cells [64]. The opposite function of leptin in cell proliferation was reported in
rat hepatocellular carcinoma, which occurs via a p38-MAPK-dependent signaling pathway
to attenuate serum-induced H4IIE cell proliferation [65].

3.5. Leptin and Colorectal Cancer

Notably, a study in colon cancer demonstrated that leptin could upregulate miR-4443
to restrain TRAF4 and NCOA1 expression, leading to decreased cancer invasion [66]. In
addition, leptin stimulation was found to promote the migration and invasion of cultured
HCT-116 cells, tumor growth in the xenograft model and the upregulation of SIRT1. These
effects were abolished by the addition of the SIRT1 inhibitor sirtinol, indicating the critical
involvement of SIRT1 in obesity-associated colon carcinogenesis [67]. The critical role
of leptin receptor expression in the proliferation of colorectal carcinoma has also been
evaluated in the clinic. The absence of leptin receptor expression was found to be associated
with a low tumor proliferation index in 94.1% of cases [68]. In a cohort study of 75 colorectal
carcinoma patients, elevated LEPR expression was accompanied by the observation of
neoangiogenesis and an increase in metastatic potential [69]. The carcinogen-induced
aberrant crypt foci (ACF) was reduced in the intestinal epithelium-specific leptin receptor
conditional knockout mice accompanied by the activation of STAT3 signaling, indicating its
impact on tumorigenesis [70]. Interestingly, the unique ability of leptin to target the leptin
receptor was exploited to enhance drug delivery in colon cancer. PEGylated liposomal
doxorubicin decorated with a leptin-derived peptide (Lp31) showed improved uptake
by and cytotoxicity against C26 cells. The results of animal experiments revealed the
suppression of tumor growth, consistent with the increased doxorubicin concentration
in tumor tissue [71]. A similar outcome was published by another group using leptin-
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derived peptide (LP16, 91–110 of leptin) to reduce tumor growth in a C26 colon carcinoma
tumor-bearing mouse model [72].

3.6. Leptin and Lung Cancer

The expressions of leptin and leptin receptor were significantly higher in non-small-
cell lung cancer (NSCLC) tissues than in normal lung tissues [73]. In addition, a cohort
of 71 patients with early-stage NSCLC was studied. The mean serum leptin level was
found to be significantly higher in patients with adenocarcinoma than in those with the
squamous cell subtype, suggesting that measuring serum leptin could be a noninvasive
method for pathological diagnosis [74]. In clinical data, the correlation of leptin and leptin
receptor expression with bone metastasis was detected in pulmonary adenocarcinoma
patients [75]. Leptin was able to induce EMT in the lung cancer cell line A549, thereby
promoting cell migration, invasion, and tumorigenesis. The study also provided evidence
that leptin-induced malignancies were driven through the activation of the ERK signaling
axis [76]. In a study of brain metastasis of lung adenocarcinoma, activation of leptin
signaling was highlighted in the context of the lnc-REG3G-3-1high/miR-215-3plow axis [77].
The assessment of leptin drug resistance showed that bone marrow-derived mesenchymal
stem cells could release leptin to induce erlotinib resistance in lung adenocarcinoma cells
by activating IGF-1R signaling in a hypoxic environment, suggesting a predictive role of
leptin expression for therapeutic response [78]. Similar observations showed that leptin
overexpression decreased the cisplatin-mediated ER stress unfolded protein response
pathways PERK and ATF6 to promote lung adenocarcinoma A549 cell proliferation [79].
In addition, a carcinogenic role of leptin in the tumor microenvironment was discovered.
Leptin secretion from cancer-associated fibroblasts (CAFs) could trigger the proliferation
and migration of NSCLC cells through the activation of the PI3K-AKT and MAPK-ERK
signaling axes in a paracrine manner [80].

3.7. Leptin and Pancreatic Cancer

Oncogenic hypoxia inducible factor (HIF)-1α was identified to bind directly to hypoxia-
responsive elements (HREs) located in the LEPR gene promoter (-828/-832), thereby
activating downstream transcriptional events in pancreatic cancer cells, suggesting the
potential significance of the leptin receptor-mediated axis during hypoxia [81]. In a study
of pancreatic cancer, the results demonstrated that exogeneous leptin could enhance cell
proliferation, glucose uptake and lactate production in a dose-dependent manner, and
that this was accompanied by elevated expression of the glycolytic enzymes hexokinase II
and glucose transporter 1, suggesting the potential involvement of glucose metabolism
in pancreatic cancer progression [82]. In addition, simultaneously high leptin receptor
and MMP13 production exhibited a positive correlation with TNM status in pancreatic
cancer patients. Leptin-induced cancer cell migration, invasion and metastasis were also
observed in a pancreatic orthotopic model [83]. Another research group further indicated
that leptin could promote cancer progression and increase ABCB1 protein synthesis in
pancreatic cancer [84]. Emerging studies have referred to the participation of the leptin
signaling axis in drug resistance. Leptin levels in serum were found to be higher in
patients with pancreatic adenocarcinoma and correlated with resistance to gemcitabine
chemotherapy [85]. Furthermore, leptin was reported to elicit chemoresistance in pancreatic
ductal adenocarcinoma, and the results indicated that gemcitabine resistance develops
via miR-342-3p upregulation-dependent inhibition of KLF6 signaling in cancer cells [86].
Leptin also decreased 5-fluorouracil (5-FU) cytotoxicity and promoted cell proliferation,
colony formation ability, and stem cell pluripotency. The expression of EMT markers, drug
efflux proteins (ABCC5, ABCC11) and Notch appeared to be upregulated [87]. The role
of leptin receptor in pancreatic cancer was also reported. Reduction of leptin receptor by
shRNA knockdown was observed to partially abrogate tumor growth in obese mice of
orthotopic murine pancreatic cancer model [88].
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3.8. Leptin and Other Types of Cancer

In prostate cancer, an increase in DU145 cell proliferation and invasion and a de-
crease in cell apoptosis due to ERK1/2 signaling activation after leptin treatment were
reported [89]. The effect of leptin on prostate cancer progression was assessed in DU-145
and PC3 cell lines. Leptin treatment appeared to promote cancer cell migration and EMT
transition by activating the STAT3 pathway [90]. Findings in human gallbladder cancer
suggested the requirement of leptin-leptin receptor signaling axis activation in cancer pro-
gression because leptin increased cell proliferation via the leptin receptor [91]. In myeloma,
bortezomib treatment-induced cytotoxicity was attenuated by leptin, accompanied by
the upregulation of cyclin D1 and Bcl-2 and downregulation of caspase 3 [92]. In chon-
drosarcoma, there is significant evidence that leptin can induce VEGF-C expression and
its secretion, contributing to the lymphangiogenesis of human lymphatic endothelial cells
by repressing miR-27b [93]. Leptin-dependent regulation of tube formation in endothelial
progenitor cells was shown in a chondrosarcoma cell study. MAPK signaling was acti-
vated to induce AP-1 binding to the VEGF-A promoter and initiate transactivation upon
stimulation of the leptin-leptin receptor signaling axis in cancer cells [94]. In addition, a
correlation analysis further indicated the positive association of leptin and leptin receptor
levels with lymph node metastasis in endometrial cancer patients [95]. A study aiming to
counteract leptin-mediated cancer metastasis was reported. Adiponectin was found to at-
tenuate leptin-elicited SPEC-2 endometrial cancer metastasis by inhibiting the JAK/STAT3
pathway via AMPK activation [96]. In a study of squamous cell carcinoma of the skin,
leptin receptor expression as evaluated by immunostaining was significantly correlated
with poor differentiation, proliferation index and tumor histologic grade [97]. Another
clinical study revealed that cutaneous melanoma patients with higher leptin levels in serum
samples also had a high risk of sentinel lymph node metastasis [98]. In addition, elevation
of VEGF-A expression by leptin was reported in melanoma [99]. The demonstrations of
main biological effects (Table 2) and signaling axes (Figure 4) induced by leptin/leptin
receptor in different cancer types were shown.

Table 2. Main effects of leptin/leptin receptor in different cancer types.

Proliferation Angiogenesis Metastasis Apoptosis Drug Resistance

Ovarian Cancer ↑: [41] ↑: [38–40,42] ↑: (paclitaxel/docetaxel) [36]

Brain Tumor ↑: [45,46] ↑: [47,48] ↑: [45] ↑: (temozolomide) [49]

Breast Cancer ↑: [54,58] ↑: [53,55]

Liver Cancer
↑: [60,63] ↑: [60,63] ↓: [63]↓: [65] (rat)

Colorectal Cancer ↑: [67,70]
↑: [67]
↓: [66]

Lung Cancer ↑: [79,80] ↑: [76,77,80] ↑: (erlotinib) [78], (cisplatin) [79]

Pancreatic Cancer ↑: [82,87,88] ↑: [83] ↑: (gemcitabine) [86], (5-FU) [87]

Prostate Cancer ↑: [89] ↑: [89,90] ↓: [89]

Gallbladder cancer ↑: [91]

Myeloma ↑: (bortezomib) [92]

Chondrosarcoma ↑: [93,94]

↑: increase.↓: decrease.



Int. J. Mol. Sci. 2021, 22, 2870 10 of 18

Figure 4. Signaling axes modulated by leptin/leptin receptor.

4. Correlation of Leptin and Leptin Receptor Levels with Clinical Outcomes in Cancer

The clinical association of leptin and leptin receptor expression with cancer patient
outcomes has been explored, and the positive association of leptin with hepatocellular
carcinoma risk was recently reported [100]. Interestingly, the specific cellular localization of
leptin shows prognostic power; its nuclear expression was identified to be significantly asso-
ciated with overall survival in patients with clear cell renal cell carcinomas [101]. In bladder
cancer, a multivariate analysis revealed a higher risk of progression (HR = 5.148, 95% CI
= 1.190–22.273; p = 0.028) in patients with leptin-positive muscle-invasive tumors [29].
In addition, a positive association between LEPR mRNA expression and unfavorable
prognosis was found in prostate cancer [90]. A similar positive correlation was also discov-
ered between leptin/leptin receptor overexpression and distant metastasis in a cohort of
176 prostate cancer patients [30]. The expression levels of leptin and its receptor were both
found to be associated with unfavorable prognosis in patients with endometrial cancer
(3-year survival rate) [95]. A cohort study enrolling ovarian cancer patients indicated a
significant correlation of leptin and leptin receptor coexpression with shorter survival
time [102]. In addition, serum leptin and leptin receptor RNA expression showed a positive
association with cancer recurrence and mortality in triple-negative breast cancer [103]. Lep-
tin levels also exhibited a positive correlation with poor prognosis in ovarian cancer [42],
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and high leptin levels were found in multiple myeloma patients and to correlate with clini-
cal stage [92]. The leptin receptor also displays prognostic significance in the clinic. Patients
with glioblastoma showing poor prognosis have high leptin receptor levels [47]. In upper
tract urothelial carcinomas, leptin receptor expression was associated with unfavorable
prognosis for recurrence-free survival (p = 0.09) and cancer-specific survival (p = 0.01) by
log-rank test. Cox regression analysis further characterized leptin receptor expression as an
independent biomarker predicting poor survival [104]. In contrast, results illustrating the
negative correlation of leptin or leptin receptors with cancer progression have also been re-
ported. Immunohistochemical staining showed that cytoplasmic leptin was less frequently
observed in breast cancers with unfavorable prognosis [105]. In nonmetastatic renal cell
carcinoma, a relatively high disease recurrence rate and low recurrence-free survival rate
were associated with high CpG methylation in the LEPR gene promoter region [106]. LEP
RNA expression profiles investigated by RNA-seq and microarray approaches have been
released together with clinical patient follow-up data from public databases, including
The Human Protein Atlas/The Pathology Atlas [25,107–110] and the Kaplan–Meier plotter
database [111], which illustrate the prognostic value of LEP in specific cancer types (Table 3).
LEP was an unfavorable prognostic marker in cohorts of glioma, lung cancer, colorectal
cancer, renal cancer, ovarian cancer, and melanoma, while in patients with thyroid cancer,
pancreatic cancer, and breast cancer, high LEP levels were associated with favorable out-
comes. LEPR is a well-known receptor that triggers leptin-mediated biological effects. The
correlation with cancer patient survival outcomes is also listed for comparison in Table 4.
High LEPR expression is associated with poor outcomes in patients with thyroid cancer,
breast cancer, cervical cancer, ovarian cancer, and gastric cancer. The clinical discrepancy
observed among different research groups might result from the differences including the
human races, case numbers enrolled in each cohort, endpoint setting, quality of care in
hospitals, detection platforms (microarray vs next generation sequencing), random errors,
and the involvement of complicated interaction networks contributing to the different
outcomes in specific cancer types.
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Table 3. Correlation of LEP with cancer patient survival.

Symbol Cancer Type Prognosis Endpoint p-Value Case Dataset Method Probe ID

LEP Glioma Poor Overall survival 0.01 153 TCGA RNA-seq

LEP Thyroid Cancer Good Overall survival 0.022 501 TCGA RNA-seq

LEP Lung Cancer Poor Overall survival 0.0066 994 TCGA RNA-seq

LEP Colorectal Cancer Poor Overall survival <0.001 597 TCGA RNA-seq

LEP Head and Neck Cancer - Overall survival N.S. 499 TCGA RNA-seq

LEP Stomach Cancer - Overall survival N.S. 354 TCGA RNA-seq

LEP Liver Cancer N/A Overall survival N/A 365 TCGA RNA-seq

LEP Pancreatic Cancer Good Overall survival 0.025 176 TCGA RNA-seq

LEP Renal Cancer Poor Overall survival 0.001 877 TCGA RNA-seq

LEP Urothelial Cancer - Overall survival N.S. 406 TCGA RNA-seq

LEP Prostate Cancer - Overall survival N.S. 494 TCGA RNA-seq

LEP Testis Cancer - Overall survival N.S. 134 TCGA RNA-seq

LEP Breast cancer Good Overall survival 0.0082 1075 TCGA RNA-seq

LEP Cervical Cancer - Overall survival N.S. 291 TCGA RNA-seq

LEP Endometrial Cancer - Overall survival N.S. 541 TCGA RNA-seq

LEP Ovarian Cancer Poor Overall survival 0.014 373 TCGA RNA-seq

LEP Melanoma Poor Overall survival 0.02 102 TCGA RNA-seq

LEP Breast cancer Good Overall survival 0.037 1402 E-MTAB-365, E-TABM-43, GSE: 11,121, 12,093, Array 207092_at
12,276, 1456, 16,391, 16,446, 16,716, 17,705, 17,907,
18,728, 19,615, 20,194, 20,271, 2034, 20,685, 20,711,
21,653, 2603, 26,971, 2990, 31,448, 31,519, 32,646,
3494, 37,946, 41,998, 42,568, 45,255, 4611, 5327,

6532, 7390, 9195

LEP Ovarian cancer - Progression-free survival N.S. 1435 GSE: 14,764, 15,622, 18,520, 19,829, 23,554, 26,193, Array 207092_at
26,712, 27,651, 30,161, 3149, 51,373, 63,885, 65,986, RNA-seq

9891, TCGA (N = 565)
LEP Lung cancer - Post-progression survival N.S. 344 CAARRAY, GSE: 14,814, 19,188, 29,013, 30,219, Array 207092_at

31,210, 3141, 31,908, 37,745, 43,580, 4573, 50,081, RNA-seq
8894, TCGA (N = 133)

LEP Gastric cancer - Overall survival N.S. 875 GSE: 14,210, 15,459, 22,377, 29,272, 51,105, 62,254 Array 207092_at

Survival data was collected from The Human Protein Atlas, Kaplan-Meier plotter databases. N.S.: no significance. N/A: not applicable.
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Table 4. Correlation of LEPR with cancer patient survival.

Symbol Cancer Type Prognosis Endpoint p-Value Case Dataset Method Probe ID

LEPR Glioma - Overall survival N.S. 153 TCGA RNA-seq

LEPR Thyroid Cancer Poor Overall survival 0.035 501 TCGA RNA-seq

LEPR Lung Cancer - Overall survival N.S. 994 TCGA RNA-seq

LEPR Colorectal Cancer - Overall survival N.S. 597 TCGA RNA-seq

LEPR Head and Neck Cancer - Overall survival N.S. 499 TCGA RNA-seq

LEPR Stomach Cancer - Overall survival N.S. 354 TCGA RNA-seq

LEPR Liver Cancer - Overall survival N.S. 365 TCGA RNA-seq

LEPR Pancreatic Cancer - Overall survival N.S. 176 TCGA RNA-seq

LEPR Renal Cancer - Overall survival N.S. 877 TCGA RNA-seq

LEPR Urothelial Cancer - Overall survival N.S. 406 TCGA RNA-seq

LEPR Prostate Cancer - Overall survival N.S. 494 TCGA RNA-seq

LEPR Testis Cancer - Overall survival N.S. 134 TCGA RNA-seq

LEPR Breast cancer Poor Overall survival 0.016 1075 TCGA RNA-seq

LEPR Cervical Cancer Poor Overall survival 0.0011 291 TCGA RNA-seq

LEPR Endometrial Cancer - Overall survival N.S. 541 TCGA RNA-seq

LEPR Ovarian Cancer Poor Overall survival 0.0066 373 TCGA RNA-seq

LEPR Melanoma - Overall survival N.S. 102 TCGA RNA-seq

LEPR Breast cancer - Overall survival N.S. 1402 E-MTAB-365, E-TABM-43, GSE: 11,121, 12,093, Array 207255_at
12,276, 1456, 16,391, 16,446, 16,716, 17,705, 17,907,
18,728, 19,615, 20,194, 20,271, 2034, 20,685, 20,711,
21,653, 2603, 26,971, 2990, 31,448, 31,519, 32,646,
3494, 37,946, 41,998, 42,568, 45,255, 4611, 5327,

6532, 7390, 9195

LEPR Ovarian cancer Poor Progression-free survival 0.036 1435 GSE: 14,764, 15,622, 18,520, 19,829, 23,554, 26,193, Array 207255_at
26,712, 27,651, 30,161, 3149, 51,373, 63,885, 65,986, RNA-seq

9891, TCGA (N = 565)

LEPR Lung cancer - Overall survival N.S. 1925 CAARRAY, GSE: 14,814, 19,188, 29,013, 30,219, 207255_at
31,210, 3141, 31,908, 37,745, 43,580, 4573, 50,081, RNA-seq

8894, TCGA (N = 133)

LEPR Gastric cancer Poor Overall survival <0.001 875 GSE: 14,210, 15,459, 22,377, 29,272, 51,105, 62,254 Array 207255_at

Survival data was collected from The Human Protein Atlas, Kaplan-Meier plotter databases. N.S.: no significance. N/A: not applicable.



Int. J. Mol. Sci. 2021, 22, 2870 14 of 18

5. Summary and Perspectives

According to published findings and in silico analyses of clinical cancer databases, the
expression of leptin and leptin receptors is found in many types of cancer. The signaling
axis also plays a critical role in regulating several key processes in cancer progression, in-
cluding cell proliferation, metastasis, angiogenesis, and drug resistance. We demonstrated
the relative expression levels of leptin and leptin receptors in a pancancer panel. The differ-
ential RNA expression in specific cancer types suggests a potential alteration of upstream
transcriptional activity and RNA stability that might be of value for further investigations
in tumorigenesis and cancer progression. In the clinic, the discrepancy in observations
among different research groups might result from the variations including the human
races, case numbers enrolled in each cohorts, detection platforms and the involvement of
complicated interaction networks contributing to the different outcomes in specific cancer
types. We also listed controversial functional roles of leptin in liver cancer proliferation
(Table 2), which might be due to the differences between humans and rats. In addition to
the variation in the experimental procedures, it is possible that the leptin-mediated stimu-
latory or inhibitory effects are partly altered by other receptors which are still unknown
in cancers, which might cause the discrepancies in leptin’s functional roles. Notably, the
relative expression levels of leptin and leptin receptors were not uniformly distributed
across the pancancer cohort. Head and neck cancer, peritoneal cancer, pancreatic cancer,
cervical cancer, and breast cancer all expressed relatively high leptin but not leptin receptor,
which suggests that the potential pathological involvement of other novel leptin receptors
in tumors are required to be further explored and identified.
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